首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Microbial mediated biological synthesis of metallic nanoparticles was carried out ecofriendly in the present study. Silver nanoparticles (AgNPs) were extracellularly biosynthesised from Streptomyces griseorubens AU2 and extensively characterised by ultraviolet–visible (UV–vis) and Fourier transform infrared spectroscopy, high‐resolution transmission electron microscopy, scanning electron microscopy and X‐ray diffraction analysis. Elemental analysis of nanoparticles was also carried out using energy dispersive X‐ray spectroscopy. The biosynthesised AgNPs showed the characteristic absorption spectra in UV–vis at 422 nm which confirmed the presence of metallic AgNPs. According to the further characterisation analysis, the biosynthesised AgNPs were found to be spherical and crystalline particles with 5–20 nm average size. Antioxidant properties of the biosynthesised AgNPs were determined by 2,2‐diphenyl‐1‐picrylhydrazyl free radical scavenging assay and was found to increase in a dose‐dependent matter. The identification of the strain was determined by molecular characterisation method using 16s rDNA sequencing. The present study is the first report on the microbial biosynthesis of AgNPs using S. griseorubens isolated from soil and provides that the active biological components found in the cell‐free culture supernatant of S. griseorubens AU2 enable the synthesis of AgNPs.Inspec keywords: silver, microorganisms, nanoparticles, nanofabrication, DNA, molecular biophysics, ultraviolet spectra, visible spectra, scanning electron microscopy, Fourier transform infrared spectra, transmission electron microscopy, X‐ray diffraction, X‐ray chemical analysis, absorption coefficients, cellular biophysicsOther keywords: silver nanoparticles, Streptomyces griseorubens AU2, soil, antioxidant activity, microbial mediated biological synthesis, ultraviolet‐visible spectroscopy, Fourier transform infrared spectroscopy, UV‐vis spectroscopy, high‐resolution transmission electron microscopy, scanning electron microscopy, X‐ray diffraction, elemental analysis, energy dispersive X‐ray spectroscopy, absorption spectra, spherical particles, crystalline particles, 2,2‐diphenyl‐1‐picrylhydrazyl free radical scavenging assay, strain identification, molecular characterisation method, rDNA sequencing, active biological components, cell‐free culture supernatant, wavelength 422 nm, size 5 nm to 20 nm, Ag  相似文献   

2.
Cancer is one of the leading causes of human death. Nanotechnology could offer new and optimised anticancer agents in order to fight cancer. It was shown that metal nanoparticles, in particular silver nanoparticles (AgNPs) were effective in cancer therapy. In this study, AgNPs were synthesised using Rubia tinctorum L. extract (Ru‐AgNPs). Then, cytotoxicity effects of the Ru‐AgNPs against MDA‐MB‐231 carcinoma cell line and human dermal fibroblast as normal cell line were performed. Furthermore, anti‐apoptotic effects of Ru‐AgNPs on these cancer and normal cell lines were compared using acridine orange/propidium iodide staining, flow cytometry analysis and real‐time qPCR in apoptosis gene markers. Results of UV‐vis spectroscopy showed that Ru‐AgNPs have a peak at 430 nm, which indicated synthesis of AgNPs. Ru‐AgNPs had spherical shape and average size of 12 nm. Ru‐AgNPs have cytotoxicity on MDA‐MB‐231 cells and decrease cancerous cell viability (IC50 = 4 µg/ml/48 h). Ru‐AgNPs could induce apoptosis in MDA‐MB‐231 cells through upregulation of Bax and downregulation of Bcl‐2 gene expression. The results opened up new avenues to develop Rubia based metal complexes as an anticancer agent.Inspec keywords: cellular biophysics, genetics, cancer, toxicology, nanoparticles, nanofabrication, nanomedicine, silver, biomedical materials, ultraviolet spectra, visible spectraOther keywords: Ru‐AgNPs, MDA‐MB‐231 carcinoma cell line, normal cell line, cancerous cell viability, in vitro anticancer properties, green synthesis, silver nanoparticles, Rubia tinctorum L. extract, cytotoxicity effects, human dermal fibroblast HFF, antiapoptotic effects, acridine orange‐propidium iodide staining, flow cytometry analysis, real‐time qPCR, apoptosis gene markers, UV‐visible spectroscopy, spherical shape, Bcl‐2 gene expression, Ag  相似文献   

3.
The aim of this study was to green synthesised silver nanoparticles (AgNPs) using Centella asiatica leaf extract and investigate the cytotoxic and apoptosis‐inducing effects of these nanoparticles in MCF‐7 breast cancer cell line. The characteristics and morphology of the green synthesised AgNPs were evaluated using transmission electron microscopy, scanning electron microscopy, UV–visible spectroscopy, X‐ray diffraction, and Fourier‐transform infrared spectroscopy. The MTT assay was used to investigate the anti‐proliferative activity of biosynthesised nanoparticles in MCF‐7 cells. Apoptosis test was performed using flow cytometry and expression of caspase 3 and 9 genes. The spherical AgNPs with an average size of 19.17 nm were synthesised. The results showed that biosynthesised AgNPs exhibited cytotoxicity, anti‐cancer, apoptosis induction, and increased expression of genes encoding for caspases 3 and 9 in MCF‐7 cancer cells in a concentration‐ and time‐dependent manner. It seems that green synthesised AgNPs have potential uses for pharmaceutical industries.Inspec keywords: ultraviolet spectra, transmission electron microscopy, cellular biophysics, infrared spectra, visible spectra, nanofabrication, cancer, toxicology, nanomedicine, nanoparticles, biomedical materials, scanning electron microscopy, silver, Fourier transform spectra, X‐ray diffraction, genetics, enzymes, botany, biochemistryOther keywords: spherical AgNPs, biosynthesised AgNPs, anti‐cancer, apoptosis induction, green synthesised AgNPs, MCF‐7 breast cancer cell line, green synthesised silver nanoparticles, Ag, caspase gene expression, flow cytometry, anti‐proliferative activity, MTT assay, pharmaceutical industries, cytotoxicity, UV–visible spectroscopy, nanoparticle morphology, scanning electron microscopy, Centella asiatica leaf extract, biosynthesised nanoparticles, Fourier‐transform infrared spectroscopy, transmission electron microscopy  相似文献   

