首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 586 毫秒
1.
A thermally stimulated current (TSC) was used to study the relaxation of polystyrene (PS), the ethylene–propylene diene monomer (EPDM), and the grafted copolymer of EPDM with styrene (EPDM-g-St). The effect of the measuring conditions on the relaxation of PS is discussed. Some relaxation parameters of PS, EPDM, and EPDM-g-St were calculated in two different ways. In addition, the TSC spectra of PS/EPDM and PS/EPDM-g-St showed that PS/EPDM was an immiscible system, but there existed a special interaction between the plastic phase and the rubber one in PS/EPDM-g-St blends. The compatibility of PS blends was evaluated in terms of their compositions. The results of inverse gas chromatography (IGC) agreed well with those of the TSC measurements. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 67:1199–1204, 1998  相似文献   

2.
A novel graft copolymer of unsaturated propylene with styrene (uPP-g-PS) was added to binary blends of isotactic polypropylene (iPP) and atactic polystyrene (aPS) with a view to using such a copolymer as compatibilizer for iPP/aPS materials. Differential scanning calorimetry, optical microscopy, scanning electron microscopy (SEM), wide angle X-ray scattering, and small angle X-ray scattering (SAXS) techniques have been carried out to investigate the phase morphology and structure developed in solution-cast samples of iPP/aPS/uPP-g-PS ternary blends. It was found that the uPP-g-PS addition can provide iPP/aPS-compatibilized materials and that the extent of the achieved compatibilization is composition-dependent. Blends of iPP and aPS exhibited a coarse domain morphology that is characteristic of immiscible polymer systems. By adding 2% (wt/wt) of uPP-g-PS copolymer a very broad particle-size distribution was obtained, even though the particles appeared coated by a smooth interfacial layer, as expected according to a core–shell interfacial model. With increasing uPP-g-PS content (5% wt/wt), a finer dispersion degree of particles, together with morphological evidence of interfacial adhesion, was found. With further increase of uPP-g-PS amount (10% wt/wt) the material showed such a homogeneous texture that neither domains of dispersed phase nor holes could be clearly detected by SEM. The type of interface developed in such iPP/aPS/uPP-g-PS blends was accounted for by an interfacial interpenetration model. The iPP crystalline texture, size, neatness, and regularity of iPP spherulites crystallized from iPP/aPS/uPP-g-PS blends were found to decrease when the copolymer content was slightly increased. Assuming, for the iPP spherulite fibrillae, a two-phase model constituted by alternating parallel crystalline lamellae and amorphous layers, it was shown by SAXS that the phase structure generated in iPP/aPS/uPP-g-PS blends is characterized by crystalline lamellar thickness (Lc) and interlamellar amorphous layer thickness (La) higher than that shown by plain iPP; the higher the copolymer content, the higher the Lc and La. It should be remarked that considerably larger increases have been found in La values. Such SAXS results have been accounted for by assuming that a cocrystallization phenomenon between propylenic sequences of the uPP-g-PS copolymer and iPP occurs and that during such a process PS chains grafted into copolymer sequences remain entrapped in iPP interlamellar amorphous layers, where they form their own separate domains. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 65:1539–1553, 1997  相似文献   

3.
The effectiveness of chlorinated polyethylene-graft-polystyrene (CPE-g-PS) as a polymeric compatibilizer for immiscible poly(vinyl chloride)/polystyrene (PVC/PS) blends was investigated. The miscibility, phase behavior, and mechanical properties were studied using differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), Izod impact tests, tensile tests, and scanning electron microscopy (SEM). DSC and DMA studies showed that PVC is immiscible with chlorinated polyethylene (CPE) in CPE-g-PS, whereas the PS homopolymer is miscible with PS in CPE-g-PS. The PVC/PS/CPE-g-PS ternary blends exhibit a three-phase structure: PVC phase, CPE phase, and PS phase that consisted of a PS homopolymer and PS in CPE-g-PS. The mechanical properties showed that CPE-g-PS interacts well with both PVC and PS and can be used as a polymeric compatibilizer for PVC/PS blends. CPE-g-PS can also be used as an impact modifier for both PVC and PS. SEM observations confirmed, after the addition of CPE-g-PS, improvement of the interfacial adhesion between the phases of the PVC/PS blends. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 69: 995–1003, 1998  相似文献   

