首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 852 毫秒
1.
Methylated flavonoids are promising pharmaceutical agents due to their improved metabolic stability and increased activity compared to unmethylated forms. The biotransformation in cultures of entomopathogenic filamentous fungi is a valuable method to obtain glycosylated flavones and flavanones with increased aqueous solubility and bioavailability. In the present study, we combined chemical synthesis and biotransformation to obtain methylated and glycosylated flavonoid derivatives. In the first step, we synthesized 2′-methylflavanone and 2′-methylflavone. Afterwards, both compounds were biotransformed in the cultures of two strains of entomopathogenic filamentous fungi Beauveria bassiana KCH J1.5 and Isaria fumosorosea KCH J2. We determined the structures of biotransformation products based on NMR spectroscopy. Biotransformations of 2′-methyflavanone in the culture of B. bassiana KCH J1.5 resulted in three glycosylated flavanones: 2′-methylflavanone 6-O-β-d-(4″-O-methyl)-glucopyranoside, 3′-hydroxy-2′-methylflavanone 6-O-β-d-(4″-O-methyl)-glucopyranoside, and 2-(2′-methylphenyl)-chromane 4-O-β-d-(4″-O-methyl)-glucopyranoside, whereas in the culture of I. fumosorosea KCH J2, two other products were obtained: 2′-methylflavanone 3′-O-β-d-(4″-O-methyl)-glucopyranoside and 2-methylbenzoic acid 4-O-β-d-(4′-O-methyl)-glucopyranoside. 2′-Methylflavone was effectively biotransformed only by I. fumosorosea KCH J2 into three derivatives: 2′-methylflavone 3′-O-β-d-(4″-O-methyl)-glucopyranoside, 2′-methylflavone 4′-O-β-d-(4″-O-methyl)-glucopyranoside, and 2′-methylflavone 5′-O-β-d-(4″-O-methyl)-glucopyranoside. All obtained glycosylated flavonoids have not been described in the literature until now and need further research on their biological activity and pharmacological efficacy as potential drugs.  相似文献   

2.
Four new secondary metabolites, 3α-((E)-Dodec-1-enyl)-4β-hydroxy-5β-methyldihydrofuran-2-one (1), linderinol (6), 4′-O-methylkaempferol 3-O-α-l-(4″-E-p-coumaroyl)rhamnoside (11) and kaempferol 3-O-α-l-(4″-Z-p-coumaroyl) rhamnoside (12) with eleven known compounds—3-epilistenolide D1 (2), 3-epilistenolide D2 (3), (3Z,4α,5β)-3-(dodec-11-ynylidene)-4-hydroxy-5-methylbutanolide (4), (3E,4β,5β)-3-(dodec-11-ynylidene)-4-hydroxy-5-methylbutanolide (5), matairesinol (7), syringaresinol (8), (+)-pinoresinol (9), salicifoliol (10), 4″-p-coumaroylafzelin (13), catechin (14) and epicatechin (15)—were first isolated from the aerial part of Lindera akoensis. Their structures were determined by detailed analysis of 1D- and 2D-NMR spectroscopic data. All of the compounds isolated from Lindera akoensis showed that in vitro anti-inflammatory activity decreases the LPS-stimulated production of nitric oxide (NO) in RAW 264.7 cell, with IC50 values of 4.1–413.8 μM.  相似文献   

