首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper proposes a parabolic dish/AMTEC solar thermal power system and evaluates its overall thermal–electric conversion performance. The system is a combined system in which a parabolic dish solar collector is cascaded with an alkali metal thermal to electric converter (AMTEC) through a coupling heat exchanger. A separate type heat-pipe receiver is selected to isothermally transfer the solar energy from the collector to the AMTEC. To assess the system’s overall thermal–electric conversion performance, a theoretical analysis has been undertaken in conjunction with a parametric investigation by varying relevant parameters, i.e., the average operating temperature and performance parameters associate with the dish collector and the AMTEC. Results show that the overall conversion efficiency of parabolic dish/AMTEC system could reach up to 20.6% with a power output of 18.54 kW corresponding to an operating temperature of 1280 K. Moreover, it is found that the optimal condenser temperature, corresponding to the maximum overall efficiency, is around 600 K. This study indicates that the parabolic dish/AMTEC solar power system exhibits a great potential and competitiveness over other solar dish/engine systems, and the proposed system is a viable solar thermal power system.  相似文献   

2.
An irreversible solar-driven Braysson heat engine system is presented, in which the temperature-dependent heat capacity of the working fluid, the radiation–convection heat losses of the solar collector and the irreversibilities resulting from heat transfer and non-isentropic compression and expansion processes are taken into account. Based on the thermodynamic analysis method and the optimal control theory, the mathematical expression of the overall efficiency of the system is derived and the maximum overall efficiency is calculated, and the operating temperatures of the solar collector and the cyclic working fluid and the ratio of heat-transfer areas of the heat engine are optimized. By using numerical optimization technology, the influences of the variable heat capacity of the working fluid, the radiation–convection heat losses of the solar collector and the multi-irreversibilities on the performance characteristics of the solar-driven heat engine system are investigated and evaluated in detail. Moreover, it is expounded that the optimal performance and important parametric bounds of the irreversible solar-driven Braysson heat engine with the constant heat capacity of the working fluid and the irreversible solar-driven Carnot heat engine can be deduced from the conclusions in the present paper.  相似文献   

3.
The operation of the Willard solar thermal power system is analyzed and evaluated. The 19 kW (25 hp) power system was coupled to a shallow well and sprinkler system near Willard, New Mexico irrigating approximately, 49 hectares. The specific performance of the major subsystems—collector array, thermal storage, and the organic working fluid Rankine cycle heat engine—were determined. Over the summer months, the daily collector array efficiency (based on direct solar radiation normalized in the plane of collector aperature) was nominally 25 per cent and heat engine rankine cycle efficiency 15 per cent. These conversion efficiencies coupled with the numerous system losses resulted in an overall efficiency of nearly 3 per cent on clear summer days. Electrical parasitic losses reduced the system's net power output by about 20 per cent on clear days and greater amounts on other days. The maintenance and repair effort was distributed evenly among the collector array and the heat engine.  相似文献   

4.
Solar-dish Brayton system driven by the hybrid of fossil fuel and solar energy is characterized by continuously stable operation, simplified hybridization, low system costs and high thermal efficiency. In order to enable the system to operate with its highest capabilities, a thermodynamic multi-objective optimization was performed in this study based on maximum power output, thermal efficiency and ecological performance. A thermodynamic model was developed to obtain the dimensionless power output, thermal efficiency and ecological performance, in which the imperfect performance of parabolic dish solar collector, the external irreversibility of Brayton heat engine and the conductive thermal bridging loss were considered. The combination of NSGA-II algorithm and decision makings was used to realize multi-objective optimization, where the temperatures of absorber, cooling water and working fluid, the effectiveness of hot-side heat exchanger, cold-side heat exchanger and regenerator were considered as optimization variables. Using the decision makings of Shannon Entropy, LINMAP and TOPSIS, the final optimal solutions were chosen from the Pareto frontier obtained by NSGA-II. By comparing the deviation index of each final optimal solution from the ideal solution, it is shown that the multi-objective optimization can lead to a more desirable design compared to the single-objective optimizations, and the final optimal solution selected by TOPSIS decision making presents superior performance. Moreover, the fitted curve between the optimal power output, thermal efficiency and ecological performance derived from Pareto frontier is obtained for better insight into the optimal design of the system. The sensitivity analysis shows that the optimal system performance is strongly dependent on the temperatures of absorber, cooling water and working fluid, and the effectiveness of regenerator. The results of this work offer benefits for related theoretic research and basis for solar energy industry.  相似文献   

