首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
UHMWPE fiber exhibits high performance, featuring high tensile strength and modulus, because of its extended chain structure. However, this fiber demonstrates some defects, such as low melting point, creep, and poor interfacial bonding with resin. Therefore, it is still not widely applied in composites. This research attempted to improve the performance by applying interfacial treatment to the fiber, using polypyrrole (PPy) synthesized through oxidation. The interfacial shear strength was evaluated using the results of a pull-out test and a Zeta Potential. The UHMWPE fiber was exposed to PPy treatment at various temperatures. The PPy-modified fiber was then impregnated with epoxy to generate the composites. The effects of the modification were also examined. The performance of the composites was determined by the Zeta Potentials of the fiber and resin, using an EKA electrokinetic analyzer. The interfacial shear strength was determined by the pull-out test. The morphology of fiber was observed by SEM. Results show that the shear strength of the interface between the PPy-treated UHMWPE fiber and epoxy increased 215%. The correlation between the Zeta Potential and the interfacial shear strength was also observed.  相似文献   

2.
Two surface modification methods—plasma surface treatment and chemical agent treatment—were used to investigate their effects on the surface properties of ultrahigh‐molecular‐weight polyethylene (UHMWPE) fibers. In the analyses, performed using electron spectroscopy for chemical analysis, changes in weight, and scanning electron microscope observations, demonstrated that the two fiber‐surface‐modified composites formed between UHMWPE fiber and epoxy matrix exhibited improved interfacial adhesion and slight improvements in tensile strengths, but notable decreases in elongation, relative to those properties of the composites reinforced with the untreated UHMWPE fibers. In addition, three kinds of epoxy resins—neat DGEBA, polyurethane‐crosslinked DGEBA, and BHHBP‐DGEBA—were used as resin matrices to examine the tensile and elongation properties of their UHMWPE fiber‐reinforced composites. From stress/strain measurements and scanning electron microscope observations, the resin matrix improved the tensile strength apparently, but did not affect the elongation. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 655–665, 2007  相似文献   

3.
Previously developed nano-epoxy matrices with reduced viscosity showed both substantially enhanced mechanical properties and interfacial adhesion with ultra-high molecular weight polyethylene (UHMWPE) fibers vis-à-vis pure epoxy. In this work, mechanisms for the improvement in the interfacial adhesion were investigated. Atomic Force Microscopy and Energy Dispersive X-ray with Scanning Electron Microscopy analyses indicated that improved performance of the UHMWPE fiber composites with the nano-epoxy containing reactive graphitic nanofibers (r-GNFs) is attributed to mechanical interlocking and a diffusion mechanism. The nano-epoxy with the 'liquid nano-reinforcement' resulting in reduced viscosity provided better wettability, diffusion capability and reinforcing effect, which produced an effective improvement in the adhesion properties.  相似文献   

4.
Interface interactions of fiber–matrix play a crucial role in final performance of polymer composites. Herein, in situ polymerization of glycidyl methacrylate (GMA) on the ultrahigh molecular weight polyethylene (UHMWPE) fibers surface was proposed for improving the surface activity and adhesion property of UHMWPE fibers towards carbon nanofibers (CNF)‐epoxy nanocomposites. Chemical treatment of UHMWPE fibers was characterized by FTIR, XPS analysis, SEM, and microdroplet tests, confirming that the grafting of poly (GMA) chains on the surface alongside a significant synergy in the interfacial properties. SEM evaluations also exhibited cohesive type of failure for the samples when both GMA‐treated UHMWPE fiber and CNF were used to reinforce epoxy matrix. Compared with unmodified composite, a ~319% increase in interfacial shear strength was observed for the samples reinforced with both 5 wt % GMA‐grafted UHMWPE and 0.5 wt % of CNF. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43751.  相似文献   

5.
采用铬酸刻蚀和化学气相沉积聚吡咯处理了超高相对分子质量聚乙烯(UHMWPE)纤维。用DSC、DMA、X-射线衍射及SEM分析了纤维的热力学性能、结晶情况及纤维的表观形貌。结果表明,铬酸处理及化学气相沉积聚吡咯处理后,纤维的耐热性均有所提高,纤维表面变得更加粗糙,其中化学气相沉积聚吡咯处理的纤维变化更明显。  相似文献   