4.
This is the first study to report the green synthesis of Lobelia trigona Roxb‐ mediated silver nanoparticles (LTAgNPs). The optical and structural properties of the synthesised LTAgNPs were analysed using ultraviolet–visible spectroscopy, scanning electron microscopy, Fourier transform infrared, dynamic light scattering and energy dispersive X‐ray. LTAgNps were evaluated for their anti‐bacterial and anti‐fungal properties against 18 pathogens and exhibited significant inhibition against all the strains tested. LTAgNPs had potential scavenging effects on the DPPH, OH, O2 •− free radical scavenging assays and reducing power assay. LTAgNps possess strong anti‐cancer activity against five human cancer cell lines (A549, MCF‐7, MDA‐MB‐231, HeLa and KB) in a dose‐dependent manner. The antiproliferative, anti‐inflammatory and genotoxicity effects of LTAgNPs were further confirmed by the lactate dehydrogenase release assay, nitric oxide inhibitory assay and comet assay. Furthermore, the incision, excision and burn wound‐healing activity of formulated LTAgNPs ointment was assessed in rats. All the wounds had significant healing in groups treated with LTAgNPs ointment compared to the groups treated with the commonly prescribed ointment (SilverexTM). This study shows and suggests that the previously unreported LTAgNPs could be used as a nanomedicine with significant biological applications.Inspec keywords: molecular biophysics, biomedical materials, scanning electron microscopy, biochemistry, cancer, microorganisms, silver, cellular biophysics, nanofabrication, wounds, nanomedicine, ultraviolet spectra, toxicology, antibacterial activity, light scattering, nanoparticles, enzymes, visible spectra, Fourier transform infrared spectraOther keywords: Lobelia trigona Roxb‐based nanomedicine, biological applications, Lobelia trigona Roxb‐mediated silver nanoparticles, optical properties, structural properties, ultraviolet‐visible spectroscopy, dynamic light scattering, antibacterial properties, antifungal properties, scavenging effects, free radical scavenging, power assay, anticancer activity, antiinflammatory effects, genotoxicity effects, lactate dehydrogenase release assay, nitric oxide inhibitory assay, excision, burn wound‐healing activity, formulated LTAgNPs ointment, in vivo approach, in vitro approach, scanning electron microscopy, Fourier transform infrared spectroscopy, energy dispersive X‐ray analysis, pathogens, strains, A549 human cancer cell lines, MCF‐7 human cancer cell lines, MDA‐MB‐231 human cancer cell lines, HeLa human cancer cell lines, antiproliferative effects, comet assay, Ag  相似文献   

5.
Silver nanoparticles (AgNPs) have been undeniable for its antimicrobial activity while its antitumour potential is still limited. Therefore, the present study focused on determining cytotoxic effects of AgNPs on Michigan cancer foundation‐7 (MCF‐7) breast cancer cells and its corresponding mechanism of cell death. Herein, the authors developed a bio‐reduction method for AgNPs synthesis using actinomycetes isolated from marine soil sample. The isolated strain was identified by 16s ribotyping method and it was found to be Streptomyces atrovirens. Furthermore, the synthesised AgNPs were characterised by various bio‐analytical techniques such as ultraviolet–visible spectrophotometer, atomic force microscopy, transmission electron microscopy, Fourier transform infra‐red spectroscopy, and X‐ray diffraction. Moreover, the results of 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide assay reveals 44.51 µg of AgNPs to have profound inhibition of cancer cell growth; furthermore, the inhibition of MCF‐7 breast cancer cell line was found to be dose dependent on treatment with AgNPs. Acridine orange and ethidium bromide double staining methods were performed for cell morphological analysis. The present results showed that biosynthesised AgNPs might be emerging alternative biomaterials for human breast cancer therapy.Inspec keywords: silver, nanoparticles, nanomedicine, antibacterial activity, biomedical materials, tumours, cancer, toxicology, nanofabrication, microorganisms, reduction (chemical), ultraviolet spectra, visible spectra, atomic force microscopy, transmission electron microscopy, Fourier transform infrared spectra, X‐ray diffraction, biomimeticsOther keywords: acridine orange, ethidium bromide double staining methods, cell morphological analysis, alternative biomaterials, human breast cancer therapy, time 16 s, Ag, dose dependence, MCF‐7 breast cancer cell line inhibition, cancer cell growth inhibition, 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide assay, X‐ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy, atomic force microscopy, ultraviolet‐visible spectrophotometer, bioanalytical techniques, ribotyping method, isolated strain, marine soil sample, bioreduction method, cell death, Michigan cancer foundation‐7 breast cancer cells, cytotoxic effects, antitumour potential, antimicrobial activity, human breast cancer cells, potential anticancer activity, Streptomyces atrovirens, silver nanoparticles, biomimetic synthesis  相似文献   