3.
Trehalose (α-d-glucopyranosyl α-d-glucopyranoside) is a non-reducing sugar with unique stabilizing properties due to its symmetrical, low energy structure consisting of two 1,1-anomerically bound glucose moieties. Many applications of this beneficial sugar have been reported in the novel food (nutricals), medical, pharmaceutical and cosmetic industries. Trehalose analogues, like lactotrehalose (α-d-glucopyranosyl α-d-galactopyranoside) or galactotrehalose (α-d-galactopyranosyl α-d-galactopyranoside), offer similar benefits as trehalose, but show additional features such as prebiotic or low-calorie sweetener due to their resistance against hydrolysis during digestion. Unfortunately, large-scale chemical production processes for trehalose analogues are not readily available at the moment due to the lack of efficient synthesis methods. Most of the procedures reported in literature suffer from low yields, elevated costs and are far from environmentally friendly. “Greener” alternatives found in the biocatalysis field, including galactosidases, trehalose phosphorylases and TreT-type trehalose synthases are suggested as primary candidates for trehalose analogue production instead. Significant progress has been made in the last decade to turn these into highly efficient biocatalysts and to broaden the variety of useful donor and acceptor sugars. In this review, we aim to provide an overview of the latest insights and future perspectives in trehalose analogue chemistry, applications and production pathways with emphasis on biocatalysis.  相似文献   

4.
Pterosins are abundant in ferns, and pterosin A was considered a novel activator of adenosine monophosphate-activated protein kinase, which is crucial for regulating blood glucose homeostasis. However, the distribution of pterosins in different species of ferns from various places in Taiwan is currently unclear. To address this question, the distribution of pterosins, glucose-uptake efficiency, and protective effects of pterosin A on β-cells were examined. Our results showed that three novel compounds, 13-chloro-spelosin 3-O-β-d-glucopyranoside (1), (3R)-Pterosin D 3-O-β-d-(3''-p-coumaroyl)-glucopyranoside (2), and (2R,3R)-Pterosin L 3-O-β-d-(3''-p-coumaroyl)-glucopyranoside (3), were isolated for the first time from four fern species (Ceratopteris thalictroides, Hypolepis punctata, Nephrolepis multiflora, and Pteridium revolutum) along with 27 known compounds. We also examined the distribution of these pterosin compounds in the mentioned fern species (except N. multiflora). Although all pterosin analogs exhibited the same effects in glucose uptake assays, pterosin A prevented cell death and reduced reactive oxygen species (ROS) production. This paper is the first report to provide new insights into the distribution of pterosins in ferns from Taiwan. The potential anti-diabetic activity of these novel phytocompounds warrants further functional studies.  相似文献   

5.
Halimodendron halodendron has been used as forage in northwestern China for a long time. Its young leaves and flowers are edible and favored by indigenous people. In this study, eleven phenolic compounds were bioassay-guided and isolated from the aerial parts of H. halodendron for the first time. They were identified by means of physicochemical and spectrometric analysis as quercetin (1), 3,5,7,8,4′-pentahydroxy-3′-methoxy flavone (2), 3-O-methylquercetin (3), 3,3′-di-O-methylquercetin (4), 3,3′-di-O-methylquercetin-7-O-β-d-glucopyranoside (5), isorhamentin-3-O-β-d-rutinoside (6), 8-O-methylretusin (7), 8-O-methylretusin-7-O-β-d-glucopyranoside (8), salicylic acid (9), p-hydroxybenzoic acid (ferulic acid) (10), and 4-hydroxy-3-methoxy cinnamic acid (11). They were sorted as flavonols (1–6), soflavones (7 and 8), and phenolic acids (9–11). Among the compounds, flanools 1–4 revealed a strong antibacterial activity with minimum inhibitory concentration (MIC) values of 50–150 μg/mL, and median inhibitory concentration (IC50) values of 26.8–125.1 μg/mL. The two isoflavones (7 and 8) showed moderate inhibitory activity on the test bacteria. Three phenolic acids (9, 10 and 11) showed strong antibacterial activity with IC50 values of 28.1–149.7 μg/mL. Antifungal activities of the compounds were similar to their antibacterial activities. All these phenolic compounds showed significant antimicrobial activity with a broad spectrum as well as antioxidant activity based on 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging and β-carotene-linoleic acid bleaching assays. In general, the flavonol aglycones with relatively low polarity exhibited stronger activities than the glycosides. The results suggest the potential of this plant as a source of functional food ingredients and provide support data for its utilization as forage as well.  相似文献   