6.
采用化学气相沉积制备了聚吡咯/超高相对分子质量聚乙烯(PPy/UHMWPE)纤维,测试了不同氧化剂浓度、不同沉积时间和温度下PPy/UHMWPE纤维的表面剪切强度,用扫描电镜、动态热机械分析仪、傅立叶变换红外光谱仪分析了PPy/UHMWPE纤维的表面形态、热机械性能和复合材料官能团的变化。结果表明:PPy均匀分布在UHMWPE纤维表面,UHMWPE纤维与PPy之间无化学键作用而是分子间作用力;随着氧化剂三氯化铁浓度的增加和吡咯沉积时间的延长,PPy/UHMWPE纤维表面剪切强度先增大后减小;随着处理温度的升高,PPy/UHMWPE纤维表面剪切强度先增大,当处理温度超过85℃时,其剪切强度则减小。  相似文献   

7.
Interfacial adhesion between carbon fiber and epoxy resin plays an important role in determining performance of carbon–epoxy composites. The objective of this research is to determine the effect of fiber surface treatment (oxidization in air) on the mechanical properties (flexural strength and modulus, shear and impact strengths) of three‐dimensionally (3D) braided carbon‐fiber‐reinforced epoxy (C3D/EP) composites. Carbon fibers were air‐treated under various conditions to improve fiber–matrix adhesion. It is found that excessive oxidation will cause formation of micropits. These micropits are preferably formed in crevices of fiber surfaces. The micropits formed on fiber surfaces produce strengthened fiber–matrix bond, but cause great loss of fiber strength and is probably harmful to the overall performance of the corresponding composites. A trade‐off between the fiber–matrix bond and fiber strength loss should be considered. The effectiveness of fiber surface treatment on performance improvement of the C3D/EP composites was compared with that of the unidirectional carbon fiber–epoxy composites. In addition, the effects of fiber volume fraction (Vf) and braiding angle on relative performance improvements were determined. Results reveal obvious effects of Vf and braiding angle. A mechanism was proposed to explain the experimental phenomena. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 1040–1046, 2002  相似文献   

8.
The performance of carbon fibers-reinforced composites is dependent to a great extent on the properties of fiber–matrix interface. To improve the interfacial properties in carbon fibers/epoxy composites, nano-SiO2 particles were introduced to the surface of carbon fibers by sizing treatment. Atomic force microscope (AFM) results showed that nano-SiO2 particles had been introduced on the surface of carbon fibers and increase the surface roughness of carbon fibers. X-ray photoelectron spectroscopy (XPS) showed that nano-SiO2 particles increased the content of oxygen-containing groups on carbon fibers surface. Single fiber pull-out test (IFSS) and short-beam bending test (ILSS) results showed that the IFSS and ILSS of carbon fibers/epoxy composites could obtain 30.8 and 10.6% improvement compared with the composites without nano-SiO2, respectively, when the nano-SiO2 content was 1 wt % in sizing agents. Impact test of carbon fibers/epoxy composites treated by nano-SiO2 containing sizing showed higher absorption energy than that of carbon fibers/epoxy composites treated by sizing agent without nano-SiO2. Scanning electron microscopy (SEM) of impact fracture surface showed that the interfacial adhesion between fibers and matrix was improved after nano-SiO2-modified sizing treatment. Dynamic mechanical thermal analysis (DMTA) showed that the introduction of nano-SiO2 to carbon fibers surface effectively improved the storage modulus of carbon fibers/epoxy.  相似文献   

9.
《Polymer Composites》2017,38(11):2518-2527
In this work untreated and alkali treated nonwoven coconut fiber mats/epoxy resin composites were manufactured using the resin transfer molding process. The alkaline solution removes some impurities present on fibers superficial layers and the effect regarding fiber/matrix adhesion were investigated by thermogravimetric analysis, dynamic mechanical analysis (DMA), scanning electron microscopy (SEM), ultrasonic C‐scan, and quasi‐static flexural test. Results show a removing of some amorphous fibers constituents, mainly waxes, extractives, and hemicellulose, revealing the fiber roughness surface but no initial degradation temperature changing. Regarding the composites, a similar interfacial adhesion was observed in both one through the results of SEM, DMA and quasi‐static flexural tests. The conclusion is that chemical treatment conditions applied on the fiber surface was been suitable to improve fiber roughness but did not the adhesion between coconut fibers mat and epoxy resin. POLYM. COMPOS., 38:2518–2527, 2017. © 2015 Society of Plastics Engineers  相似文献   