6.
This paper investigated the green synthesis of silver nanoparticles (AgNPs) using aqueous extract of silky hairs of corn (Zea mays L.) which is a waste material of the crop, as both a reducing and stabilising/capping agent. The AgNPs were characterised by UV‐visible spectroscopy, scanning electron microscopy (SEM), energy dispersive X‐ray analysis (EDX), thermogravimetric analysis (TGA), X‐ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT‐IR). The average size of AgNPs was found to be 249.12 nm. The AgNPs displayed strong antibacterial activity against five different foodborne pathogenic bacteria with diameter of inhibition zones ranged between (9.23 − 12.81 mm). It also exhibited potent synergistic antibacterial activity together with standard antibiotics, kanamycin (10.6 − 13.65 mm inhibition zones) and rifampicin (10.02 − 12.86 mm inhibition zones) and anticandidal activity with amphotericin b (10.57 − 13.63 mm inhibition zones). The AgNPs exhibited strong antioxidant activity in terms of nitric oxide scavenging (IC50 91.56 µg/mL), ABTS (2,2′‐azino‐bis(3‐ethylbenzothiazoline‐6‐sulphonic acid) radical scavenging (IC50 115.75 µg/mL), DPPH (1,1‐diphenyl‐2‐picrylhydrazyl) radical scavenging (IC50 385.87 µg/mL), and reducing power (IC0.5 23.14 µg/mL). This study demonstrated the synthesis of spherical AgNPs with strong antibacterial, anticandidal and antioxidant properties that could potentially be utilised in the biomedical, cosmetic, food and pharmaceutical industries.Inspec keywords: silver, nanoparticles, nanomedicine, antibacterial activity, biomedical materials, nanofabrication, botany, ultraviolet spectra, visible spectra, scanning electron microscopy, X‐ray chemical analysis, Fourier transform infrared spectra, crystallitesOther keywords: biomedical industry, cosmetic industry, food industry, pharmaceutical industry, Ag, crystallite size, 1,1‐diphenyl‐2‐picrylhydrazyl radical scavenging, 2,2′‐azino‐bis(3‐ethylbenzothiazoline‐6‐sulphonic acid) radical scavenging, nitric oxide scavenging, amphotericin b, anticandidal activity, rifampicin, kanamycin, standard antibiotics, inhibition zones, foodborne pathogenic bacteria, Fourier transform infrared spectroscopy, X‐ray diffraction, thermogravimetric analysis, energy‐dispersive X‐ray analysis, scanning electron microscopy, ultraviolet‐visible spectroscopy, Zea mays L, antioxidant potential, anticandidal synergistic activity, antibacterial synergistic activity, corn, silky hair aqueous extract, silver nanoparticles biosynthesis  相似文献   

7.
In this study, nanocrystalline magnesium zinc ferrite nanoparticles were successfully prepared by a simple sol–gel method using copper nitrate and ferric nitrate as raw materials. The calcined samples were characterised by differential thermal analysis/thermogravimetric analysis, Fourier transform infrared spectroscopy and X‐ray diffraction. Transmission electron microscopy revealed that the average particle size of the calcined sample was in a range of 17–41 nm with an average of 29 nm and has spherical size. A cytotoxicity test was performed on human breast cancer cells (MDA MB‐231) and (MCF‐7) at various concentrations starting from (0 µg/ml) to (800 µg/ml). The sample possessed a mild toxic effect toward MDA MB‐231 and MCF‐7 after being examined with MTT (3‐[4, 5‐dimethylthiazol‐2‐yl]‐2, 5 diphenyltetrazolium bromide) assay for up to 72 h of incubation. Higher reduction of cells viability was observed as the concentration of sample was increased in MDA MB‐231 cell line than in MCF‐7. Therefore, further cytotoxicity tests were performed on MDA MB‐231 cell line.Inspec keywords: sol‐gel processing, nanoparticles, nanofabrication, magnesium compounds, zinc compounds, toxicology, biological organs, cancer, cellular biophysics, nanomedicine, calcination, differential thermal analysis, Fourier transform infrared spectra, X‐ray diffraction, transmission electron microscopy, particle size, organic compoundsOther keywords: sol‐gel method, cytotoxic effects, breast cancer cell line, MDA MB‐231 in vitro, nanocrystalline magnesium zinc ferrite nanoparticles, copper nitrate, ferric nitrate, raw materials, calcined samples, differential thermal analysis, thermogravimetric analysis, Fourier transform infrared spectroscopy, X‐ray diffraction, transmission electron microscopy, average particle size, cytotoxicity testing, human breast cancer cells, mild toxic effect, 3‐[4,5‐dimethylthiazol‐2‐yl]‐2,5 diphenyltetrazolium bromide) assay, cell viability, MCF‐7, MDA MB‐231 cell line, size 17 nm to 41 nm  相似文献   