5.
An irreversible cycle model of a solar-driven Brayton heat engine is established, in which the heat losses of the solar collector and the external and internal irreversibilities of the heat engine are taken into account, and used to investigate the optimal performance of the cycle system. The maximum overall efficiency of the system is determined. The operating temperature of the solar collector and the temperature ratio in the isobaric process are optimized. The influence of the heat losses of the solar collector and the external and internal irreversibilities of the heat engine on the cyclic performance is discussed in detail. Some important curves which can reveal the optimum performance characteristics of the system are given. The results obtained here are general, and consequently, may be directly used to discuss the optimal performance of other solar-driven heat engines.  相似文献   

6.
This communication presents second law analysis based on exergy concept for a solar thermal power system. Basic energy and exergy analysis for the system components (viz. parabolic trough collector/receiver and Rankine heat engine etc.) are carried out for evaluating the energy and exergy losses as well as exergetic efficiency for typical solar thermal power system under given operating conditions. Relevant energy flow and exergy flow diagrams are drawn to show the various thermodynamic and thermal losses. It is found that the main energy loss takes place at the condenser of the heat engine part whereas the exergy analysis shows that the collector-receiver assembly is the part where the losses are maximum. The analysis and results can be used for evaluating the component irreversibilities which can also explain the deviation between the actual efficiency and ideal efficiency of solar thermal power system.  相似文献   

7.
The optimal system operating temperature and the overall system efficiency of anirreversible solar heat engine have been determined. The solar collector heat loss is byconvection or radiation and the heat engine is internally and externally irreversible. It isconcluded that the system operating temperature and the overall system efficiency depend on theinternal irreversibility of the heat engine.  相似文献   

8.
《Renewable Energy》2000,19(1-2):135-143
This communication presents a second law analysis based on an exergy concept for a solar thermal power system. Basic energy and exergy analysis for the system components (viz. parabolic trough collector/receiver and Rankine heat engine, etc.) are carried out for evaluating the respective losses as well as exergetic efficiency for typical solar thermal power systems under given operating conditions. It is found that the main energy loss takes place at the condenser of the heat engine part, whereas the exergy analysis shows that the collector–receiver assembly is the part where the losses are maximum. The analysis and results can be used for evaluating the component irreversibilities which can also explain the deviation between the actual efficiency and ideal efficiency of a solar thermal power system.  相似文献   

9.
A novel model of the solar-driven thermodynamic cycle system which consists of a solar collector and a Braysson heat engine is established. The performance characteristics of the system are optimized on the basis of the linear heat-loss model of a solar collector and the irreversible cycle model of a Braysson heat engine. The maximum efficiency of the system and the optimally operating temperature of the solar collector are determined and other relevant performance characteristics of the system are discussed. The results obtained here may provide some theoretical guidance for the optimal design and operation of solar-driven Braysson and Carnot heat engines.  相似文献   

10.
A solar-driven Stirling engine is modelled as a combined system which consists of a solar collector and a Stirling engine. The performance of the system is investigated, based on the linearized heat loss model of the solar collector and the irreverisible cycle model of the Stirling engine affected by finite-rate heat transfer and regenerative losses. The maximum efficiency of the system and the optimal operating temperature of the solar collector are determined. Moreover, it is pointed out that the investigation method in the present paper is valid for other heat loss models of the solar collector as well, and the results obtained are also valid for a solar-driven Ericsson engine system using an ideal gas as its engine work substance. © 1998 John Wiley & Sons, Ltd.  相似文献   

