首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
(1) Background: Monocytes and nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) inflammasome orchestrate lipid-driven amplification of vascular inflammation promoting the disruption of the fibrous cap. The components of the NLRP3 inflammasome are expressed in macrophages and foam cells within human carotid atherosclerotic plaques and VSMCs in hypertension. Whether monocytes and NLRP3 inflammasome activation are direct triggers of VSMC phenotypic switch and plaque disruption need to be investigated. (2) Methods: The direct effect of oxLDL-activated monocytes in VSMCs co-cultured system was demonstrated via flow cytometry, qPCR, ELISA, caspase 1, and pyroptosis assay. Aortic roots of VSMCs lineage tracing mice fed normal or high cholesterol diet and human atherosclerotic plaques were used for immunofluorescence quantification of NLRP3 inflammasome activation/VSMCs phenotypic switch. (3) Results: OxLDL-activated monocytes reduced α-SMA, SM22α, Oct-4, and upregulation of KLF-4 and macrophage markers MAC2, F4/80 and CD68 expression as well as caspase 1 activation, IL-1β secretion, and pyroptosis in VSMCs. Increased caspase 1 and IL-1β in phenotypically modified VSMCs was detected in the aortic roots of VSMCs lineage tracing mice fed high cholesterol diet and in human atherosclerotic plaques from carotid artery disease patients who experienced a stroke. (4) Conclusions: Taken together, these results provide evidence that monocyte promote VSMC phenotypic switch through VSMC NLRP3 inflammasome activation with a likely detrimental role in atherosclerotic plaque stability in human atherosclerosis.  相似文献   

2.
Our aim was to investigate the subset distribution and function of circulating monocytes, proinflammatory cytokine levels, gut barrier damage, and bacterial translocation in chronic spinal cord injury (SCI) patients. Thus, 56 SCI patients and 28 healthy donors were studied. The levels of circulating CD14+highCD16, CD14+highCD16+, and CD14+lowCD16+ monocytes, membrane TLR2, TLR4, and TLR9, phagocytic activity, ROS generation, and intracytoplasmic TNF-α, IL-1, IL-6, and IL-10 after lipopolysaccharide (LPS) stimulation were analyzed by polychromatic flow cytometry. Serum TNF-α, IL-1, IL-6 and IL-10 levels were measured by Luminex and LPS-binding protein (LBP), intestinal fatty acid-binding protein (I-FABP) and zonulin by ELISA. SCI patients had normal monocyte counts and subset distribution. CD14+highCD16 and CD14+highCD16+ monocytes exhibited decreased TLR4, normal TLR2 and increased TLR9 expression. CD14+highCD16 monocytes had increased LPS-induced TNF-α but normal IL-1, IL-6, and IL-10 production. Monocytes exhibited defective phagocytosis but normal ROS production. Patients had enhanced serum TNF-α and IL-6 levels, normal IL-1 and IL-10 levels, and increased circulating LBP, I-FABP, and zonulin levels. Chronic SCI patients displayed impaired circulating monocyte function. These patients exhibited a systemic proinflammatory state characterized by enhanced serum TNF-α and IL-6 levels. These patients also had increased bacterial translocation and gut barrier damage.  相似文献   

3.
In ischemic stroke patients, a higher monocyte count is associated with disease severity and worse prognosis. The complex correlation between subset phenotypes and functions underscores the importance of clarifying the role of monocyte subpopulations. We examined the subtype-specific distribution of the CD163+ and CD80+ circulating monocytes and evaluated their association with the inflammatory status in 26 ischemic stroke patients and 16 healthy controls. An increased percentage of CD163+/CD16+ and CD163+/CD14++ events occurred 24 and 48 h after a stroke compared to the controls. CD163+ expression was more pronounced in CD16+ non-classical and intermediate monocytes, as compared to CD14+ classical subtype, 24 h after stroke. Conversely, the percentage of CD80+/CD16+ events was unaffected in patients; meanwhile, the percentage of CD80+/CD14+ events significantly increased only 24 h after stroke. Interleukin (IL)-1beta, TNF-alpha, and IL-4 mRNA levels were higher, while IL-10 mRNA levels were reduced in total monocytes from patients versus controls, at either 24 h or 48 h after stroke. The percentage of CD163+/CD16+ events 24 h after stroke was positively associated with NIHSS score and mRS at admission, suggesting that stroke severity and disability are relevant triggers for CD163+ expression in circulating CD16+ monocytes.  相似文献   