8.
The biological method for synthesis of silver nanoparticles (AgNPs) using Bacopa monneri leaves and its anti‐proliferation against human lung adenocarcinoma cell line (A549) was studied. The AgNPs synthesis was determined by an ultraviolet–visible spectrum and was confirmed primarily by the colour change and surface plasmon resonance was observed at 450 nm and its reduction of functional groups stretched in AgNPs was identified by Fourier transform infrared and the crystalline nature of AgNPs was confirmed by X‐ray diffraction. The structural morphology of the AgNPs was found to be spherical and polygonal shape and size (> 35 nm) were determined by field emission scanning electron microscopy analysis and its purity was identified by energy dispersive analysis of X‐rays (EDAX). A further, antibacterial activity of biosynthesised AgNPs against Gram negative and Gram positive bacteria was assessed. The cytotoxic effect of synthesised AgNPs was analysed against human lung adenocarcinoma cells by 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide assay. The GI50 was found to be 20 µg/ml at 24 h incubation. The apoptosis cells containing condensate and marginalised chromatin stages were analysed by propidium iodide staining and DNA damage was observed in A549 treated cells. The present study strongly emphasised that the bioactive molecule‐coated AgNPs could have potential for biomedical applications and significant anticancer effects against human lung adenocarcinoma cells.Inspec keywords: antibacterial activity, biomedical materials, lung, cancer, oxidation, nanoparticles, silver, nanofabrication, nanomedicine, cellular biophysics, ultraviolet spectra, visible spectra, surface plasmon resonance, Fourier transform infrared spectra, X‐ray diffraction, particle size, field emission electron microscopy, scanning electron microscopy, X‐ray chemical analysis, microorganisms, toxicology, DNA, molecular biophysics, molecular configurationsOther keywords: silver nanoparticles, phytofabrication, Bacopa monnieri leaf extract, antibacterial activity, oxidative stress‐induced apoptosis, biological method, antiproliferation, human lung adenocarcinoma cell line A549, AgNPs synthesis, ultraviolet‐visible spectrum, colour change, surface plasmon resonance, stretched functional groups, Fourier transform infrared spectra, crystalline nature, X‐ray diffraction, geometric spherical shape, polygonal shape, field emission scanning electron microscopy analysis, EDAX, biosynthesised AgNPs, gram negative bacteria, gram positive bacteria, cytotoxic effect, 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide assay, incubation, apoptosis cells, condensate, marginalised chromatin stages, propidium iodide staining, DNA damage, A549 treated cells, bioactive molecule‐coated AgNPs, biomedical applications, anticancer effects, time 24 h, Ag  相似文献   

9.
Facile green synthesis of silver nanoparticles (AgNPs) using an aqueous extract of Carissa carandas (C. carandas) leaves was studied. Fabrication of AgNPs was confirmed by the UV–visible spectroscopy which gives absorption maxima at 420 nm. C. carandas leaves are the rich source of the bioactive molecules, acts as a reducing and stabilising agent in AgNPs, confirmed by Fourier transforms infrared spectroscopy. The field emission scanning electron microscope revealed the spherical shape of biosynthesised AgNPs. A distinctive peak of silver at 3 keV was determined by energy dispersive X‐ray spectroscopy. X‐ray diffraction showed the facecentred cubic structure of biosynthesised AgNPs and thermal stability was confirmed by the thermogravimetric analysis. Total flavonoid and total phenolic contents were evaluated in biosynthesised AgNPs. Biosynthesised AgNPs showed free radical scavenging activities against 2, 2‐diphenyl‐1‐picrylhydrazyl test and ferric reducing antioxidant power assay. In vitro cytotoxicity against hepatic cell lines (HUH‐7) and renal cell lines (HEK‐293) were also assessed. Finally, biosynthesised AgNPs were scrutinised for their antibacterial activity against methicillin‐resistant Staphylococcus aureus, Shigella sonnei, Shigella boydii and Salmonella typhimurium. This study demonstrated the biofabrication of AgNPs by using C. carandas leaves extract and a potential in vitro biological application as antioxidant, anticancer and antibacterial agents.Inspec keywords: antibacterial activity, biomedical materials, cancer, tumours, nanomedicine, silver, nanoparticles, reduction (chemical), nanofabrication, ultraviolet spectra, visible spectra, field emission scanning electron microscopy, Fourier transform infrared spectra, X‐ray chemical analysis, X‐ray diffraction, thermal stability, thermal analysis, free radical reactions, toxicology, cellular biophysics, microorganismsOther keywords: total phenolic contents, free radical scavenging activities, 2,2‐diphenyl‐1‐picrylhydrazyl test, ferric reducing antioxidant power assay, in vitro cytotoxicity, hepatic cell lines HUH‐7, renal cell lines HEK‐293, antibacterial activity, methicillin‐resistant Staphylococcus aureus, Shigella sonnei, Shigella boydii, Salmonella typhimurium, biofabrication, in vitro biological application, Ag, total flavonoid contents, thermogravimetric analysis, thermal stability, face‐centred cubic structure, X‐ray diffraction, energy dispersive X‐ray spectroscopy, distinctive peak, spherical shape, field emission scanning electron microscope, Fourier transforms infrared spectroscopy, stabilising agent, reducing agent, bioactive molecules, absorption maxima, UV‐visible spectroscopy, plant extract colour, antibacterial activities, anticancer activities, antioxidant activities, Carissa carandas, aqueous leaves extract, silver nanoparticles, structural characterisation, one‐pot green synthesis  相似文献   

