首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
The separation of methanol(MeOH) and dimethyl carbonate(DMC) is important but difficult due to the formation of an azeotropic mixture. In this work, isobaric vapor–liquid equilibrium(VLE) data for the ternary systems containing different imidazolium–based ionic liquids(ILs), i.e. MeOH + DMC + 1-butyl-3-methy-limidazolium bis[(trifluoromethyl)sulfonyl]imide([Bmim][Tf_2N]), MeOH + DMC + 1-ethyl-3-methyl-imidazolium bis[(trifluoromethyl)sulfonyl]imide([Emim][Tf_2N]), and MeOH + DMC + 1-ethyl-3-methylimidazolium hexafluorophosphate([Emim][PF6])) were measured at 101.3 kPa. The mole fraction of IL was varied from0.05 to 0.20. The experimental data were correlated with the NRTL and Wilson equations, respectively. The results show that imidazolium-based ILs were beneficial to improve the relative volatility of MeOH to DMC,and [Bmim][Tf_2 N] showed a much more excellent performance on the activity coefficient of MeOH. The interaction energies of system components were calculated using Gaussian program, and the effects of cation and anion on the separation coefficient of the azeotropic system were discussed.  相似文献   

2.
以甘油和尿素为原料,探讨了低甘油含量的甘油碳酸酯环境友好的合成工艺。考察了催化剂的结构、反应条件等因素对甘油转化率的影响,结果表明在390 ℃煅烧3 h的硫酸锌催化效果最好。采用甘油与尿素反应后再与碳酸酯反应的偶合反应方式,所得甘油碳酸酯中甘油的含量仅为0.6%,降低了合成成本。  相似文献   

3.
Vapor–liquid equilibria of the carbon dioxide loaded sodium carbonate–water system were measured in the temperature range 40–80 °C and for sodium carbonate concentrations 8–12 wt%. In addition the vapor pressure of water over 10–30 wt% sodium carbonate solutions for the temperature range 27–100 °C was measured in an ebulliometer. The system was modeled using the electrolyte-NRTL model. Experimental vapor–liquid data from this study as well as data available in the literature from 25 to 195 °C and for sodium carbonate concentrations from 0.5 to 12 wt% were used for parameter fitting. The average deviation of the model predictions compared to all experimental data found is 9.8% for the partial pressure of CO2. For vapor pressure of water the standard deviation is 0.6% up to 100 °C and 30 wt% sodium carbonate solutions.  相似文献   

4.
A process for the production of glycerol carbonate (GC) is proposed with the transesterification of glycerol (GL) and dimethyl carbonate (DMC) with CaO as catalyst by reactive distil ation and extractive distil ation. The perfor-mance of solvents in separating DMC-methanol azeotrope and the effects of operation parameters on the reactive distillation process are investigated experimental y. The results indicate that both the GL conversion and GC yield increase with the DMC/GL molar ratio, reflux ratio, final temperature of tower bottom, and CaO/GL molar ratio and decrease as the recycle number of CaO increases. The calcium concentration in the residual reaction mixture also decreases remarkably as the DMC/GL molar ratio increases. At DMC/GL molar ratio 4.0, reflux ratio 1.0, final temperature of tower bottom 358 K, and CaO/GL molar ratio 0.05, both the GL conversion and GC yield can reach above 99.0%, and the mass concentration of calcium in the product is less than 0.08%.  相似文献   

5.
6.
7.
Directional regulation of polyol oxidation selectivity by constructing active sites with specific structure is a critical yet challenging problem. Herein, the specific Au-based catalyst with efficient Au–Cu–ZnO interfacial active sites was successfully designed to promote selective oxidation of glycerol to 1,3-dihydroxyacetone under mild conditions. X-ray absorption spectroscopy revealed that the increased electron transfer between Au and Cu increases the content of Au+, resulting in the higher catalytic activity (turnover frequency: 402.5 h−1). Meanwhile, small AuCu alloy nanoparticles (ca., 2.7 nm) could be inserted into the ZnO lattice with the formation of Au(Cu)–O–Zn linkages, resulting in the enrichment of interfacial oxygen vacancies. These interfacial oxygen vacancies induce the activation and adsorption of the secondary hydroxyl group of glycerol on the interfacial active sites, improving the selectivity of 1,3-dihydroxyacetone (83.4%). Furthermore, in situ Fourier transform infrared, structure-dependent kinetics and density functional theory calculation demonstrated that Au–Cu–ZnO interfacial active sites could enhance the participation of OH* and oxygen vacancies in activating the O H and C H bonds, respectively, promoting the improvement of the catalytic performance. The outcome of this work offers new insights for the rational design of high effective catalyst for the selective oxidation of polyol.  相似文献   