6.
A new water-soluble polysaccharide (longan polysaccharide 1 (LP1)) was extracted and successfully purified from Dimocarpus longan pulp via diethylaminoethyl (DEAE)-cellulose anion-exchange and Sephacryl S-300 HR gel chromatography. The chemical structure was determined using Infrared (IR), gas chromatography (GC) and nuclear magnetic resonance (NMR) analysis. The results indicated that the molecular weight of the sample was 1.1 × 105 Da. Monosaccharide composition analysis revealed that LP1 was composed of Glc, GalA, Ara and Gal in a molar ratio of 5.39:1.04:0.74:0.21. Structural analysis indicated that LP1 consisted of a backbone of →4)-α-d-Glcp-(1→4)-α-d-GalpA-(1→4)-α-d-Glcp-(1→4)-β-d-Glcp-(1→ units with poly saccharide side chains composed of →2)-β-d-Fruf-(1→2)-l-sorbose-(1→ attached to the O-6 position of the α-d-Glcp residues. In vitro experiments indicated that LP1 had significantly high antitumor activity against SKOV3 and HO8910 tumor cells, with inhibition percentages of 40% and 50%, respectively. In addition, LP1 significantly stimulated the production of the cytokine interferon-γ (IFN-γ), increased the activity of murine macrophages and enhanced B- and T-lymphocyte proliferation. The results of this study demonstrate that LP1 has potential applications as a natural antitumor agent with immunomodulatory activity.  相似文献   

7.
Two new triterpenoids, 30-O-β-d-glucopyranosyloxy-2α,3α,24-trihydroxyurs-12, 18-diene-28-oic acid O-β-d-glucopyranosyl ester (1) and 2α,3β,3,30-tetrahydroxyurs-12, 18-diene-28-oic acid O-β-d-glucopyranosyl ester (2) were isolated from roots of Actinidia valvata Dunn. Their structures were elucidated by means of extensive spectroscopic studies. Both these two new compounds showed moderate cytotoxic activity in vitro against BEL-7402 and SMMC-7721 tumor cell line.  相似文献   

8.
The O-antigen is the outermost component of the lipopolysaccharide layer in Gram-negative bacteria, and the variation of O-antigen structure provides the basis for bacterial serological diversity. Here, we determined the O-antigen structure of an Escherichia coli strain, LL004, which is totally different from all of the E. coli serogroups. The tetrasaccharide repeating unit was determined as →4)-β-d-Galp-(1→3)-β-d-GlcpNAc6OAc(~70%)-(1→3)-β-d-GalpA-(1→3)-β-d-GalpNAc-(1→ with monosaccharide analysis and NMR spectra. We also characterized the O-antigen gene cluster of LL004, and sequence analysis showed that it correlated well with the O-antigen structure. Deletion and complementation testing further confirmed its role in O-antigen biosynthesis, and indicated that the O-antigen of LL004 is assembled via the Wzx/Wzy dependent pathway. Our findings, in combination, suggest that LL004 should represent a novel serogroup of E. coli.  相似文献   

9.
In this study, chemical transformations of benzyl ester of О-(phenyl-2-acetamido-2,3-dideoxy-1-thio-β-d-glucopyranoside-3-yl)-d-lactoyl-l-alanyl-d-isoglutamine (SPhMDPOBn) on the fumed silica surface were examined, and the surface complex structure was characterized by temperature-programmed desorption mass spectrometry (TPD-MS), infrared spectroscopy (FTIR) and electrospray ion trap mass spectrometry (ES IT MS). Stages of pyrolysis of SPhMDPOBn in pristine state and on the silica surface have been determined. Probably, hydrogen-bonded complex forms between silanol surface groups and the C = O group of the acetamide moiety NH-(CH3)-C = O…H-O-Si≡. The thermal transformations of such hydrogen-bonded complex result in pyrolysis of SPhMDPOBn immobilized on the silica surface under TPD-MS conditions. The shifts ∆ν of amide I band (measured from 1,626 to 1,639 cm−l for SPhMDPOBn in pristine state) of 33 and 35 cm−l which occurred when SPhMDPOBn was immobilized on the silica surface may be caused by a weakening of the intramolecular hydrogen bonding of the SPhMDPOBn because the interaction with the silica surface as hydrogen bond with silanol groups is weaker than that in associates.  相似文献   

