首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
1 Introduction Using Micro-Electro-Mechanical System(MEMS)technology, many devices and systems can be miniaturized. Micro pressure sensors and micro accelerometers(air-bag sensor) are examples that are widely commercialized. In the case of optical system,some optical components need to be combined to implement the function desired for optical processing.  相似文献   

2.
The research results of “the fundamental technologies of micropumps”, being part of the key project of “the fundamental research on the theories and technologies of micro manufacturing” supported by the National Nature Science Foundation of China, are summarized and the continued research work is also introduced in this paper. And the characteristics of microelectromechanical systems are described based on the research activities of the micro fluidic systems. Microelectromechanical systems will open up more and more applications with the breakthrough progress in the key fundamental researches. It is a chance for us to develop the field of MEMS while MEMS are just being promoted roundly in the world.  相似文献   

3.
The reliability of mining systems is generally low due to their harsh working conditions. Currently, efforts for improving mining system reliability are often made in isolation. This practice could substantially limit the effectiveness of the efforts on overall reliability improvement of the mining system. To enhance the overall reliability of mining systems, an integrated improvement approach is necessary. In this paper, we developed a framework for integrated mining system reliability improvement to address this issue. In this framework, there are five major components including data integration, business process integration, hardware integration, software integration and analysis/decision integration, but we only focus on the integrated reliability analysis which is important to the analysis/decision integration. The reliability analysis considers the interactions between machines, and the impacts of design, operation, maintenance, automation and working environment on the overall system reliability. These multiple interactions present a big challenge to accurate reliability prediction. In this paper, we for the first time systematically investigated integrated reliability analysis approaches for dealing with this challenge using novel models and methods, including covariate hazard models, intelligent reliability prediction approach and complex system modeling methods. While these models and methods have found some successful applications in other industries, they in general have not been effectively used for the reliability analysis of mining systems. Our study results show that the system integration approach is applicable to mining systems and can be used for developing a computer aided integration system for the implementation of the integrated reliability improvement approach.  相似文献   

4.
A design methodology fOr multi-agent systems is proposed. The systemic framework ofCAPP and scheduling integrated multi-agent system according to design methodology is researched.Agent model, composition model and cooperation model are discussed respectively in the multi-agentsystem.Static composition model and dynamic running model of CAPP and scheduling integrated  相似文献   

5.
The obstacle for idea generation in fuzzy front end (FFE) is difficult to apply knowledge in different fields for designers. Theory of inventive problem solving TRIZ and computer-aided innovation systems (CAIs) which are TRIZ-base software systems with a knowledge base provide a framework for knowledge application in different fields. The major methods in TRIZ are selected, which have four types. The problems to be solved for each method are summarized and mapping from the problems to the methods is given. Systematic method with eight paths to integrate the methods and problems is formed. A case study shows the idea generation in FFE using the integrated method step by step.  相似文献   

6.
Numerical solutions could not perform rapid system-level simulation of the behavior of micro-electro-mechanical systems(MEMS) and analytic solutions for the describing partial differential equations are only available for simple geometries.Model order reduction(MOR) can extract approximate low-order model from the original large scale system.Conventional model order reduction algorithm is based on first-order system model,however,most structure mechanical MEMS systems are naturally second-order in time.For the purpose of solving the above problem,a direct second-order system model order reduction approach based on Krylov subspace projection for the coupled dynamic study of electrostatic torsional micromirrors is presented.The block Arnoldi process is applied to create the orthonormal vectors to construct the projection matrix,which enables the extraction of the low order model from the discretized system assembled through finite element analysis.The transfer functions of the reduced order model and the original model are expanded to demonstrate the moment-matching property of the second-order model reduction algorithm.The torsion and bending effect are included in the finite element model,and the squeeze film damping effect is considered as well.An empirical method considering relative error convergence is adopted to obtain the optimal choice of the order for the reduced model.A comparison research between the full model and the reduced model is carried out.The modeling accuracy and computation efficiency of the presented second-order model reduction method are confirmed by the comparison research results.The research provides references for MOR of MEMS.  相似文献   