10.
A novel surface modification method for ultrahigh molecular weight polyethylene (UHMWPE) fibers to improve the adhesion with epoxy matrix was demonstrated. Polyethylene wax grafted maleic anhydride (PEW‐g‐MAH) was deposited on the UHMWPE fibers surface by coating method. The changes of surface chemical composition, crystalline structure, mechanical properties of fiber and composite, wettability, surface topography of fibers and adhesion between fiber and epoxy resin before and after finishing were studied, respectively. The Fourier transform infrared spectroscopy spectra proved that some polar groups (MAH) were introduced onto the fiber surface after finishing. The X‐ray diffraction spectra indicated that crystallinity of the fiber was the same before and after finishing. Tensile testing results showed that mechanical properties of the fiber did not change significantly and the tensile strength of 9 wt % PEW‐g‐MAH treated fiber reinforced composite showed about 10.75% enhancement. The water contact angle of the fibers decreased after finishing. A single‐fiber pull out test was applied to evaluate the adhesion of UHMWPE fibers with the epoxy matrix. After treatment with 9 wt % PEW‐g‐MAH, a pull‐out force of 1.304 MPa which is 53.59% higher than that of pristine UNMWPE fibers was achieved. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46555.  相似文献   

11.
Highly oriented gel‐spun ultrahigh molecular weight polyethylene (UHMWPE) fibers possess many outstanding properties desirable for composite materials but their adhesion to such matrices as epoxy is poor. This article describes the combined effects of drawing and surface modification on the bulk and surface properties of gel‐cast UHMWPE films emphasizing the effects of etching on both undrawn and drawn films. Drawing the films yields a fibrillar structural hierarchy similar to UHMWPE fibers and a significant increase in orientation, melting point, modulus, and strength. The effects of drawing on bulk properties were more significant than those of etching. The poor adhesion of epoxy to the smooth, fibrillar, and relatively nonpolar drawn film surface improves significantly with oxidization and roughening on etching. The interlaminar shear failure occurred cohesively in the UHMWPE, and thus the interlaminar shear failure strength was greater for the drawn UHMWPE with its greater tensile strength. Nitrogen plasma etching yielded the best results, both removing any low molecular weight surface layer and etching the UHMWPE beneath. Oxygen plasma etching enhanced wetting but was too harsh, causing extensive surface degradation and a significant reduction in mechanical properties. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 72: 405–418, 1999  相似文献   

12.
A technique for grafting acrylic polymers on the surface of ultra-high molecular weight polyethylene (UHMWPE) fibers utilizing 60Co gamma radiation at low dose rates and low total dose has been developed. Unlike some of the more prevalent surface modification schemes, this technique achieves surface grafting with complete retention of the exceptional UHMWPE fiber mechanical properties. In particular, poly(butyl acrylate) and poly(cyclohexyl methacrylate) were successfully grafted onto UHMWPE fibers with no loss in tensile properties. The surface and tensile properties of the fibers were evaluated using Fourier transform infrared/photoacoustic spectroscopy (FTIR/PAS), X-ray photoelectron spectroscopy (XPS), and tensile tests. The reinforcement efficiency of untreated, polymer-grafted, and plasma-treated UHMWPE fibers in polystyrene and a poly(styrene-co-butyl acrylate-co-cyclohexyl methacrylate) statistical terpolymer was characterized using mechanical tensile tests. The thermoplastic matrix composites were prepared with 4 wt% discontinuous (10 mm), randomly distributed UHMWPE fibers. An approximate 30% increase in composite strength and modulus was observed for poly(cyclohexyl methacrylate)-grafted fibers in the terpolymer and polystyrene matrices. A comparable improvement was realized with the plasma-treated fibers. On the other hand, poly(butyl acrylate) grafts induced void formation, i.e. energy dissipation through plastic deformation and volume expansion at the fiber/matrix interface in terpolymer composites. The latter resulted in a 75% increase in the elongation to failure. The effect of polymer grafts on fiber/matrix adhesion is discussed in terms of the graft and matrix chain interactions and solubility, graft chain mobility, and fracture surface characteristics as determined by scanning electron microscopy (SEM).  相似文献   