8.
Synthesis of glycerol carbonate has been performed by transesterification of ethylene carbonate with glycerol catalyzed by basic oxides (MgO, and CaO), and mixed oxides (Al/Mg, Al/Li) derived from hydrotalcites. The results showed that the optimum catalyst in terms of activity and selectivity is a strong basic Al/Ca-mixed oxide (AlCaMO) which is able to catalyze the reaction at low temperature (35 °C), and low catalyst loading (0.5 wt%) giving high glycerol conversions with 98% selectivity to glycerol carbonate. When the synthesis of glycerol carbonate was carried out by carbonylation of glycerol with urea, the results showed that balanced bifunctional acid–base catalysts where the Lewis acid activates the carbonyl of the urea and the conjugated basic site activates the hydroxyl group of the glycerol were the most active and selective catalysts.  相似文献   

9.
The effects of different alkali metal promoters in PdCl2-CuCl2/activated carbon (a.c.) catalyst on the reaction performance for synthesizing dimethyl carbonate (DMC) by gas-phase oxidative carbonylation of methanol were studied. The bulk and surface properties of catalyst PdCl2-CuCl2-CH3COOK/a.c. were characterized by XRD, XPS, and AAS techniques. On the basis of catalyst characterization and activity evaluation, the functions of promoters were further investigated, and the deactivation–regeneration of catalyst PdCl2-CuCl2-CH3COOK/a.c. was also discussed. The results show that the space time yield (STY) of DMC on catalysts with different alkali metal promoters ranks in the following order: K>Na>Li. The main reason for catalyst deactivation is the loss of chlorine. Fortunately, during the preparation of the catalyst, the interaction between CH3COOK and PdCl2 or CuCl2 that results in the formation of KCl limits the loss of chlorine. An obvious increase of the catalyst lifetime and catalytic activity is observed by treating fresh catalyst with a methanol solution of methyl chloroacetate. If deactivated catalyst is treated with a methanol solution of methyl chloroacetate in N2 stream at 200 °C for 4 h and then treated in N2 stream at 200 °C for 2 h, the catalytic activity can be restored effectively and the regeneration induction period can be shortened. The catalytic activity after two times of regeneration can still be restored to 93% of the fresh catalyst. The run time of this catalyst is up to 300 h.  相似文献   

10.
In this work, Ni–Co alloy coating on the surface of glassy carbon (GC) electrode was performed by cyclic voltammetry. The results showed that the deposition of Ni–Co is an anomalous process. The deposition bath was prepared according to the metal ion Ni/Co ratio of 4:1 using NiSO4·7H2O and CoSO4·8H2O, and the total concentration of all solutions was 40.0 mM. The pH of the bath solution was adjusted at 2.0 using boric acid at room temperature. The modified electrode was conditioned by potential recycling in a potential range of 100–700 mV (vs. Ag/AgCl) by cyclic voltammetric method in an alkaline solution. The Ni–Co modified electrode showed a higher activity towards methanol oxidation in the Ni (III) and Co (IV) oxidation states. Cyclic voltammetry was used for the electrochemical characterization of the Ni–Co modified electrode and the mechanism of methanol oxidation is proposed. The result of double steps chronoamperometry shows that the methanol electrooxidation is an irreversible reaction. Moreover, the effects of various parameters such as mole ratio of Ni–Co in the alloy in modification step, potential scan rate, methanol concentration and solution temperature on the electro-oxidation of methanol have also been investigated.  相似文献   