7.
The aim of the study of phase shifter on MEMS (micro-electro-mechanical systems) structures was to minimize the dimensions of the design achievement. Also, the main task was to achieve the reliability and durability of the device. The calculation was based on the optimization technique (step by step) and the modeling of individual parts of the device, namely MEMS-keys that perform the main function--switching. The urgency of this problem is the development and study of one device as a universal, that is, automatically switches from two signals simultaneously. Designs are original and devises are the intellectual property of the authors. The program for modeling phase shifters Computer Simulation Technology Microwave Studio and its results are presented in the paper.  相似文献   

8.
MA  Zhisai  LIU  Li  ZHOU  Sida  NAETS  Frank  HEYLEN  Ward  DESMET  Wim 《机械工程学报(英文版)》2017,30(2):459-471
The problem of linear time-varying(LTV) system modal analysis is considered based on time-dependent state space representations, as classical modal analysis of linear time-invariant systems and current LTV system modal analysis under the ‘‘frozen-time' assumption are not able to determine the dynamic stability of LTV systems.Time-dependent state space representations of LTV systems are first introduced, and the corresponding modal analysis theories are subsequently presented via a stabilitypreserving state transformation. The time-varying modes of LTV systems are extended in terms of uniqueness, and are further interpreted to determine the system's stability. An extended modal identification is proposed to estimate the time-varying modes, consisting of the estimation of the state transition matrix via a subspace-based method and the extraction of the time-varying modes by the QR decomposition. The proposed approach is numerically validated by three numerical cases, and is experimentally validated by a coupled moving-mass simply supported beam experimental case. The proposed approach is capable of accurately estimating the time-varying modes, and provides a new way to determine the dynamic stability of LTV systems by using the estimated time-varying modes.  相似文献   

9.
Research work on plug-and-play open architecture and object-oriented mechatronic system integration is described. The original controllers of two popular industrial robot manipulators Puma 560 and IBM 7575 are completely retrofitted and integrated with a conveyor system to form a robot workcell. This robot workcell can be programmed to run under the Ch language environment. The outline of the Ch language, and the retrofitting strategy of the robot workcell will be described. A sample application program for simulated assembly operations of this robot workcell will be presented to demonstrate the underlying principles of open architecture integration of mechatronic systems under the programming paradigm of the Ch language environment.  相似文献   

10.
Finding a basis of unification for the modeling of mechatronic systems is the search subject of several works.This paper is a part of a general research designed to the application of topology as a new approach for the modeling of mechatronic systems.Particularly,the modeling of a one stage spur gear transmission using a topological approach is tackled.This approach is based on the concepts of topological collections and transformations and implemented using the MGS(modeling of general systems)language.The topological collections are used to specify the interconnection laws of the one stage spur gear transmission and the transformations are used to specify the local behavior laws of its different components.In order to validate this approach,simulation results are presented and compared with those obtained with MODELICA language using Dymola solver.Since good results are achieved,this approach might be used as a basis of unification for the modeling of mechatronic systems.  相似文献   

11.
The integrated layout problem in manufacturing systems is investigated. An integrated model for concurrent layout design of cells and flow paths is formulated. A hybrid approach combined an enhanced branch-and-bound algorithm with a simulated annealing scheme is proposed to solve this problem. The integrated layout method is applied to re-layout the gear pump shop of a medium-size manufacturer of hydraulic pieces. Results show that the proposed layout method can concurrently provide good solutions of the cell layouts and the flow path layouts.  相似文献   