10.
20(S)-protopanaxadiol (PPD), one of the representative aglycones of ginsenosides, has a broad spectrum of pharmacological activities. Although phase I metabolism has been investigated extensively, information regarding phase II metabolism of this compound remains to be elucidated. Here, a glucuronidated metabolite of PPD in human liver microsomes (HLMs) and rat liver microsomes (RLMs) was unambiguously identified as PPD-3-O-β-d-glucuronide by nuclear magnetic resonance spectroscopy and high resolution mass spectrometry. The chemical inhibition and recombinant human UDP-Glucuronosyltransferase (UGT) isoforms assay showed that the PPD glucuronidation was mainly catalyzed by UGT1A4 in HLM, whereas UGT1A3 showed weak catalytic activity. In conclusion, PPD-3-O-β-d-glucuronide was first identified as the principal glucuronidation metabolite of PPD in HLMs, which was catalyzed by UGT1A4.  相似文献   

11.
Aerial parts, leaves, and stems of Gaultheria procumbens are polyphenol-rich herbal medicines with anti-inflammatory and antioxidant effects. The present study focused on identifying active markers of the G. procumbens extracts in an integrated approach combining phytochemical and biological capacity tests. The target compounds, representing all classes of Gaultheria polyphenols, were pre-selected by LC-ESI-PDA-MS/MS. For unambiguous identification, the key analytes, including a rare procyanidin trimer (cinnamtannin B-1), miquelianin potassium salt, and two new natural products: quercetin and kaempferol 3-O-β-d-xylopyranosyl-(1→2)-β-d-glucuronopyranosides, were isolated by preparative HPLC and investigated by spectroscopy (HR-ESI-MS, UV-vis, CD, 1D- and 2D-NMR), thiolysis, flame photometry, optical rotation experiments, and absolute configuration studies. The significant contribution of the pre-selected compounds to the biological effects of the extracts was confirmed in vitro: the analytes significantly and in a dose-dependent manner down-regulated the pro-oxidant and pro-inflammatory functions of human neutrophils ex vivo (inhibited the release of reactive oxygen species, IL-1β, TNF-α, and neutrophils elastase, ELA-2), inhibited two key pro-inflammatory enzymes (cyclooxygenase, COX-2, and hyaluronidase), and most of them, except gaultherin, exerted potent direct antioxidant activity (ferric reducing antioxidant power and superoxide anion scavenging capacity). Moreover, cellular safety was confirmed for all compounds by flow cytometry. Eventually, as these mechanisms have been connected to the health benefits of G. procumbens, 11 polyphenols were accepted as active markers, and a simple, accurate, reproducible, and fully validated RP-HPLC-PDA method for standardisation of the target extracts was proposed.  相似文献   

12.
Tryptophanase, an enzyme with extreme absolute stereospecificity for optically active stereoisomers, catalyzes the synthesis of l-tryptophan from l-serine and indole through a β-substitution mechanism of the ping-pong type, and has no activity on d-serine. We previously reported that tryptophanase changed its stereospecificity to degrade d-tryptophan in highly concentrated diammonium hydrogen phosphate, (NH4)2HPO4 solution. The present study provided the same stereospecific change seen in the d-tryptophan degradation reaction also occurs in tryptophan synthesis from d-serine. Tryptophanase became active to d-serine to synthesize l-tryptophan in the presence of diammonium hydrogen phosphate. This reaction has never been reported before. d-serine seems to undergo β-replacement via an enzyme-bonded α-aminoacylate intermediate to yield l-tryptophan.  相似文献   