4.
GPR55 recognizes several lipid molecules such as lysophosphatidylinositol. GPR55 expression was reported in human monocytes. However, its role in monocyte adhesion and atherosclerosis development has not been studied. The role of GPR55 in monocyte adhesion and atherosclerosis development was investigated in human THP-1 monocytes and ApoE−/− mice using O-1602 (a potent agonist of GPR55) and CID16020046 (a specific GPR55 antagonist). O-1602 treatment significantly increased monocyte adhesion to human umbilical vein endothelial cells, and the O-1602-induced adhesion was inhibited by treatment with CID16020046. O-1602 induced the expression of Mac-1 adhesion molecules, whereas CID16020046 inhibited this induction. Analysis of the promoter region of Mac-1 elucidated the binding sites of AP-1 and NF-κB between nucleotides −750 and −503 as GPR55 responsive elements. O-1602 induction of Mac-1 was found to be dependent on the signaling components of GPR55, that is, Gq protein, Ca2+, CaMKK, and PI3K. In Apo−/ mice, administration of CID16020046 ameliorated high-fat diet-induced atherosclerosis development. These results suggest that high-fat diet-induced GPR55 activation leads to the adhesion of monocytes to endothelial cells via induction of Mac-1, and CID16020046 blockage of GPR55 could suppress monocyte adhesion to vascular endothelial cells through suppression of Mac-1 expression, leading to protection against the development of atherosclerosis.  相似文献   

5.
Calcium pyrophosphate dihydrate (CPPD) crystals are formed locally within the joints, leading to pseudogout. Although the mobilization of local granulocytes can be observed in joints where pseudogout has manifested, the mechanism of this activity remains poorly understood. In this study, CPPD crystals were administered to mice, and the dynamics of splenic and peripheral blood myeloid cells were analyzed. As a result, levels of both granulocytes and monocytes were found to increase following CPPD crystal administration in a concentration-dependent manner, with a concomitant decrease in lymphocytes in the peripheral blood. In contrast, the levels of other cells, such as dendritic cell subsets, T-cells, and B-cells, remained unchanged in the spleen, following CPPD crystal administration. Furthermore, an increase in granulocytes/monocyte progenitors (GMPs) and a decrease in megakaryocyte/erythrocyte progenitors (MEPs) were also observed in the bone marrow. In addition, CPPD administration induced production of IL-1β, which acts on hematopoietic stem cells and hematopoietic progenitors and promotes myeloid cell differentiation and expansion. These results suggest that CPPD crystals act as a “danger signal” to induce IL-1β production, resulting in changes in course of hematopoietic progenitor cell differentiation and in increased granulocyte/monocyte levels, and contributing to the development of gout.  相似文献   