13.
The effects of acid oxidation on the surface properties of gel-spun ultra-high modulus and molecular weight polyethylene (UHMWPE) fibers were investigated. Three acid-assisted reactions with CrO3 (I), K2Cr2O, (II), and one base-catalyzed reaction with K2Cr2O7 (III) were studied. In reaction II, two levels of sulfuric acid were used for IIa and IIb, with reaction IIa containing the higher concentration. Under the reaction conditions chosen, i.e. 1 min at 23°C, the effects of these oxidations were restricted to the fiber surfaces. All oxidation reactions either significantly reduced or eliminated the axially oriented macrofibril striations and changed the lamellae perpendicular to the fiber axis to irregular hairline surface structures. The oxidative attacks on the fiber surfaces appeared to have occurred in the fibrillar structure and likely at the disorder regions along the fibrils. The epoxy resin wettability and the interfacial adhesion to the epoxy resin were both improved with reactions I and IIa, whereas reaction III did not affect either of these properties. A positive relationship between surface wettability and interfacial adhesion on single fibers was observed on the untreated and acid oxidized gel-spun UHMWPE fibers.  相似文献   

14.
《Polymer Composites》2017,38(6):1215-1220
The mechanical properties of ultra‐high molecular weight polyethylene (UHMWPE) fibers reinforced natural rubber (NR) composites were determined, and the effects of fiber surface treatment and fiber mass fraction on the mechanical properties of the composites were investigated. Chromic acid was used to modify the UHMWPE fibers, and the results showed that the surface roughness and the oxygen‐containing groups on the surface of the fibers could be effectively increased. The NR matrix composites were prepared with as‐received and chromic acid treated UHMWPE fibers added 0–6 wt%. The treated UHMWPE fibers increased the elongation at break, tear strength, and hardness of the NR composites, especially the tensile stress at a given elongation, but reduced the tensile strength. The elongation at break increased markedly with increasing fiber mass fraction, attained maximum values at 3.0 wt%, and then decreased. The tear strength and hardness exhibited continuous increase with increasing the fiber content. Several microfibrillations between the fiber and NR matrix were observed from SEM images of the fractured surfaces of the treated UHMWPE fibers/NR composites, which meant that the interfacial adhesion strength was improved. POLYM. COMPOS., 38:1215–1220, 2017. © 2015 Society of Plastics Engineers  相似文献   

15.
UHMWPE fiber reinforced LLDPE composites were prepared to develop the impact resistant materials. The crystallization kinetics of LLDPE with UHMWPE fiber was investigated to understand the interfacial adhesion and composite performance. The crystallization behavior of LLDPE depends on the crystallization temperature and existence of UHMWPE fiber. LLDPE matrix crystallization was affected by the inclusion of UHMWPE fiber via preceded transcrystallization on the fiber surface. The interfacial adhesion of composites was changed by cooling rate control with different crystallization behavior. Received: 29 August 1997/Revised version: 7 November 1997/Accepted: 13 November 1997  相似文献   

16.
Ultra-high modulus polyethylene (UHMPE) fiber was treated with oxygen plasma and a silane coupling agent in order to improve the interfacial adhesion between the UHMPE fiber and vinylester resin. The oxygen plasma and γ-methylmethacryloxypropyltrimethoxysilane (γ-MPS)-treated UHMPE fiber/vinylester composites showed a slightly higher interlaminar shear strength than the oxygen plasma-treated UHMPE fiber/vinylester composites. The interfacial adhesion of the oxygen plasma-treated UHMPE fiber/vinylester composites in this study is mainly due to mechanical interlocking between the micropits formed by the oxygen plasma treatment and the vinylester resin. The γ-MPS molecules adsorbed onto the UHMPE fiber surface neither affected the morphology of the UHMPE fiber surface, nor reduced the extent of mechanical interlocking. The improved interfacial adhesion by the γ-MPS treatment is due to enhanced wettability and chemical interaction through the chemically adsorbed γ-MPS molecules, as detected by Fourier-transform infrared (FT-IR) spectroscopy. The γ-MPS molecules adsorbed onto the ultra-high molecular weight polyethylene (UHMWPE) plate surface also reduced the aging effect of the oxygen plasma-treated UHMWPE surface.  相似文献   