13.
Three kinds of polysaccharides, namely, BSP1A, BSP2A, and BSP3B, were isolated from raw bamboo shoot (Dendrocalamus latiflorus) after purification and classification by DEAE cellulose-52 (ion-exchange chromatography) and Sephadex G-50. The molecular weights of BSP1A, BSP2A, and BSP3B were 10.2, 17.0 and 20.0 kDa, respectively, which were measured through GPC (gel performance chromtatography) methods. BSP1A contained arabinose, glucose, and galactose in a molar ratio of 1.0:40.6:8.7. BSP2A and BSP3B contained arabinose, xylose, glucose, and galactose in molar ratios of 6.6:1.0:5.2:10.4 and 8.5:1.0:5.1:11.1, respectively. The existence of the O-glycopeptide bond in BSP1A, BSP2A, and BSP3B was demonstrated by β-elimination reaction. FTIR spectra of the three polysaccharides showed that both BSP2A and BSP3B contained β-d-pyranose sugar rings. However, BSP1A exhibited both β-d-pyranose and α-d-pyranose sugar rings. Congo red test indicated that BSP1A and BSP2A displayed triple helix structures, but BSP3B did not. NMR spectroscopy revealed that BSP1A may exhibit a β-1,6-Glucan pyran type as the main link, and few 1,6-glycosidic galactose pyranose and arabinose bonds were connected; BSP2A mainly demonstrated →5)β-Ara(1→and→3)β-Gal(1→connection. Furthermore, BSP3B mainly presented →3)β-Glu(1→and→3)β-Gal(1→connection and may also contain few other glycosidic bonds.  相似文献   

14.
A new benzo[c]phenanthridine, oxynorchelerythrine (1), and two new benzenoid derivatives, methyl 4-(2-hydroxy-4-methoxy-3-methyl-4-oxobutoxy)benzoate (2) and (E)-methyl 4-(4-((Z)-3-methoxy-3-oxoprop-1-enyl)phenoxy)-2-methylbut-2-enoate (3), have been isolated from the twigs of Zanthoxylum ailanthoides, together with 11 known compounds (4–14). The structures of these new compounds were determined through spectroscopic and MS analyses. Among the isolated compounds, decarine (4), (−)-syringaresinol (6), (+)-episesamin (8), glaberide I (9), (−)-dihydrocubebin (10), and xanthyletin (11) exhibited potent inhibition (IC50 values ≤ 4.79 μg/mL) of superoxide anion generation by human nutrophils in response to N-formyl-l-methionyl-l-leucyl-l-phenylalanine/cytochalasin B (fMLP/CB). Compounds 4, 8, and 11 also inhibited fMLP/CB-induced elastase release with IC50 values ≤ 5.48 μg/mL.  相似文献   

15.
The transgalactosylations of serine/threonine derivatives were investigated using β-galactosidase from Escherichia coli as biocatalyst. Using ortho-nitrophenyl-β-d-galactoside as donor, the highest bioconversion yield of transgalactosylated N-carboxy benzyl l-serine benzyl ester (23.2%) was achieved in heptane:buffer medium (70:30), whereas with the lactose, the highest bioconversion yield (3.94%) was obtained in the buffer reaction system. The structures of most abundant galactosylated serine products were characterized by MS/MS. The molecular docking simulation revealed that the binding of serine/threonine derivatives to the enzyme’s active site was stronger (−4.6~−7.9 kcal/mol) than that of the natural acceptor, glucose, and mainly occurred through interactions with aromatic residues. For N-tert-butoxycarbonyl serine methyl ester (6.8%) and N-carboxybenzyl serine benzyl ester (3.4%), their binding affinities and the distances between their hydroxyl side chain and the 1′-OH group of galactose moiety were in good accordance with the quantified bioconversion yields. Despite its lower predicted bioconversion yield, the high experimental bioconversion yield obtained with N-carboxybenzyl serine methyl ester (23.2%) demonstrated the importance of the thermodynamically-driven nature of the transgalactosylation reaction.  相似文献   