4.
Effect of compatibilization of styrene–butadiene–styrene (SBS) block copolymer in polypropylene/polystyrene (PP/PS) blends was studied by means of small angle X‐ray scattering (SAXS) and scanning electron microscope (SEM). According to SAXS, a certain amount of SBS was located at the interface in all the analyzed samples, forming the relatively thicker interface layer penetrating into homopolymers, and the thickness of the interface layer was quantified in terms of Porod light scattering theory. The incorporation of SBS into PP/PS blends resulted in a decrease in domain size following an emulsification curve as well as an uniform size distribution, and consequently, a fine dispersion of PP domains in the PS matrix. This effect was more pronounced when the concentration of SBS was higher. A critical concentration of SBS of 15% above which the interface layer approaches to saturation and domain size attains a steady‐state was observed. Further, the morphology fluctuation of unetched fracture surface of umcompatibilized and compatibilized blends was analyzed using an integral constant Q based on Debye‐Bueche light scattering theories. Variation of Q as a function of the concentration of SBS showed that, due to the penetrating interface layer, adhesion between phases was improved, making it possible for applied stress to transfer between phases and leading to more uniform stress distribution when blends were broken; accordingly, a more complicated morphology fluctuation of fracture surface appeared. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103:365–370, 2007  相似文献   

5.
The thermal behavior and properties of immiscible blends of polystyrene (PS) and poly(methyl methacrylate) (PMMA) with and without PS‐b‐PMMA diblock copolymer at different melt blending times were investigated by use of a differential scanning calorimeter. The weight fraction of PS in the blends ranged from 0.1 to 0.9. From the measured glass transition temperature (Tg) and specific heat increment (ΔCp) at the Tg, the PMMA appeared to dissolve more in the PS phase than did the PS in the PMMA phase. The addition of a PS‐b‐PMMA diblock copolymer in the PS/PMMA blends slightly promoted the solubility of the PMMA in the PS and increased the interfacial adhesion between PS and PMMA phases during processing. The thermogravimetric analysis (TGA) showed that the presence of the PS‐b‐PMMA diblock copolymer in the PS/PMMA blends afforded protection against thermal degradation and improved their thermal stability. Also, it was found that the PS was more stable against thermal degradation than that of the PMMA over the entire heating range. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 609–620, 2004  相似文献   

6.
The compatibilizing effect of the triblock copolymer poly(styrene-b-butadiene-b-styrene) (SBS) on the morphology and mechanical properties of immiscible polypropylene/polystyrene (PP/PS) blends were studied. Blends with three different weight ratios of PP and PS were prepared and three different concentrations of SBS were used for investigations of its compatibilizing effects. Scanning electron microscopy (SEM) showed that SBS reduced the diameter of the PS-dispersed particles as well as improved the adhesion between the matrix and the dispersed phase. Transmission electron microscopy (TEM) revealed that in the PP matrix dispersed particles were complex “honeycomblike” aggregates of PS particles enveloped and joined together with the SBS compatibilizer. Wide-angle X-ray diffraction (WAXD) analysis showed that the degree of crystallinity of PP/PS/SBS slightly exceeded the values given by the addition rule. At the same time, addition of SBS to pure PP and to PP/PS blends changed the orientation parameters A110 and C significantly, indicating an obvious SBS influence on the crystallization process in the PP matrix. SBS interactions with PP and PS influenced the mechanical properties of the compatibilized PP/PS/SBS blends. Addition of SBS decreased the yield stress and the Young's modulus and improved the elongation at yield as well as the notched impact strength in comparison to the binary PP/PS blends. Some theoretical models for the determination of the Young's modulus of binary PP/PS blends were used for comparison with the experimental results. The experimental line was closest to the series model line. © 1998 John Wiley & Sons, Inc. J. Appl. Polym. Sci. 69: 2625–2639, 1998  相似文献   