10.
A simple and eco‐friendly method for efficient synthesis of stable colloidal silver nanoparticles (AgNPs) using Mentha pulegium extracts is described. A series of reactions was conducted using different types and concentrations of plant extract as well as metal ions to optimize the reaction conditions. AgNPs were characterized by using UV–vis spectroscopy, transmission electron microscopy, atomic force microscopy, dynamic light scattering, zetasizer, energy‐dispersive X‐ray spectroscopy (EDAX) and Fourier transform infrared spectroscopy (FTIR). At the optimized conditions, plate shaped AgNPs with zeta potential value of ‐15.7 and plasmon absorption maximum at 450 nm were obtained using high concentration of aqueous extract. Efficient adsorption of organic compounds on the nanoparticles was confirmed by FTIR and EDAX. The biogenic AgNPs displayed promising antibacterial activity on Escherichia coli, Staphylococcus aureus, and Streptococcus pyogenes. The highest antibacterial activity of 25 µg mL‐1 was obtained for all the strains using aqueous extract synthesized AgNPs. The aqueous extract synthesised AgNPs also showed considerable antifungal activity against fluconazole resistant Candida albicans. The cytotoxicity assay revealed considerable anticancer activity of AgNPs on HeLa and MCF‐7 cancer cells. Overall results indicated high potential of M. pulegium extract to synthesis high quality AgNPs for biomedical applications.Inspec keywords: silver, nanoparticles, nanofabrication, botany, antibacterial activity, biomedical materials, nanomedicine, ultraviolet spectra, visible spectra, transmission electron microscopy, atomic force microscopy, X‐ray chemical analysis, Fourier transform infrared spectra, electrokinetic effects, microorganisms, cellular biophysics, cancerOther keywords: antibacterial activity, antifungal activity, anticancer activity, stable colloidal silver nanoparticle, Mentha pulegium, plant extract, UV‐visible spectroscopy, transmission electron microscopy, atomic force microscopy, DLS, zetasizer, energy‐dispersive X‐ray spectroscopy, Fourier transform infrared spectroscopy, methanolic extract, aqueous extract, plate‐shaped silver nanoparticle, zeta potential, plasmon absorption maximum, organic compounds adsorption, biogenic silver nanoparticle, Escherichia coli, Staphylococcus aureus, Streptococcus pyogenes, fluconazole‐resistant Candida albicans, MTT assay, HeLa cancer cell, MCF‐7 cancer cell, Ag  相似文献   

11.
This work explores the rapid synthesis of silver nanoparticles (AgNPs) from Musa paradisiaca (M. paradisiaca) bract extract. The bio‐reduction of Ag+ ion was recorded using ultraviolet–visible spectroscopy by a surface plasmon resonance extinction peak with an absorbance at 420 nm. The phytoconstituents responsible for the reduction of AgNPs was probed using Fourier transform infrared spectroscopy. The X‐ray diffraction pattern confirmed the formation of crystalline AgNPs that were analogous to selected area electron diffraction patterns. Morphological studies showed that the obtained AgNPs were monodispersed with an average size of 15 nm. The biologically synthesised AgNPs showed higher obstruction against tested phytopathogens. The synthesised AgNPs exhibited higher inhibitory zone against fungal pathogen Alternaria alternata and bacterial pathogen Pseudomonas syringae. Free radical scavenging potential of AgNPs was investigated using 1,1‐diphenyl‐2‐picryl hydroxyl and 2,2‐azinobis (3‐ethylbenzothiazoline)‐6‐sulphonic acid assays which revealed that the synthesised AgNPs act as a potent radical scavenger. The catalytic efficiency of the synthesised AgNPs was investigated for azo dyes, methyl orange (MO), methylene blue (MB) and reduction of o‐nitrophenol to o‐aminophenol. The results portrayed that AgNPs act as an effective nanocatalyst to degrade MO to hydrazine derivatives, MB to leucomethylene blue, and o‐nitro phenol to o‐amino phenolInspec keywords: catalysis, dyes, electron diffraction, nanofabrication, silver, catalysts, surface plasmon resonance, reduction (chemical), free radicals, nanoparticles, transmission electron microscopy, nanobiotechnology, X‐ray diffraction, microorganisms, organic compounds, Fourier transform spectra, nanomedicine, visible spectra, antibacterial activity, infrared spectra, ultraviolet spectraOther keywords: silver nanoparticles, musa paradisiaca, synergistic combating effect, free radical scavenging activity, catalytic efficiency, M. paradisiaca, bio‐reduction, ultraviolet–visible spectroscopy, surface plasmon resonance extinction peak, Fourier transform infrared spectroscopy, X‐ray diffraction pattern, selected area electron diffraction patterns, radical scavenging potential, potent radical scavenger, size 420.0 nm, size 15.0 nm, Ag+   相似文献   

12.
In recent years, biosynthesis and the utilisation of silver nanoparticles (AgNPs) has become an interesting subject. In this study, the authors investigated the biosynthesis of AgNPs using Trifolium resupinatum (Persian clover) seed exudates. The characterisation of AgNPs were analysed using ultraviolet–visible spectroscopy, X‐ray diffraction (XRD), transmission electron microscopy (TEM) and Fourier transform infra‐red spectroscopy. Also, antifungal efficacy of biogenic AgNPs against two important plant‐pathogenic fungi (Rhizoctonia solani and Neofusicoccum Parvum) in vitro condition was evaluated. The XRD analysis showed that the AgNPs are crystalline in nature and have face‐centred cubic geometry. TEM images revealed the spherical shape of the AgNPs with an average size of 17 nm. The synthesised AgNPs were formed at room temperature and kept stable for 4 months. The maximum distributions of the synthesised AgNPs were seen to range in size from 5 to 10 nm. The highest inhibition effect was observed against R. solani at 40 ppm concentration of AgNPs (94.1%) followed by N. parvum (84%). The results showed that the antifungal activity of AgNPs was dependent on the amounts of AgNPs. In conclusion, the AgNPs obtained from T. resupinatum seed exudate exhibit good antifungal activity against the pathogenic fungi R. solani and N. Parvum.Inspec keywords: silver, nanoparticles, botany, ultraviolet spectra, visible spectra, X‐ray diffraction, transmission electron microscopy, Fourier transform infrared spectra, nanobiotechnology, biological techniquesOther keywords: plant‐mediated green synthesis, silver nanoparticles, Trifolium resupinatum seed exudate, antifungal efficacy, Neofusicoccum parvum, Rhizoctonia solani, biosynthesis, ultraviolet–visible spectroscopy, X‐ray diffraction, transmission electron microscopy, Fourier transform infrared spectroscopy, plant‐pathogenic fungi, XRD analysis, TEM images, antifungal activity, temperature 293 K to 298 K, Ag  相似文献   