17.
Ultrahigh-molecular-weight polyethylene (UHMWPE) fibers have poor wetting and adhesion properties to polymer resins because of the inert surface of the fibers. In our previous study, a reactive nano-epoxy matrix, developed by making a modification on the matrix with reactive graphitic nanofibers (r-GNFs), showed improved wettability to UHMWPE fibers. In this work, fiber bundle pullout tests were conducted to evaluate the adhesion property between the UHMWPE fibers and the nano-epoxy matrices. Analysis of load-displacement curves from pullout tests shows that debonding initiation load and ultimate debonding load increased considerably, because of effective improvement of adhesion between the UHMWPE fibers and nano-epoxy matrix. Stress-controlled and energy-controlled models of interfacial debonding were applied for theoretical analyses. Results from ultimate IFSS, frictional shear stress, and critical energy-release rate are in good agreement with experimental results. Nano-epoxy matrix with 0.3 wt% r-GNFs shows effective improvement in terms of adhesion property between UHMWPE fiber and epoxy.  相似文献   

18.
In-situ mechanical process for preparation of the polyvinyl alcohol (PVA) coated nano-B4C powder was investigated by using a high-energy ball mill. The produced PVA coat on the surface of nano-B4C particles was observed by x-ray diffraction (XRD) and confirmed by TEM images. The average particle size of the produced nano-B4C/PVA particles was in the range of several tens to hundreds of nanometers depending on the milling conditions. The polymer composites were fabricated by hot pressing ultra high molecular weight polyethylene (UHMWPE) powder mixed with nano-B4C/PAV and micro-B4C powders, respectively. Nano-B4C/PVA dispersed UHMWPE shows slightly lower crystallinity and stiffness than micro-B4C dispersed UHMWPE based on differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) evaluations.  相似文献   

19.
Kevlar 49 fibers were surface-modified by NH3-, O2-, and H2O-plasma etching and chlo-rosulfonation and subsequent reaction with some reagents (glycine, deionized water, eth-ylendeiamine, and 1-butanol) to improve the adhesion to epoxy resin. After these treatments, the changes in fiber topography, chemical compositions of the fiber surfaces, and the surface functional groups introduced to the surface of fibers were identified by SEM, XPS, and static SIMS. Interlaminar shear strength (ILSS) and T-peel strenght between the fiber and opoxy resin, as measured by the short-beam test and T-peel test, were remarkedly improved by gas plasma and chlorosulfonation (0.1% and 0.25% CISO3H at 30 s). However, from the results of similar GIC values of the treated and untreated fiber composites, it is clear that the fiber/matrix interfacial bond strength is only a minor contributor to GIC. SEM was also used to study the surface topography of the fracture surfaces of composites in T-peel test. It could be seen from SEM observations that the improvement of fiber/matrix interfacial bond strength often accompanied a change in fracture mode from the interface of fiber/epoxy resins to the fiber fibrillation and the resins. © 1996 John Wiley & Sons, Inc.  相似文献   

20.
Interfacial adhesion study on UHMWPE fiber-reinforced composites   总被引:1,自引:0,他引:1  
Ultrahigh molecular weight polyethylene (UHMWPE) fiber has many outstanding properties. However, poor interfacial adhesion of the UHMWPE fiber/polymer matrix interface limits its applications as reinforcement in high performance polymer matrix composites. Therefore, a new thermosetting resin system, named PCH, which is only composed of carbon and hydrogen elements, has been developed according to law of similar mutual solubility and the structural characteristics of UHMWPE fiber. The adhesion property was investigated by mechanical properties test, thermal performance test, and polymer solution properties test. Test results show that a strong interaction occurs between UHMWPE fiber and the PCH matrix due to the structural and polar similarity. In the case of slight difference between solubility parameters of UHMWPE fiber and cured PCH resin, it is found that the wettability of PCH resin on surface of the fiber can be improved and the difference between the coefficients of thermal expansion of the matrix and the fiber decreases with the increase of styrene added into the PCH. An optimal interfacial adhesion can be obtained as the ratio of PCH/styrene is approximately 55/45.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号