7.
Waste rubber powder/polystyrene (WRP/PS) blends with different weight ratio were prepared with styrene grafted styrene butadiene rubber copolymer (PS-g-SBR) as a compatibilizer. The graft copolymer of PS-g-SBR was synthesized by emulsion polymerization method and confirmed through Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC). The copolymer at different weight ratio was subsequently added into the blends. The effects of weight ratio of WRP/PS and compatibilizer loading on mechanical properties were investigated. PS/WRP blends in a weight ratio of 80/20 showed higher impact strength. Moreover, the impact strength of the blend materials increased with the addition of SBR-g-PS, however, decreased at a high loading of the copolymer. The morphology and thermal properties of WRP/PS blends were examined by DSC, scanning electron microscopy (SEM), thermogravimetry (TG). DSC indicated that compared with PS/WRP blend, the glass transition temperature (T g) of PS matrix phase in PS/WRP/SBR-g-PS blend shifted to low temperature because of the formation of chemical crosslinks or boundary layer between PS and WRP, and the T g of WRP phase of both the PS/WRP and PS/WRP/SBR-g-PS blends did not appear. SEM results showed that interfacial adhesion in the blends with the PS-g-SBR copolymer was improved. The morphology was a typical continuous–discontinuous structure. PS and WRP presented continuous phase and discontinuous phase, respectively, indicating the moderate interface adhesion between WRP and PS matrix. TG illustrated that the onset of degradation temperature in the PS/WRP/PS-g-SBR blend decreased slightly by contrast with PS/WRP blend and the degradation of PS/WRP blends with and without SBR-g-PS was completed about at the same values.  相似文献   

8.
PS/EPDM blends prepared by in situ‐polymerization of styrene in the presence of EPDM are immiscible and show two phases. Furthermore, the dynamic mechanical behavior of injected specimens is quite different from that of noninjected blends. This is attributed to the differences in morphology before and after injection molding. The morphology of the noninjected blends consists of PS spherical domains covered by a thin layer of EPDM, whereas the injected blends show elastomeric dispersed phase morphology in a rigid matrix. SEM analysis was important to elucidate the changes in the dynamic mechanical behavior of PS/EPDM blends, but TEM analysis is more precise for morphological characterization and yielded the real average diameter of EPDM particles. Comparing the average diameters for the PS/EPDM blends obtained from SEM and TEM analyses, the diameters obtained from the SEM analysis are wider than those of TEM which is due to the solvent extraction effect on the blend morphology. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

9.
EPDM-graft-methyl methacrylate and styrene (EPDM-g-MMA-St) was synthesized by solution graft copolymerization of methyl methacrylate (MMA) and styrene(St) onto ethylene-proplene-diene terpolymer (EPDM) in toluene/n-heptane cosolvent using benzoyl peroxide as an initiator. Fourier transform infrared spectroscopy provides a substantial evidence of grafting of MMA and St onto EPDM. EPDM-g-MMA-St/MS resin blends (MES) were prepared by melt blending EPDM-g-MMA-St and MS resin, and the toughening effects of EPDM-g-MMA-St on MS resin were studied. The results showed that the synthesized conditions of EPDM-g-MMA-St influenced the toughening effect of EPDM-g-MMA-St on MS resin. Notched Izod impact strength of MES increased with increasing grafting ratio, grafting chain polarity of EPDM-g-MMA-St, and EPDM content in MES. Differential scanning calorimetry showed that EPDM-g-MMA-St and MS resin are compatible partially and the compatibility improves with increasing grafting chain polarity of EPDM-g-MMA-St. Transmission electron microscopy and scanning electron microscopy analysis showed that the phase structure was “sea-island” structure, and the particle diameter of EPDM-g-MMA-St increased, meanwhile, surface to surface interparticle distance decreased with an increase in EPDM content, which resulted in the toughening mechanism of MES changed into slight shear yielding of matrix from the damage mode of cavitation. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

10.
Blends of ethylene propylene diene rubber (EPDM) and thermoplastic polyurethane (TPU) have been studied to understand the compatibility and morphology. The study was initially done with unmodified EPDM and subsequently with modified EPDM through maleation process. Mechanical properties of unmodified EPDM blends are improved with the addition of TPU. However, the appearance of two T gs even at lower concentrations of PU in the blends indicates that the blends are incompatible. Blends of maleated EPDM with TPU showed a single T g and further improvement in mechanical properties which is attributed to the improvement in compatibility as also confirmed by SEM analysis.  相似文献   