13.
Retinoblastoma is the most common intraocular malignancy basically occurs among children below five. Certain ocular treatments such as surgery, radiation therapy and chemotherapy are more likely to cause side effects. Here, a rapid method of synthesising silver nanoparticles (AgNPs) from the brown seaweed Turbinaria ornata and its cytotoxic efficacy against the retinoblastoma Y79 cell lines was studied. The AgNPs synthesis was determined by Ultraviolet–visible spectroscopy and was further characterised by X‐ray diffraction, High‐resolution transmission electron microscopy, zeta potential, Energy‐dispersive X‐ray spectroscopy, thermogravimetric analysis, Fourier transform infrared spectrum and inductively coupled plasma‐mass spectroscopy techniques. The synthesised AgNPs were found to be very stable and finely dispersed. The total phenolic content of the synthesised AgNPs was estimated at 43±2.52 mg/g gallic acid equivalent and the nanoparticles exhibited good scavenging activity analysed by 2, 2′‐azinobis‐(3‐ethylbenzothiazoline‐6‐sulphonic acid) assay. Moreover, cytotoxicity of synthesised AgNPs against in vitro retinoblastoma Y79 cell lines showed a dose‐dependent response with an inhibitory concentration (IC50) of 10.5 µg/mL. These results suggest that AgNPs could be a promising anticancer agent with enhanced activity in ocular treatment.Inspec keywords: toxicology, silver, nanoparticles, cellular biophysics, cancer, nanomedicine, nanofabrication, X‐ray diffraction, transmission electron microscopy, electrokinetic effects, X‐ray chemical analysis, thermal analysis, Fourier transform infrared spectra, ultraviolet spectra, visible spectra, biomedical materials, mass spectroscopic chemical analysisOther keywords: cytotoxic activity, marine seaweed Turbinaria ornata, intraocular malignancy, silver nanoparticles, brown seaweed Turbinaria ornata, X‐ray diffraction, high‐resolution transmission electron microscopy, zeta potential, EDAX, thermogravimetric analysis, Fourier transform infrared spectrum, inductively coupled plasma‐mass spectroscopy, phenolic content, gallic acid, scavenging activity, in vitro retinoblastoma Y79 cell lines, dose‐dependent response, inhibitory concentration, anticancer agent, 2,2′‐azinobis‐(3‐ethylbenzothiazoline‐6‐sulphonic acid) assay, nanotechnology‐based cancer diagnosis, ocular tumour treatment, ultraviolet‐visible spectroscopy, Ag  相似文献   

14.
Silver nanoparticles (AgNPs) have been biosynthesised through the extracts of Ribes khorassanicum fruits, which served as the reducing agents and capping agents. Biosynthesised AgNPs have been found to be ultraviolet–visible (UV–vis) absorption spectra since they have displayed one surface plasmon resonance peak at 438 nm, attesting the formation of spherical NPs. These particles have been characterised by UV–vis, field‐emission scanning electron microscopy, energy‐dispersive X‐ray spectroscopy, X‐ray diffraction, Fourier transform infrared spectroscopy, and transmission electron microscopy analysis. The formation of AgNPs at 1.0 mM concentration of AgNO3 has resulted in NPs that contained mean diameters in a range of 20–40 nm. The green‐synthesised AgNPs have demonstrated high antibacterial effect against pathogenic bacteria (i.e. Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa). Biosynthesising metal NPs through plant extracts can serve as the facile and eco‐friendly alternative for chemical and/or physical methods that are utilised for large‐scale nanometal fabrication in various medical and industrial applications.Inspec keywords: X‐ray diffraction, X‐ray chemical analysis, nanofabrication, surface plasmon resonance, nanoparticles, antibacterial activity, microorganisms, scanning electron microscopy, silver, nanomedicine, visible spectra, ultraviolet spectra, transmission electron microscopy, Fourier transform infrared spectra, field emission scanning electron microscopy, biomedical materialsOther keywords: antibacterial properties, silver nanoparticles, reducing agents, capping agents, surface plasmon resonance peak, spherical NPs, field‐emission scanning electron microscopy, energy‐dispersive X‐ray spectroscopy, X‐ray diffraction, transmission electron microscopy analysis, plant extracts, ultraviolet‐visible absorption spectra, Fourier transform infrared spectroscopy, antibacterial effect, Ribes khorassanicum fruits, Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, surface plasmon resonance, AgNO3 , Ag  相似文献   