16.
An edible fungal polysaccharide termed as ABP was obtained by extraction with hot water, and followed successive chromatographic purification using DEAE-Sepharose Fast Flow column and Sephacryl S-300 High-Resolution column. A symmetrical peak was obtained on high-performance size-exclusion chromatography with an average molecular weight of 5.17 × 104 Da, which was named ABP, and its main components were d-glucose and d-mannose. Based on the study of methylation analysis, along with FT-IR, GC, GC-MS, 1D 1H and 13C NMR and 2D NMR (H-HCOSY, TOCSY, HMQC, and NOESY), its chemical structure was featured with a repeating unit (1→6) linking β-d-Glcp as the main backbone with (1→4)-linked α-d-Manp units. The structure of the mainly repeating units of ABP was established as:  → 6) - β - D - Glucp - (1 → 4) - α - D - Manp(1 → 6) - β - D - Glucp - (1 → 6) - β - D - Glucp - (1 →   相似文献   

17.
Condensation products of 5-substituted phenyl-2-furoyl hydrazide with different monosaccharides d-glucose, d-galactose,d-mannose, d-fucose and d-arabinose were prepared. The anomerization and cyclic-acyclic isomers were investigated by 1H NMR spectroscopy. The results showed that, except for the d-glucose derivatives, which were in the presence of β-anomeric forms, all derivatives were in an acyclic Schiff base form. Their antifungal and antitumor activities were studied. The bioassay results indicated that some title compounds showed superior effects over the commercial positive controls.  相似文献   

18.
Glycosylation reactions are most commonly encountered in nature. Synthetically, glycosylations are carried out with Lewis acid catalysts or mineral acids. However an environmental threat associated with catalysts has encouraged process modification by alternative development of solid catalysts based glycosylation reactions, which are commercially viable as well. In this contribution comparative study of glycosidic bond formation of 1,2,3,4,6-penta-o-acetyl-β-d-glucopyranoside with various alcohols over variety of reaction promoters/catalyst like p-toluene sulphonic acid, HCl, H2SO4 and MgO–ZrO2 were taken up to evaluate the performance of this potential promoter/catalysts systems. The best catalyst for the selective synthesis of alkyl-β-d-glucopyranosides was MgO–ZrO2 which remains active upto three runs. This replacement of homogeneous acid catalysts by heterogeneous base catalyst shows alkyl-β-d-glucopyranoside as major product at comparatively low temperature range. The effects of variety of parameters were studied in a batch reactor. The mechanism of the reaction over basic mixed metal oxide at 363 K is put forth.  相似文献   

19.
20.
Lysine 5,6-aminomutase (5,6-LAM) and ornithine 4,5-aminomutase (4,5-OAM) are two of the rare enzymes that use assistance of two vitamins as cofactors. These enzymes employ radical generating capability of coenzyme B12 (5′-deoxyadenosylcobalamin, dAdoCbl) and ability of pyridoxal-5′-phosphate (PLP, vitamin B6) to stabilize high-energy intermediates for performing challenging 1,2-amino rearrangements between adjacent carbons. A large-scale domain movement is required for interconversion between the catalytically inactive open form and the catalytically active closed form. In spite of all the similarities, these enzymes differ in substrate specificities. 4,5-OAM is highly specific for d-ornithine as a substrate while 5,6-LAM can accept d-lysine and l-β-lysine. This review focuses on recent computational, spectroscopic and structural studies of these enzymes and their implications on the related enzymes. Additionally, we also discuss the potential biosynthetic application of 5,6-LAM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号