11.
This paper presents an investigation on finite time thermodynamic (FTT) evaluation of a solar‐dish Stirling heat engine. FTTs has been applied to determine the output power and the corresponding thermal efficiency, exergetic efficiency, and the rate of entropy generation of a solar Stirling system with a finite rate of heat transfer, regenerative heat loss, conductive thermal bridging loss, and finite regeneration process time. Further imperfect performance of the dish collector and convective/radiative heat transfer mechanisms in the hot end as well as the convective heat transfer in the heat sink of the engine are considered in the developed model. The output power of the engine is maximized while the highest temperature of the engine is considered as a design parameter. In addition, thermal efficiency, exergetic efficiency, and the rate of entropy generation corresponding to the optimum value of the output power is evaluated. Results imply that the optimized absorber temperature is some where between 850 K and 1000 K. Sensitivity of results against variations of the system parameters are studied in detail. The present analysis provides a good theoretical guidance for the designing of dish collectors and operating the Stirling heat engine system.  相似文献   

12.
An optimal performance analysis for an equivalent Carnot-like cycle heat engine of a parabolic-trough direct-steam-generation solar driven Rankine cycle power plant at maximum power and maximum power density conditions is performed. Simultaneous radiation-convection and only radiation heat transfer mechanisms from solar concentrating collector, which is the high temperature thermal reservoir, are considered separately. Heat rejection to the low temperature thermal reservoir is assumed to be convection dominated. Irreversibilities are taken into account through the finite-rate heat transfer between the fixed temperature thermal reservoirs and the internally reversible heat engine. Comparisons proved that the performance of a solar driven Carnot-like heat engine at maximum power density conditions, which receives thermal energy by either radiation-convection or only radiation heat transfer mechanism and rejects its unavailable portion to surroundings by convective heat transfer through heat exchangers, has the characteristics of (1) a solar driven Carnot heat engine at maximum power conditions, having radiation heat transfer at high and convective heat transfer at low temperature heat exchangers respectively, as the allocation parameter takes small values, and of (2) a Carnot heat engine at maximum power density conditions, having convective heat transfer at both heat exchangers, as the allocation parameter takes large values. Comprehensive discussions on the effect of heat transfer mechanisms are provided.  相似文献   

13.
Recent interest in small-scale solar thermal combined heat and power (CHP) power systems has coincided with demand growth for distributed electricity supplies in areas poorly served by centralized power stations. One potential technical approach to meeting this demand is the parabolic trough solar thermal collector coupled with an organic Rankine cycle (ORC) heat engine.The paper describes the design of a solar organic Rankine cycle being installed in Lesotho for rural electrification purpose. The system consists of parabolic though collectors, a storages tank, and a small-scale ORC engine using scroll expanders.A model of each component is developed taking into account the main physical and mechanical phenomena occurring in the cycle and based on experimental data for the main key components.The model allows sizing the different components of the cycle and evaluates the performance of the system. Different working fluids are compared, and two different expansion machine configurations are simulated (single and double stage).  相似文献   

14.
A “dynamic” solar power plant (which consists of a solar collector–thermal engine combination) is proposed as an alternative for the more usual photovoltaic cells. A model for heat losses in a selective flat-plate solar collector operating on Mars is developed. An endoreversible Carnot cycle is used to describe heat engine operation. This provides upper limits for real performances. The output power is maximized. Meteorological and actinometric data provided by Viking Landers are used as inputs. Two strategies of collecting solar energy were considered: (i) horizontal collector; (ii) collector tilt and orientation are continuously adjusted to keep the receiving surface perpendicular on the Sun’s rays. The influences of climate and of various design parameters on solar collector heat losses, on engine output power and on the optimum sun-to-user efficiency are discussed.  相似文献   

15.
在构建系统集成模型的基础上,阐述光煤混合发电系统变工况性能计算方法。以3个地区和4种容量燃煤机组为例,研究集成模型、取代份额、辐射强度、地区和容量对光煤混合发电系统性能的影响规律。结果表明:机组容量和地区一定的情况下,全部取代1级抽汽且辐射强度最大时的系统节能效果最优;同机组不同地区开展混合发电时,太阳能资源丰富地的集热场面积最小,集热场换热效率和太阳能热电转换效率最大,年累计节能减排量大,静态投资回收期最短;同地区不同容量机组开展混合发电时,大容量机组年平均太阳能热电转换效率和年累计节能减排量最大,静态投资回收期最短。  相似文献   