12.
To meet the demands for highly advanced components with ultra precise contour accuracy and optical surface quality arising in the fields of photonics and optics, automotive, medical applications and biotechnology, consumer electronics and renewable energy, more advanced production machines and processes have to be developed. As the complexity of machine tools rises steadily, the automation of manufacture increases rapidly, processes become more integrated and cycle times have to be reduced significantly, challenges of engineering efficient machine tools with respect to these demands expand every day. Especially the manufacture of freeform geometries with non-continuous and asymmetric surfaces requires advanced diamond machining strategies involving highly dynamic axes movements with a high bandwidth and position accuracy. Ultra precision lathes additionally equipped with Slow Tool and Fast Tool systems can be regarded as state-of-the-art machines achieving the objectives of high quality optical components. The mechanical design of such ultra precision machine tools as well as the mechanical integration of additional highly dynamic axes are very well understood today. In contrast to that, neither advanced control strategies for ultra precision machining nor the control integration of additional Fast Tool systems have been sufficiently developed yet. Considering a complex machine setup as a mechatronic system, it becomes obvious that enhancements to further increase the achievable form accuracy and surface quality and at the same time decrease cycle times and error sensitivity can only be accomplished by innovative, integrated control systems. At the Fraunhofer Institute for Production Technology IPT a novel, fully integrated control approach has been developed to overcome the drawbacks of state-of-the-art machine controls for ultra precision processes. Current control systems are often realized as decentralized solutions consisting of various computational hardware components for setpoint generation, machine control, HMI (human machine interface), Slow Tool control and Fast Tool control. While implementing such a distributed control strategy, many disadvantages arise in terms of complex communication interfaces, discontinuous safety structures, synchronization of cycle times and the machining accuracy as a whole. The novel control approach has been developed as a fully integrated machine control including standard CNC (computer numerical control) and PLC (programmable logic controller) functionality, advanced setpoint generation methods, an extended HMI as well as an FPGA (field programmable gate array)-based controller for a voice coil driven Slow Tool and a piezo driven Fast Tool axis. As the new control system has been implemented as a fully integrated platform using digital communication via EtherCAT, a continuous safety strategy could be realized, the error sensitivity and EMC susceptibility could be significantly decreased and the overall process accuracy from setpoint generation over path interpolation to axes movements could be enhanced. The novel control at the same time offers additional possibilities of automation, process integration, online data acquisition and evaluation as well as error compensation methods.  相似文献   

13.
14.
To improve the performance and reliability of microelectromechanical system's devices, it is necessary to understand the effect of friction which exists in the majority of microelectromechanical systems (MEMS) with a large ratio of surface area to their volume. The model of electrostatic tangential force of the shuttle in laterally driven comb microresonator is established based on the rule of energy conservation. The effects of microscale, surface roughness, applied voltage, and micro asperities or dents or holes formed in fabrication are investigated, and the electrostatic resistance between two charged moving plates is analyzed. The analytic results are coincident well with those of ANSYS simulation. It is found that the electrostatic resistance becomes high as the increase of the ratio of the shuttle width to the gap between moving plates and the relative surface roughness or the increment of the applied voltage.  相似文献   

15.
Laboratory experiments were conducted for falling U-chain,but explicit analytic form of the general equations of motion was not presented.Several modeling methods were developed for fish robots,however they just focused on the whole fish’s locomotion which does little favor to understand the detailed swimming behavior of fish.Udwadia-Kalaba theory is used to model these two multi-body systems and obtain explicit analytic equations of motion.For falling U-chain,the mass matrix is non-singular.Second-order constraints are used to get the constraint force and equations of motion and the numerical simulation is conducted.Simulation results show that the chain tip falls faster than the freely falling body.For fish robot,two-joint Carangiform fish robot is focused on.Quasi-steady wing theory is used to approximately calculate fluid lift force acting on the caudal fin.Based on the obtained explicit analytic equations of motion(the mass matrix is singular),propulsive characteristics of each part of the fish robot are obtained.Through these two cases of U chain and fish robot,how to use Udwadia-Kalaba equation to obtain the dynamical model is shown and the modeling methodology for multi-body systems is presented.It is also shown that Udwadia-Kalaba theory is applicable to systems whether or not their mass matrices are singular.In the whole process of applying Udwadia-Kalaba equation,Lagrangian multipliers and quasi-coordinates are not used.Udwadia-Kalaba theory is creatively applied to dynamical modeling of falling U-chain and fish robot problems and explicit analytic equations of motion are obtained.  相似文献   