15.
Silver nanoparticles (AgNPs) were synthesised with hydrothermal autoclaving technique by using AgNO3 salt (silver precursor) at different concentrations (0.01, 0.1, 0.55, 1.1, 5.5, and 11 mM) and porcine skin (1% (w/v)) gelatin polymeric matrix (reducing and stabiliser agent). The reaction was performed in an autoclave at 103 kPa and 121°C and the hydrothermal autoclaving exposure time and AgNO3 molar concentration were varied at a constant porcine skin gelatin concentration. The as‐prepared AgNPs were characterised by UV–visible spectroscopy, transmission electron microscopy, and Fourier transform infrared spectroscopy. The antibacterial properties of AgNPs were tested against gram‐positive and gram‐negative bacteria. Furthermore, 3‐(4,5‐dimethylthiazol‐2‐yl) 2,5‐diphenyltetrazolium bromide and 2,2‐diphenyl‐1‐picrylhydrazyl assays were used to test whether the synthesised AgNPs can be potentially applied in cancer therapy or used as an antioxidant. This approach is a promising simple route for synthesising AgNPs with a smaller average particle 10 nm diameter. Furthermore, AgNPs exhibited a good cytotoxicity activity, reducing the viability of the liver cancer cell line HepG2 with a moderate IC50; they also showed a low‐to‐fair antioxidant activity. In addition, AgNPs had a remarkable preferential antibacterial activity against gram‐positive bacteria than gram‐negative bacteria. Therefore, these fabricated AgNPs can be used as an antibacterial agent in curative and preventive health care.Inspec keywords: gelatin, silver, nanoparticles, nanocomposites, nanobiotechnology, biomedical materials, antibacterial activity, microorganisms, Fourier transform infrared spectra, ultraviolet spectra, visible spectra, transmission electron microscopy, cancer, cellular biophysicsOther keywords: porcine skin gelatin–silver nanocomposites, cell cytotoxicity, antibacterial properties, silver nanoparticles, hydrothermal autoclaving technique, gelatin polymeric matrix, UV–visible spectroscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, gram‐positive bacteria, gram‐negative bacteria, 3‐(4,5‐dimethylthiazol‐2‐yl) 2,5‐diphenyltetrazolium bromide assays, 2,2‐diphenyl‐1‐picrylhydrazyl assays, cancer therapy, antioxidant, liver cancer cell line HepG2, Ag  相似文献   

16.
The study was focused on the phytochemicals‐mediated biosynthesis of silver nanoparticles using leaf extracts and infusions from Cynara scolymus. To identify the antioxidant activity and total phenolic content, the 1,1‐diphenyl‐1‐picrylhydrazyl and Folin–Ciocalteau methods were applied, respectively. The formation and stability of the reduced silver ions were monitored by UV–vis spectrophotometer. The particle sizes of the silver nanoparticles were characterised using the dynamic light scattering technique and scanning electron microscope. The phase composition of the obtained silver nanoparticles was characterised by X‐ray diffraction. The silver nanoparticles suspension, artichoke infusion, and silver ions were separately tested towards potential cytotoxicity and pro‐inflammatory effect using mouse fibroblasts and human monocytes cell line, respectively. The total phenolic content and antioxidant activity of ethanol extract and infusion were found significantly higher as compared to aqueous extract and infusion. The UV–visible spectrophotometric analysis revealed the presence of the characteristic absorption band of the Ag nanoparticles. Moreover, it was found that with the increasing volume of plant extract, the average size of particles was increased. Biocompatibility results evidently showed that silver nanoparticles do not induce monocyte activation, however in order to avoid their cytotoxicity suspension at a concentration <2 ppm should be applied.Inspec keywords: pharmaceuticals, health and safety, renewable materials, toxicology, organic compounds, antibacterial activity, X‐ray diffraction, nanomedicine, nanoparticles, nanofabrication, suspensions, ultraviolet spectra, visible spectra, scanning electron microscopy, silver, particle sizeOther keywords: phytochemicals‐mediated biosynthesis, antioxidant activity, total phenolic content, dynamic light scattering technique, silver nanoparticles suspension, scanning electron microscopy, Cynara scolymus, 1,1 diphenyl‐1‐picrylhydrazyl method, cytotoxicity, immune compatibility, leaf extracts, UV‐vis spectrophotometry, particle size, Folin‐Ciocalteau methods, phase composition, X‐ray diffraction, artichoke infusion, pro‐inflammatory effect, mouse fibroblasts, human monocytes cell line, Ag  相似文献   

17.
In this study, the authors synthesised silver nanoparticles (AgNPs) using autoclave as a simple, unique and eco‐friendly approach. The effect of Zingiber officinale extract was evaluated as a reducing and stabiliser agent. According to transmission electron microscopy results, the AgNPs were in the spherical shape with a particle size of ∼17 nm. The biomedical properties of AgNPs as antibacterial agents and free radical scavenging activity were estimated. Synthesised AgNPs showed significant 1,1‐diphenyl‐2‐picryl‐hydrazyl free radical scavenging. Strong bactericidal activity was shown by the AgNPs on Gram‐positive and Gram‐negative bacteria. A maximum inhibition zone of ∼14 mm was obtained for epidermidis at a concentration of 60 μg/ml for sample fabricated at 24 h. The AgNPs also showed a significant cytotoxic effect against MCF‐7 breast cancer cell lines with an half maximal inhibitory concentration value of 62 μg/ml in 24 h by the MTT assay. It could be concluded that Z. officinale extract can be used effectively in the production of potential antioxidant and antimicrobial AgNPs for commercial application.Inspec keywords: nanoparticles, cancer, organic compounds, antibacterial activity, particle size, microorganisms, silver, visible spectra, ultraviolet spectra, biomedical materials, biochemistry, nanofabrication, free radicals, nanomedicine, toxicology, cellular biophysics, transmission electron microscopyOther keywords: unique approach, eco‐friendly approach, zingiber officinale, reducing agent, stabiliser agent, transmission electron microscopy results, antibacterial agents, free radical scavenging activity, synthesised AgNPs, 1‐diphenyl‐2‐picryl‐hydrazyl free radical scavenging, strong bactericidal activity, antimicrobial AgNPs, autoclave‐assisted synthesis, antioxidant activities, cytotoxic effect, silver nanoparticles, autoclave, time 24.0 hour  相似文献   