16.
提出一种适用于槽式太阳能热发电系统的新型线性腔式集热器。通过Tracepro模拟聚光镜焦距、弧形结构及开口宽度对系统光学性能的影响;采用热网络模型对该集热器的传热性能进行参数化研究,确定优化的集热器结构为优弧型,开口宽度为70 mm,与其匹配的聚光镜焦距为2100 mm。研究结果表明,当太阳直射辐射强度为500 W/m2,集热温度为650 K时,系统光热转换效率达65.3%。与一类传统真空管集热器的对比表明,该新型线性腔式集热器的集热性能优于UVAC Cermet直通式真空管集热器。另外,该线性腔式集热器生产和维护成本明显低于真空管集热器,对于促进槽式太阳能热发电技术具有重要意义。  相似文献   

17.
This paper presents a numerical study about the performance of a Beta Stirling solar thermal engine system. This system is composed of a solar collector box connected to a regenerator hydraulic system and a transmitting power system. The objective of the system is to offer a new alternative to help solving stagnant water pollution in hot countries like Thailand by circulating water in canals, lakes, ponds etc. for aeration using solar energy.The purpose of this study is to determine the power output and actual heat transfer on the performance of the solar thermal engine. The solar thermal engine is analyzed using a mathematical model based on the first law of thermodynamics for processes with finite speed, with particular attention to the energy balance at the receiver. The result of calculations showed that the regenerator volume and phase angle must be chosen carefully to fulfill the requirement that total fluid mass in the system is constant and to obtain maximum power output throughout the day.  相似文献   

18.
针对天津市槽式太阳能集热系统性能测试平台,对不同太阳辐射强度、入口流体温度以及不同工质流量状况下集热效率和集热管压降变化规律进行实验测试,通过测试数据对槽式太阳能集热器热性能进行分析.试验结果表明:在天津地区槽式太阳能集热器集热效率可以达到66.1%;太阳辐射强度的增强,会提高集热效率,并且集热器进出口的压降会随之降低...  相似文献   

19.
By combining heat and power generation, mini‐combined and micro‐combined heat and power systems (MCHP) provide an efficient, decentralised means of power generation that can complement the composition of the electricity generation mix. Dynamic tools capable of handling transient system behaviour are required to assess MCHP efficiency beyond a mere static analysis based on steady‐state design parameters. Using a simulation of a cogeneration system, we combine exergetic definitions for different operational system states to quantify the overall system efficiency continuously over the whole period of operation. The concept of exergy allows direct comparison of different forms of energy. A sensitivity analysis was performed where we quantified the effect on MCHP overall performance under varying engine rotational speed, thermal energy storage size and fluid storage temperature in a range of MCHP simulations. We found that the exergetic quantity of natural gas used by the MCHP decreased slightly at higher engine speeds (?2% to ?4%). While the total amount of electricity generated is almost constant across the range of different engine output, more thermal exergy (up to +21%) can be recovered when the engine is operating at elevated speeds. Furthermore, selection of specific optimal thermal storage fluid temperatures can aid in improving system efficiency. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
The thermoelectric (TE) solar air collector, sometimes known as the hybrid solar collector, generates both thermal and electrical energies simultaneously. A double-pass TE solar air collector has been developed and tested. The TE solar collector was composed of transparent glass, air gap, an absorber plate, thermoelectric modules and rectangular fin heat sink. The incident solar radiation heats up the absorber plate so that a temperature difference is created between the thermoelectric modules that generates a direct current. Only a small part of the absorbed solar radiation is converted to electricity, while the rest increases the temperature of the absorber plate. The ambient air flows through the heat sink located in the lower channel to gain heat. The heated air then flows to the upper channel where it receives additional heating from the absorber plate. Improvements to the thermal and overall efficiencies of the system can be achieved by the use of the double-pass collector system and TE technology. Results show that the thermal efficiency increases as the air flow rate increases. Meanwhile, the electrical power output and the conversion efficiency depend on the temperature difference between the hot and cold side of the TE modules. At a temperature difference of 22.8 °C, the unit achieved a power output of 2.13 W and the conversion efficiency of 6.17%. Therefore, the proposed TE solar collector concept is anticipated to contribute to wider applications of the TE hybrid systems due to the increased overall efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号