6.
Short-chain fatty acid (SCFA) acetate, a byproduct of dietary fiber metabolism by gut bacteria, has multiple immunomodulatory functions. The anti-inflammatory role of acetate is well documented; however, its effect on monocyte chemoattractant protein-1 (MCP-1) production is unknown. Similarly, the comparative effect of SCFA on MCP-1 expression in monocytes and macrophages remains unclear. We investigated whether acetate modulates TNFα-mediated MCP-1/CCL2 production in monocytes/macrophages and, if so, by which mechanism(s). Monocytic cells were exposed to acetate with/without TNFα for 24 h, and MCP-1 expression was measured. Monocytes treated with acetate in combination with TNFα resulted in significantly greater MCP-1 production compared to TNFα treatment alone, indicating a synergistic effect. On the contrary, treatment with acetate in combination with TNFα suppressed MCP-1 production in macrophages. The synergistic upregulation of MCP-1 was mediated through the activation of long-chain fatty acyl-CoA synthetase 1 (ACSL1). However, the inhibition of other bioactive lipid enzymes [carnitine palmitoyltransferase I (CPT I) or serine palmitoyltransferase (SPT)] did not affect this synergy. Moreover, MCP-1 expression was significantly reduced by the inhibition of p38 MAPK, ERK1/2, and NF-κB signaling. The inhibition of ACSL1 attenuated the acetate/TNFα-mediated phosphorylation of p38 MAPK, ERK1/2, and NF-κB. Increased NF-κB/AP-1 activity, resulting from acetate/TNFα co-stimulation, was decreased by ACSL1 inhibition. In conclusion, this study demonstrates the proinflammatory effects of acetate on TNF-α-mediated MCP-1 production via the ACSL1/MAPK/NF-κB axis in monocytic cells, while a paradoxical effect was observed in THP-1-derived macrophages.  相似文献   

7.
Diabetic nephropathy (DN) is characterized by albuminuria, loss of renal function, renal fibrosis and infiltration of macrophages originating from peripheral monocytes inside kidneys. DN is also associated with intrarenal overactivation of the renin–angiotensin system (RAS), an enzymatic cascade which is expressed and controlled at the cell and/or tissue levels. All members of the RAS are present in the kidneys and most of them are also expressed in monocytes/macrophages. This review focuses on the control of monocyte recruitment and the modulation of macrophage polarization by the RAS in the context of DN. The local RAS favors the adhesion of monocytes on renal endothelial cells and increases the production of monocyte chemotactic protein-1 and of osteopontin in tubular cells, driving monocytes into the kidneys. There, proinflammatory cytokines and the RAS promote the differentiation of macrophages into the M1 proinflammatory phenotype, largely contributing to renal lesions of DN. Finally, resolution of the inflammatory process is associated with a phenotype switch of macrophages into the M2 anti-inflammatory subset, which protects against DN. The pharmacologic interruption of the RAS reduces albuminuria, improves the trajectory of the renal function, decreases macrophage infiltration in the kidneys and promotes the switch of the macrophage phenotype from M1 to M2.  相似文献   

8.
Alzheimer’s disease (AD) is a neurodegenerative disease caused by abnormal functioning of critical physiological processes in nerve cells and aberrant accumulation of protein aggregates in the brain. The initial cause remains elusive—the only unquestionable risk factor for the most frequent variant of the disease is age. Lipid rafts are microdomains present in nerve cell membranes and they are known to play a significant role in the generation of hallmark proteinopathies associated to AD, namely senile plaques, formed by aggregates of amyloid β peptides. Recent studies have demonstrated that human brain cortex lipid rafts are altered during early neuropathological phases of AD as defined by Braak and Braak staging. The lipid composition and physical properties of these domains appear altered even before clinical symptoms are detected. Here, we use a coarse grain molecular dynamics mathematical model to predict the dimensional evolution of these domains using the experimental data reported by our group in human frontal cortex. The model predicts significant size and frequency changes which are detectable at the earliest neuropathological stage (ADI/II) of Alzheimer’s disease. Simulations reveal a lower number and a larger size in lipid rafts from ADV/VI, the most advanced stage of AD. Paralleling these changes, the predictions also indicate that non-rafts domains undergo simultaneous alterations in membrane peroxidability, which support a link between oxidative stress and AD progression. These synergistic changes in lipid rafts dimensions and non-rafts peroxidability are likely to become part of a positive feedback loop linked to an irreversible amyloid burden and neuronal death during the evolution of AD neuropathology.  相似文献   