11.
Compatibilizing effects of styrene/rubber block copolymers poly(styrene‐b‐butadiene‐b‐styrene) (SBS), poly(styrene‐b‐ethylene‐co‐propylene) (SEP), and two types of poly(styrene‐b‐ethylene‐co‐butylene‐b‐styrene) (SEBS), which differ in their molecular weights on morphology and selected mechanical properties of immiscible polypropylene/polystyrene (PP/PS) 70/30 blend were investigated. Three different concentrations of styrene/rubber block copolymers were used (2.5, 5, and 10 wt %). Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to examine the phase morphology of blends. The SEM analysis revealed that the size of the dispersed particles decreases as the content of the compatibilizer increases. Reduction of the dispersed particles sizes of blends compatibilized with SEP, SBS, and low‐molecular weight SEBS agrees well with the theoretical predictions based on interaction energy densities determined by the binary interaction model of Paul and Barlow. The SEM analysis confirmed improved interfacial adhesion between matrix and dispersed phase. The TEM micrographs showed that SBS, SEP, and low‐molecular weight SEBS enveloped and joined pure PS particles into complex dispersed aggregates. Bimodal particle size distribution was observed in the case of SEP and low‐molecular weight SEBS addition. Notched impact strength (ak), elongation at yield (εy), and Young's modulus (E) were measured as a function of weight percent of different types of styrene/rubber block copolymers. The ak and εy were improved whereas E gradually decreased with increasing amount of the compatibilizer. The ak was improved significantly by the addition of SEP. It was found that the compatibilizing efficiency of block copolymer used is strongly dependent on the chemical structure of rubber block, molecular weight of block copolymer molecule, and its concentration. The SEP diblock copolymer proved to be a superior compatibilizer over SBS and SEBS triblock copolymers. Low‐molecular weight SEBS appeared to be a more efficient compatibilizer in PP/PS blend than high‐molecular weight SEBS. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 72: 291–307, 1999  相似文献   

12.
Pressed films of the blends of polypropylene (PP) with poly(cis‐butadiene) rubber (PcBR) were studied by IR spectra, small‐angle X‐ray scattering, and scanning electron microscopy. The problem of the interaction between different macromolecules in the blends of PP/PcBR is discussed by melt‐mixing at a temperature of 210°C using IR. X‐ray scattering from the relation of the phase was analyzed using Porod's law, and the interface layer thickness was calculated. The immiscibility of the blends of PP/PcBR was proved. The structure parameters, the correlation distance ac, average chord lengths l?, and radius of gyration R?g were obtained by the Debye–Buech statistical theory of scattering. Porod's index was calculated and the shape of the dispersed phase is discussed in relation to Porod's index in the blends. The morphology and structure of the blends were investigated by scanning electron microscopy. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 2088–2094, 2002  相似文献   

13.
The phase morphology developing in immiscible poly(styrene‐co‐acrylonitrile) (SAN)/ethylene–propylene–diene monomer (EPDM) blends was studied with an in situ reactively generated SAN‐g‐EPDM compatibilizer through the introduction of a suitably chosen polymer additive (maleic anhydride) and 2,5‐dimethyl‐2,5‐di‐(t‐butyl peroxy) hexane (Luperox) and dicumyl peroxide as initiators during melt blending. Special attention was paid to the experimental conditions required for changing the droplet morphology for the dispersed phase. Two different mixing sequences (simple and two‐step) were used. The product of two‐step blending was a major phase surrounded by rubber particles; these rubber particles contained the occluded matrix phase. Depending on the mixing sequence, this particular phase morphology could be forced or could occur spontaneously. The composition was stabilized by the formation of the SAN‐g‐EPDM copolymer between the elastomer and addition polymer, which was characterized with Fourier transform infrared. As for the two initiators, the blends with Luperox showed better mechanical properties. Scanning electron microscopy studies revealed good compatibility for the SAN/EPDM blends produced by two‐step blending with this initiator. Dynamic mechanical thermal analysis studies showed that the two‐step‐prepared blend with Luperox had the best compatibility. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