11.
Carbon-supported Pt–Sn/C bimetallic nanoparticle electrocatalysts were prepared by the simple reduction of the metal precursors using ethylene glycol. The catalysts heat-treated under argon atmosphere to improve alloying of platinum with tin. As-prepared Pt–Sn bimetallic nanoparticles exhibit a single-phase fcc structure of Pt and heat-treatment leading to fcc Pt75Sn25 phase and hexagonal alloy structure of the Pt50Sn50 phase. Transmission electron microscopy image of the as-prepared Pt–Sn/C catalyst reveals a mean particle diameter of ca. 5.8 nm with a relatively narrow size distribution and the particle size increased to ca. 20 nm when heat-treated at 500 °C due to agglomeration. The electrocatalytic activity of oxygen reduction assessed using rotating ring disk electrode technique (hydrodynamic voltammetry) indicated the order of electrocatalytic activity to be: Pt–Sn/C (as-prepared) > Pt–Sn/C (250 °C) > Pt–Sn/C (500 °C) > Pt–Sn/C (600 °C) > Pt–Sn/C (800 °C). Kinetic analysis reveals that the oxygen reduction reaction on Pt–Sn/C catalysts follows a four-electron process leading to water. Moreover, the Pt–Sn/C catalyst exhibited much higher methanol tolerance during the oxygen reduction reaction than the Pt/C catalyst, assessing that the present Pt–Sn/C bimetallic catalyst may function as a methanol-tolerant cathode catalyst in a direct methanol fuel cell.  相似文献   

12.
A -conjugated polymer, poly(pyridine-2,5-diyl) (PPy) was investigated as a support for CuCl2 in the synthesis of dimethyl carbonate by oxidative carbonylation of methanol. The PPy–CuCl2 adduct had high catalytic activity which was comparable to that of the homogeneous CuCl2 catalyst. The adduct caused corrosion of stainless-steel vessels only to minor extent, compared with the homogeneous CuCl2 catalyst. This PPy–CuCl2 catalyst was easily recycled by filtration and showed a similar catalytic activity in the third time use. The presence of the -conjugated system in PPy, through which electrons can move, may bring about the high catalytic activity for the oxidative carbonylation of methanol, which involves Cu(II)/Cu(I) redox processes.  相似文献   

13.
Catalytic co-cracking of Fischer–Tropsch(FT) light distillate and methanol combines highly endothermic olefin cracking reaction with exothermic methanol conversion over ZSM-5 catalyst to produce light olefins through a nearly thermoneutral process. The kinetic behavior of co-cracking reactions was investigated by different feed conditions: methanol feed only, olefin feed only and co-feed of methanol with olefins or F–T distillate. The results showed that methanol converted to C_2–C_6 olefins in first-order parallel reaction at low space time, methylation and oligomerization–cracking prevailed for the co-feed of methanol and C_2–C_5 olefins, while for C_6–C_8 olefins,monomolecular cracking was the dominant reaction whether fed alone or co-fed with methanol. For FT distillate and methanol co-feed, alkanes were almost un-reactive, C_3–C_5 olefins were obtained as main products, accounting for 71 wt% for all products. A comprehensive co-cracking reaction scheme was proposed and the model parameters were estimated by the nonlinear least square method. It was verified by experimental data that the kinetic model was reliable to predict major product distribution for co-cracking of FT distillate with methanol and could be used for further reactor development and process design.  相似文献   

14.
The structure, chemistry and morphology of commercially available carbon-supported and unsupported Pt–Ru catalysts are investigated by X-ray diffraction, energy-dispersive analysis by X-rays and electron microscopy. The catalytic activities of these materials towards electrooxidation of methanol in solid-polymer-electrolyte direct methanol fuel cells have been investigated at 90C and 130C with varying amounts of Nafion ionomer in the catalytic layer. The unsupported Pt–Ru catalyst exhibits higher performance with lower activation-control and mass-polarization losses in relation to the carbon-supported catalyst.On leave from the  相似文献   

15.
The steam reforming of methanol was studied over a series of copper–manganese spinel oxide catalysts prepared with the urea–nitrate combustion method. All catalysts showed high activity towards H2 production with high selectivity. Synthesis parameters affected catalyst properties and, among the catalysts tested, the one prepared with 75% excess of urea and an atomic ratio Cu/(Cu + Mn) = 0.30 showed the highest activity. The results show that formation of the spinel CuxMn3  xO4 phase in the oxidized catalysts is responsible for the high activity. Cu–Mn catalysts were found to be superior to CuO–CeO2 catalysts prepared with the same technique.  相似文献   