9.
10.
Myeloperoxidase (MPO) is known to cause oxidative stress and inflammation leading to cardiovascular disease (CVD) complications. MPO-mediated oxidation of lipoproteins leads to dysfunctional entities altering the landscape of lipoprotein functionality. The specificity of guaiacol derivatives toward preventing MPO-mediated oxidation to limit MPO's harmful effects is unknown. Diligent in silico studies were accomplished for a portfolio of compounds with guaiacol as a building block. The compounds’ activity toward MPO inhibition was also validated. The role of these chemical entities in controlling MPO-mediated oxidation of lipoproteins (LDL and HDL) was shown to agree with our approach of developing powerful MPO inhibitors. The mechanism of MPO inhibition was demonstrated to be reversible in nature. This study reveals that there is great potential for guaiacol derivatives as therapeutics for CVD by modulating lipid profiles, reducing atherosclerotic plaque burden, and subsequently optimizing cardiovascular functions.  相似文献   

11.
Platelets (PLTs) can modulate the immune system through the release of soluble mediators or through interaction with immune cells. Monocytes are the main immune cells that bind with PLTs, and this interaction is increased in several inflammatory and autoimmune conditions, including systemic lupus erythematosus (SLE). Our aim was to characterize the phenotypic and functional consequences of PLT binding to monocytes in healthy donors (HD) and in SLE and to relate it to the pathogenesis of SLE. We analyzed the phenotypic and functional features of monocytes with non-activated and activated bound PLTs by flow cytometry. We observed that monocytes with bound PLTs and especially those with activated PLTs have an up-regulated HLA-DR, CD86, CD54, CD16 and CD64 expression. Monocytes with bound PLTs also have an increased capacity for phagocytosis, though not for efferocytosis. In addition, monocytes with bound PLTs have increased IL-10, but not TNF-α, secretion. The altered phenotypic and functional features are comparable in SLE and HD monocytes and in bound PLTs. However, the percentages of monocytes with bound PLTs are significantly higher in SLE patients and are associated with undetectable levels of anti-dsDNA antibodies and hematuria, and with normal C3 and albumin/creatinine levels. Our results suggest that PLTs have a modulatory influence on monocytes and that this effect may be highlighted by an increased binding of PLTs to monocytes in autoimmune conditions.  相似文献   

12.
Cardiovascular disease (CVD) is the major cause of death in patients with type-2 diabetes mellitus (T2DM), although the factors that accelerate atherosclerosis in these patients are poorly understood. The identification of the altered quantity and quality of lipoproteins, closely related to atherogenesis, is limited in routine to a pattern of high triglycerides and low HDL-cholesterol (HDL-C) and in research as dysfunctional HDLs. We used the emerging NMR-based lipidomic technology to investigate compositional features of the HDLs of healthy individuals with normal coronary arteries, drug-naïve; recently diagnosed T2DM patients with normal coronary arteries; and patients with recent acute coronary syndrome. Patients with T2DM and normal serum lipid profiles even at diagnosis presented significant lipid alterations in HDL, characterized by higher triglycerides, lysophosphatidylcholine and saturated fatty acids; and lower cholesterol, phosphatidylcholine, phosphatidylethanolamine, sphingomyelin, plasmalogens and polyunsaturated fatty acids, an atherogenic pattern that may be involved in the pathogenesis of atherosclerosis. These changes are qualitatively similar to those found, more profoundly, in normolipidemic patients with established Coronary Heart Disease (CHD). We also conclude that NMR-based lipidomics offer a novel holistic exploratory approach for identifying and quantifying lipid species in biological matrixes in physiological processes and disease states or in disease biomarker discovery.  相似文献   