14.
PVC/PS blends are obtained through a reactive extrusion–polymerization method by the absorption of a solution of styrene monomer, initiator, and a crosslinking agent in commercial suspension‐type porous polyvinyl chloride (PVC) particles, forming a dry‐blend with a relatively high monomer content. These PVC/styrene dry‐blends are reactively polymerized in a twin‐screw extruder in the melt state. They do not contain monomer residues as detected by GC. The transparency, fracture surface morphology, thermal stability, rheology and static and dynamic mechanical properties of these blends are compared to physical PVC/PS blends at similar compositions. Owing to the high polymerization temperature (180°C), short PS chains are formed in the reactive extrusion process. These short chains are dispersed both as a separate phase of ~2 μm particles (recognized by SEM) and also as molecularly dispersed chains enhancing plasticization and compatibilization. The molecularly dispersed short PS chains tend to plasticize the PVC phase, reducing its melt viscosity and glass transition temperature. The content of the short PS chains forming the dispersed separate PS particles is too low for DMTA to detect a separate Tg. Thus, reactively extruded PVC/PS blends exhibit single Tg transitions at lower temperatures compared with the neat PVC. Migration of the PVC's low‐molecular‐weight additives (lubricants and thermal stabilizer) to the PS phase is observed in the physical PVC/PS blends, causing antiplasticization of the PS phase. This results in both reduction of the Tg and an increase in the thermal stability of the PS phase in the physical PVC/PS blends. Comparing TGA thermograms of reactively extruded and physical PVC/PS indicates that the PS formed in the extruder is different from the commercial PS. This can stem from various chemical reactions that can take place in the studied reactive polymerization process. Polym. Eng. Sci. 44:1473–1483, 2004. © 2004 Society of Plastics Engineers.  相似文献   

15.
The effect of additives on glass transition behavior in melt processed blends of polystyrene (PS) and polypropylene (PP) was studied. Blends of additive‐free polystyrene and additive‐free polypropylene revealed the known effect of the PS Tg increase in blend compositions where PP surrounds PS. Glass transition behavior in these blends was compared to blends prepared from additive‐free PP and commercial grade PS, which contained lubricant additives. The thermal transitions of PS and PP were measured using modulated DSC. Although the behavior of low PS concentration blends was similar in both systems, the characteristics of the high PS blends differed substantially. These differences and the contrast in the PP Tg behaviors were attributed to the migration of additives from the PS phase across the immiscible interface into the PP phase. Similar Tg variations were observed in blends of commercial grade PS and commercial grade PP. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

16.
Dong Wang  Bao-Hua Guo 《Polymer》2011,52(1):191-200
We report a novel and effective strategy that compatibilizes three immiscible polymers, polyolefins, styrene polymers, and engineering plastics, achieved by using a polyolefin-based multi-phase compatibilizer. Compatibilizing effect and morphology development are investigated in a model ternary immiscible polymer blends consisting of polypropylene (PP)/polystyrene(PS)/polyamide(PA6) and a multi-phase compatibilizer (PP-g-(MAH-co-St) as prepared by maleic anhydride (MAH) and styrene (St) dual monomers melt grafting PP. Scanning electron microscopy (SEM) results indicate that, as a multi-phase compatibilizer, PP-g-(MAH-co-St) shows effective compatibilization in the PP/PS/PA6 blends. The particle size of both PS and PA6 is greatly decreased due to the addition of multi-phase compatibilizer, while the interfacial adhesion in immiscible pairs is increased. This good compatibilizing effect is promising for developing a new, technologically attractive method for achieving compatibilization of immiscible multi-component polymer blends as well as for recycling and reusing of such blends. For phase morphology development, the morphology of PP/PS/PA6 (70/15/15) uncompatibilized blend reveals that the blend is constituted from PP matrix in which are dispersed composite droplets of PA6 core encapsulated by PS phase. Whereas, the compatibilized blend shows the three components strongly interact with each other, i.e. multi-phase compatibilizer has good compatibilization between the various immiscible pairs. For the 40/30/30 blend, the morphology changed from a three-phase co-continuous morphology (uncompatibilized) to the dispersed droplets of PA6 and PS in the PP matrix (compatibilized).  相似文献   