16.
0 INTRODUCTIONdineral problems in kinematics an(l synthesis of mechanisms and n)botics lead naturally to system ofnonlinear polynomial equations, and the systems are mostly high deficient. Recently developed methodsbased on homotopy continuation have been used widely and successfully for solving these systems. dineralmethods based on honlotopy continuation can fin(l all solutions for the polynomial systems without the needof choosing proper initial values. Bllt, for the high deficient syst…  相似文献   

17.
Fluid-structure interaction (FSI) is essentially a dynamic phenomenon and always exists in fluid-filled pipe system. The four-equation model, which has been proved to be effective to describe and predict the phenomenon of FSI due to friction coupling and Poisson coupling being taken into account, is utilized to describe the FSI of fluid-filled pipe system. Terse compatibility equations are educed by the method of characteristics (MOC) to describe the fluid-filled pipe system. To shorten computing time needed to get the solutions under the condition of keeping accuracy requirement, two steps are adopted, firstly the time step Δt and divided number of the straight pipe are optimized, sec-ondly the mesh spacing Δz close to boundary is subdivided in several submeshes automatically ac-cording to the speed gradient of fluid. The mathematical model and arithmetic are validated by com-parisons between simulation solutions of two straight pipe systems and experiment known from lit-erature.  相似文献   

18.
正Date:2 nd-3 rd March 2016Venue:Hilton Manchester Airport Hotel Background to the Conference Sealing systems have become a major success story.Once everyone knew where a seal was fitted and how to change it.Now seals are usually installed well away from view and only come to the attention of end users in the very rare event of a leakage occurring.This has been achieved through improvements in design,material developments and taking a systems approach where all  相似文献   

19.
Iterations in optimization and numerical simulation for the sheet metal forming process may lead to extensive computation. In addition, uncertainties in materials or processing parameters may have great influence on the design quality. A six sigma optimization method is proposed, by combining the dual response surface method (DRSM) and six sigma philosophy, to save computation cost and improve reliability and robustness of parts. Using this method, statistical technology, including the design of experiment and analysis of variance, approximate model and six sigma philosophy are integrated together to achieve improved quality. Two sheet metal forming processes are provided as examples to illustrate the proposed method.  相似文献   

20.
Nowadays validation of anti-lock braking systems(ABS) relies mainly on a large amount of road tests.An alternative means with higher efficiency is employing the hardware-in-the-loop simulation(HILS) system to substitute part of road tests for designing,testing,and tuning electronic control units(ECUs) of ABS.Most HILS systems for ABS use expensive digital signal processor hardware and special purpose software,and some fail-safe functions with regard to wheel speeds cannot be evaluated since artificial wheel speed signals are usually provided.In this paper,a low-cost ABS HILS test bench is developed and used for validating the anti-lock braking performance and tuning control parameters of ABS controllers.Another important merit of the proposed test bench is that it can comprehensively evaluate the fail-safe functions with regard to wheel speed signals since real tone rings and sensors are integrated in the bench.A 5-DOF vehicle model with consideration of longitudinal load transfer is used to calculate tire forces,wheel speeds and vehicle speed.Each of the four real-time wheel speed signal generators consists of a servo motor plus a ring gear,which has sufficient dynamic response ability to emulate the rapid changes of the wheel speeds under strict braking conditions of very slippery roads.The simulation of braking tests under different road adhesion coefficients using the HILS test bench is run,and results show that it can evaluate the anti-lock braking performance of ABS and partly the fail-safe functions.This HILS system can also be used in such applications as durability test,benchmarking and comparison between different ECUs.The test bench developed not only has a relatively low cost,but also can be used to validate the wheel speed-related ECU design and all its fail-safe functions,and a rapid testing and proving platform with a high efficiency for research and development of the automotive ABS is therefore provided.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号