13.
Plaques and white matter from brains of multiple sclerosis (MS) patients were analyzed for lipid content, class composition, and fatty acid composition of total lipid, together with the fatty acid composition of plaque glycerophospholipids, and the results were compared with white matter from normal brain. Plaques contained less than 30% of the lipid present in normal white matter. Plaque lipid was characterized by significantly increased proportions of glycerophospholipids and decreased cerebrosides and sulfatides. In addition, a subacute plaque contained approximately 10 times the proportion of steryl esters observed in chronic plaques or normal white matter. Total lipid from all the MS plaques showed significantly increased percentages of saturated fatty acids, n−6, n−3 and total polyunsaturated fatty acids and decreased percentages of monoenes and alk-1-enyl ethers in comparison with normal brains. These results were consistent with increased cellularity and astrogliosis associated with MS plaques. However, analysis of plaque glycerophospholipids showed that the fatty acid changes observed in total lipid were not simply due to the increased proportion of glycerophospholipids and decreased myelin lipids, but that the fatty acid composition of the individual glycerophospholipids was different.  相似文献   

14.
Cardiovascular disease (CVD) is a leading cause of death worldwide. Elevated concentrations of serum total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) are major lipid biomarkers that contribute to the risk of CVD. Phytosterols well known for their cholesterol-lowering ability, are non-nutritive compounds that are naturally found in plant-based foods and can be classified into plant sterols and plant stanols. Numerous clinical trials demonstrated that 2 g phytosterols per day have LDL-C lowering efficacy ranges of 8–10%. Some observational studies also showed an inverse association between phytosterols and LDL-C reduction. Beyond the cholesterol-lowering beneficial effects of phytosterols, the association of phytosterols with CVD risk events such as coronary artery disease and premature atherosclerosis in sitosterolemia patients have also been reported. Furthermore, there is an increasing demand to determine the association of circulating phytosterols with vascular health biomarkers such as arterial stiffness biomarkers. Therefore, this review aims to examine the ability of phytosterols for CVD risk prevention by reviewing the current data that looks at the association between dietary phytosterols intake and serum lipid biomarkers, and the impact of circulating phytosterols level on vascular health biomarkers. The clinical studies in which the impact of phytosterols on vascular function is investigated show minor but beneficial phytosterols effects over vascular health. The aforementioned vascular health biomarkers are pulse wave velocity, augmentation index, and arterial blood pressure. The current review will serve to begin to address the research gap that exists between the association of dietary phytosterols with CVD risk biomarkers.  相似文献   

15.
16.
Vitamin C is a powerful dietary antioxidant that has received considerable attention in the literature related to its possible role in heart health. Although classical vitamin C deficiency, marked by scurvy, is rare in most parts of the world, some research has shown variable heart disease risks depending on plasma vitamin C concentration, even within the normal range. Furthermore, other studies have suggested possible heart-related benefits to vitamin C taken in doses beyond the minimal amounts required to prevent classically defined deficiency. The objective of this review is to systematically review the findings of existing epidemiologic research on vitamin C and its potential role in cardiovascular disease (CVD). It is well established that vitamin C inhibits oxidation of LDL-protein, thereby reducing atherosclerosis, but the cardiovascular outcomes related to this action and other actions of vitamin C are not fully understood. Randomized controlled trials as well as observational cohort studies have investigated this topic with varying results. Vitamin C has been linked in some work to improvements in lipid profiles, arterial stiffness, and endothelial function. However, other studies have failed to confirm these results, and observational cohort studies are varied in their findings on the vitamin’s effect on CVD risk and mortality. Overall, current research suggests that vitamin C deficiency is associated with a higher risk of mortality from CVD and that vitamin C may slightly improve endothelial function and lipid profiles in some groups, especially those with low plasma vitamin C levels. However, the current literature provides little support for the widespread use of vitamin C supplementation to reduce CVD risk or mortality.  相似文献   