17.
PS/AES blends were prepared by in situ polymerization of styrene in the presence of AES elastomer, a grafting copolymer of poly(styrene‐co‐acrylonitrile) – SAN and poly(ethylene‐co‐propylene‐co‐diene)–EPDM chains. These blends are immiscible and present complex phase behavior. Selective extraction of the blends' components showed that some fraction of the material is crosslinked and a grafting of PS onto AES is possible. The morphology of the noninjected blends consists of spherical PS domains covered by a thin layer of AES. After injection molding, the blends show morphology of disperse elastomeric phase morphology in a rigid matrix. Two factors could contribute to the change of morphology: (1) the stationary polymerization conditions did not allow the mixture to reach the equilibrium morphology; (2) the grafting degree between PS and AES was not high enough to ensure the morphological stability against changes during processing in the melting state. The drastic change of EPDM morphology from continuous to disperse phase has as consequence a decrease in the intensity of the loss modulus peaks corresponding to the EPDM glass transition. However, the storage modulus at temperatures between the glass transition of EPDM and PS/SAN phases does not change significantly. This effect was attributed to the presence of the SAN rigid chains in the AES. © 2009 Wiley Periodicals, Inc. Journal of Applied Polymer Science, 2009  相似文献   

18.
In this article, ethylene–propylene–diene‐rubber (EPDM) was epoxidized with an in situ formed performic acid to prepare epoxided EPDM (eEPDM). The eEPDM together with the introduction of PP‐g‐AA was used to compatibilize PP/EPDM blends in a Haake mixer. FTIR results showed that the EPDM had been epoxidized. The reaction between epoxy groups in the eEPDM and carboxylic acid groups in PP‐g‐AA had taken place, and PP‐g‐EPDM copolymers were formed in situ. Torque test results showed that the actual temperature and torque values for the compatibilized blends were higher than that of the uncompatibilized blends. Scanning electron microscopy (SEM) observation showed that the dispersed phase domain size of compatibilized blends and the uncompatibilized blends were 0.5 and 1.5 μm, respectively. The eEPDM together with the introduction of PP‐g‐AA could compatibilize PP/EPDM blends effectively. Notched Izod impact tests showed that the formation of PP‐g‐EPDM copolymer improved the impact strength and yielded a tougher PP blend. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 3949–3954, 2006  相似文献   

19.
Polypropylene (PP)/nylon 11/maleated ethylene‐propylene‐diene rubber (EPDM‐g‐MAH) ternary polymer blends were prepared via melt blending in a corotating twin‐screw extruder. The effect of nylon 11 and EPDM‐g‐MAH on the phase morphology and mechanical properties was investigated. Scanning electron microscopy observation revealed that there was apparent phase separation for PP/EPDM‐g‐MAH binary blends at the level of 10 wt % maleated elastomer. For the PP/nylon 11/EPDM‐g‐MAH ternary blends, the dispersed phase morphology of the maleated elastomer was hardly affected by the addition of nylon 11, whereas the reduced dispersed phase domains of nylon 11 were observed with the increasing maleated elastomer loading. Furthermore, a core‐shell structure, in which nylon 11 as a rigid core was surrounded by a soft EPDM‐g‐MAH shell, was formed in the case of 10 wt % nylon 11 and higher EPDM‐g‐MAH concentration. In general, the results of mechanical property measurement showed that the ternary blends exhibited inferior tensile strength in comparison with the PP matrix, but superior toughness. Especially low‐temperature impact strength was obtained. The toughening mechanism was discussed with reference to the phase morphology. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

20.
The effect of confinement on glass dynamics combined with the corresponding free volume changes of amorphous polystyrene (PS) in blends with semi‐crystalline high‐density polyethylene (HDPE) have been investigated using thermal analyses and positron annihilation lifetime spectroscopy (PALS). Two different glass transition temperatures (Tg) were observed in a PS/HDPE blend due to the dissimilarity in the chemical structure, consistent with an immiscible blend. However, Tg of PS in the incompatible PS/HDPE blend showed an upward trend with increasing PS content resulting from the confinement effect, while Tg of the semi‐crystalline HDPE component became lower than that of neat HDPE. Moreover, the elevation of Tg of PS was enhanced with a decrease of free volume radius by comparing annealed and unannealed PS/HDPE blends. Positron results showed that the free volume radius clearly decreased with annealing for all compositions, although the free volume hole size agreed well with linear additivity, indicating that there was only a weak interaction between the two components. Combining PALS with thermal analysis results, the confinement effect on the glass dynamics and free volume of PS phase in PS/HDPE blends could be attributed to the shrinkage of HDPE during crystallization when HDPE acted as the continuous phase. © 2015 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号