16.
Pd and Pt supported on ZnO, Ga2O3 and In2O3 exhibit high catalytic performance for the steam reforming of methanol, CH3OH+H2OCO2+3HH2, and the dehydrogenation of methanol to HCOOCH3, 2CH3OHHCOOCH3+2HH2. Combined results with temperature-programmed reduction (TPR) and XRD method revealed that Pd–Zn, Pd–Ga, Pd–In, Pt–Zn, Pt–Ga and Pt–In alloys were produced upon reduction. Over the catalysts having the alloy phase, the reactions proceeded selectively, whereas the catalysts having metallic phase exhibited poor selectivities.  相似文献   

17.
Palladium (Pd) catalysts containing nanosized metal oxides, tungsten oxide (WO3) and tin oxide (SnO2), supported on carbon black (Pd–MOx/C) were synthesized, and the effect of the metal oxide on the oxygen reduction reaction (ORR) in a direct methanol fuel cell (DMFC) was investigated. The SEM images showed that the Pd nanoparticles were highly dispersed on the carbon black, and the metal oxide particles were also distributed well. Pd/C and Pd–WO3/C catalysts as cathode materials for the ORR in DMFCs showed activity similar to or better than that of Pt/C, whereas Pd–SnO2/C showed no improvement in catalytic activity.  相似文献   

18.
Fei Han  Xiaomin Wang  Jie Lian  Yongzhen Wang 《Carbon》2012,50(15):5498-5504
Direct methanol fuel cell (DMFC) electrode catalysts with improved electrochemical properties have been prepared by dispersing platinum–tin (Pt–Sn) nanoparticles onto graphene sheets. During the deposition, a majority of the oxygenated functional groups on the graphene oxide nanosheets were removed, resulting in the formation of graphene. Microstructural characterization shows that metallic Pt, Pt–Sn alloy and tin dioxide (SnO2) nanoparticles were distributed on the graphene sheets, representing different lattice planes during the synthetic process. In terms of the electrocatalytic properties, graphene-supported Pt–Sn and graphene-supported Pt catalysts exhibited much higher current densities compared with that of commercial carbon black-supported Pt catalysts. Graphene-supported Pt–Sn increased the electrocatalytic activity, which is strongly influenced by the addition of Sn in its alloyed and oxidized forms, boosting the reaction more readily because of the lower oxidation potential.  相似文献   

19.
《Fuel》2002,81(11-12):1599-1603
The non-catalytic and catalytic oxidations of CH4 over Mo–V–Cr–Bi–Si oxide catalysts were investigated in a tubular reactor and the catalysts were characterized by XRD, XPS and TPR. Contents of Bi in the catalysts influenced the combination of Mo–V–Bi–O species and, consequently, influenced the TPR reduction temperature of the catalysts. The catalysts exhibited more selective production of methanol when the TPR reduction peaks shifted to lower temperature.  相似文献   

20.
Pt catalyst was supported on Vulcan XC-72R containing 5 wt.% NiO using NaBH4 as a reducing agent. The prepared catalyst was heat-treated at 400 °C. XRD, TEM and EDX analyses were applied to characterize Pt–NiO/C electrocatalyst. The introduction of NiO reduces the particle size of Pt crystallites. The electrocatalytic activity of Pt–NiO/C electrocatalysts was examined towards methanol oxidation reaction in 0.5 M H2SO4 solution using cyclic voltammetry and chronoamperometry techniques. A three fold increment in the oxidation current density was gained at Pt–NiO/C electrocatalyst compared to Pt/C one. The corresponding chronoamperograms showed high steady state current density values suggesting better stability of Pt–NiO/C electrocatalyst towards the carbonaceous poisoning species. The enhanced electrocatalytic performance and the long-term cycle durability of Pt–NiO/C electrocatalyst are attributed to the strong interaction between Pt and NiO and the formation of small Pt crystals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号