17.
Abnormal non‐fasting (postprandial) lipid metabolism has been recognized as a significant contributor to dyslipidemia and cardiovascular disease (CVD) risk. Clinically, impaired metabolism of lipoproteins following a meal (e.g. chylomicrons) has been demonstrated in a number of chronic diseases, including obesity, insulin resistance, as well as type 1 and 2 diabetes. Given the proposed effects of dietary trans fat to contribute to a lipid profile that increases CVD risk, there has been a public health campaign in many countries to eliminate these fatty acids from the food supply. In contrast, our group has recently reported novel lipid‐lowering benefits of a major naturally‐occurring trans fatty acid vaccenic acid (VA, shorthand lipid name 18:1 trans‐11), in an animal model of dyslipidemia and the metabolic syndrome. Studies to date have shown that dietary supplementation of VA effectively reduces not only fasting lipids, but also postprandial triacylglycerol and chylomicron concentrations in obese JCR:LA‐cp rats. Evidence from animal studies to date suggest that VA may down‐regulate hepatic fatty acid synthesis and directly influence lipogenesis in the intestine. The discovery of new bioactive properties of VA is supported by clinical studies which have provided increased momentum for industry applications. In this review we summarize the emerging beneficial view of natural trans fats that have distinct and differential properties compared to those synthetically produced in partially hydrogenated vegetable oils (PHVO), with a particular focus on fasting and postprandial lipid metabolism in CVD risk.  相似文献   

18.
Obstructive sleep apnea (OSA) is characterized by nocturnal breathing intermissions resulting in oxidative stress and eventually, a low-grade systemic inflammation. The study aimed to investigate the impact of positive airway pressure (PAP) therapy on the inflammatory milieu as measured by monocyte and T cell phenotypic alterations. Participants were assessed for their OSA severity before PAP therapy and about six months later, including patient-reported outcome and therapy usage by telemetry readout. The distributions of the CD14/CD16-characterized monocyte subsets as well as the CD4/CD8-characterized effector T cell subsets with regard to their PD-1 and PD-L1 expression were analyzed by flow cytometry from blood samples. Data of 25 patients revealed a significant reconstitution of the monocyte subset distribution and a decrease in PD-L1 expression on pan-monocytes and CD8+ T cells without an association to initial AHI and overweight. The PD-1 expression was still increased on T cell subsets, especially on CD4+ TH17/22 cells. We conclude that PAP therapy might have a rapid effect on the monocyte phenotype and overall PD-L1 expression levels. However, T cell immune alterations especially on TH17/22 cells persist longer, indicating an ongoing disturbance of the adaptive immune system.  相似文献   

19.
The evidence for the lipid hypothesis is weak. After 20 years of follow‐up, the Nurses Health Study, a prospective cohort study, was no longer able to demonstrate an association between intakes of saturated fat and risk of developing coronary heart disease. Randomised controlled trials with statins have shown that lowering LDL‐cholesterol levels by 23% can reduce the risk of developing cardiovascular disease but reducing saturated fat can only reduce cholesterol levels by 10%. This issue can only be resolved by carrying out randomised controlled dietary trials with CVD endpoints. Although there are scientific difficulties standing in the way of such trials, it is the opinion of this author that these can be overcome. Whether there is the political will to fund them is another matter although some of the money currently spent on prospective cohort studies would be far better spent on randomised controlled trials.  相似文献   

20.
The n-3 fatty acids (FA) from marine sources are known to exert antiinflammatory effects on monocyte function. There is still controversy whether n-3 FA may increase the susceptibility to infections. The present study was designed to assess the effect of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHa) on monocyte phagocytosis and respiratory burst activity. Fifty-eight healthy men were randomized to take a daily supplement of 3.8 g highly purified EPA (n=20), 3.6 g DHA (n=19), or corn oil (n=19) for 7 wk. Mononuclear leukocytes were collected, isolated, and cryopreserved prior to and after dietary supplementation. Paired samples were analyzed in the presence of autologous serum in a crossover design. Monocyte phagocytosis and respiratory burst activity were measured by flow cytometry after ingestion of Escherichia coli. Monocytes retained their phagocytic ability and respiratory burst activity after supplementation. No reduction in internalization of bacteria was registered. Dietary n-3 FA and particularly EPA improved bacterial adherence to the monocyte surface. In the crossover experiments, there was an adverse effect of serum enriched with n-3 FA on bacterial adherence. We conclude that monocytes retain their phagocytic potential after supplementation with purified EPA and DHA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号