18.
Development of a green chemistry process for the synthesis of silver nanoparticles (AgNPs) has become a focus of interest. Characteristics of AgNPs were determined using techniques, such as ultraviolet–visible spectroscopy (UV–vis), Fourier transform infrared (FTIR) analysis, scanning electron microscopy (SEM), energy‐dispersive X‐ray spectroscopy and X‐ray diffraction (XRD). The synthesised AgNPs using Thymus kotschyanus had the most growth inhibition against gram‐positive bacteria such as Staphylococcus aureus and Bacillus subtilise, while the growth inhibition of AgNPs at 1000–500 µg/ml occurred against Klebsiella pneumonia and at 1000–250 µg/ml of AgNPs was observed against E. coli. The UV–vis absorption spectra confirmed the formation of the AgNPs with the characteristic peak at 415 nm and SEM micrograph acknowledged spherical particles in a nanosize range. FTIR measured the possible biomolecules that are responsible for stabilisation of AgNPs. XRD analysis exhibited the crystalline nature of AgNPs and showed face‐centred cubic structure. The synthesised AgNPs revealed significant antibacterial activity against gram‐positive bacteria.Inspec keywords: visible spectra, microorganisms, ultraviolet spectra, biomedical materials, nanofabrication, nanoparticles, X‐ray diffraction, scanning electron microscopy, molecular biophysics, X‐ray chemical analysis, nanomedicine, silver, antibacterial activity, Fourier transform infrared spectraOther keywords: green chemistry process, ultraviolet–visible spectroscopy, gram‐positive bacteria, silver nanoparticles, Thymus kotschyanus aqueous extract, UV–vis spectroscopy, Fourier transform infrared spectroscopy, FTIR analysis, scanning electron microscopy, energy‐dispersive X‐ray spectroscopy, SEM micrograph, X‐ray diffraction, XRD, Staphylococcus aureus, Bacillus subtilise, Klebsiella pneumonia, E. coli, UV–vis absorption spectra, face‐centred cubic structure, antibacterial activity, antimicrobial activity, wavelength 415.0 nm, Ag  相似文献   

19.
The present investigation aims for the synthesis of copper oxide nanoparticles (CuO NPs) using Nilgirianthus ciliatus plant extract. The obtained CuO NPs were characterised by X‐ray diffraction, Fourier transform infrared spectrum, ultraviolet–visible spectroscopy, photoluminescence, scanning electron microscopy and transmission electron microscopy analysis. Significant bacterial activity was manifested by CuO nanoparticles against both Gram‐positive (Staphylococcus aureus and Staphylococcus mutans) and Gram‐negative (Escherichia coli and Pseudomonas aeruginosa) bacteria. The synthesised CuO NPs have good cytotoxicity against both human breast cancer cell line (MCF‐7) and lung cancer cell line (A549) with minimum cytotoxic effect on normal L929 (fibroblast) cell lines.Inspec keywords: microorganisms, ultraviolet spectra, nanomedicine, transmission electron microscopy, visible spectra, cellular biophysics, antibacterial activity, nanoparticles, X‐ray diffraction, lung, copper compounds, cancer, toxicology, biomedical materials, scanning electron microscopy, photoluminescence, Fourier transform infrared spectraOther keywords: antibacterial activity, anticancer activity, biosynthesised CuO nanoparticles, copper oxide nanoparticles, Nilgirianthus ciliatus plant, X‐ray diffraction, infrared spectrum, ultraviolet–visible spectroscopy, transmission electron microscopy analysis, bacterial activity, Gram‐negative bacteria, synthesised CuO NPs, human breast cancer cell line, Staphylococcus aureus, Staphylococcus mutans, CuO  相似文献   

20.
The synthesis of nanoparticles by utilising plant extract has revolutionised the field of nanotechnology. In the present study, AgNPs were synthesised by utilising the leaves of Moringa oleifera as reducing and stabilising agent. UV‐visible spectroscopy showed characteristic surface plasmon band in the range of 413–420 nm. Scanning electron microscopy (SEM) elucidated rectangular segments fused together. X‐ray diffraction (XRD) analysis confirmed the crystalline nature of AgNPs and presence of metallic silver ions was confirmed by energy dispersive X‐ray (EDX). The different concentrations (10, 20, 30 and 40 ppm) of AgNPs were exogenously applied on Citrus reticulata to record the disease incidence at different day intervals. The disease intensity was progressively increased in all the applied treatments with the passage of time. The 30 ppm concentration of AgNPs was found to be most suitable concentration for creating the resistance against brown spot disease. Moreover, the effects of AgNPs were also assessed for biochemical profiling in C. reticulata. The enhanced production of endogenous enzymes and non‐enzymatic components was observed in response to 30 ppm concentration of AgNPs. The present work highlighted that green synthesised AgNPs can be as used as biological control of citrus diseases and the enhanced production of secondary metabolites antioxidants.Inspec keywords: nanoparticles, silver, nanofabrication, nanomedicine, biomedical materials, biochemistry, enzymes, molecular biophysics, plant diseases, ultraviolet spectra, visible spectra, scanning electron microscopy, surface plasmon resonance, X‐ray diffraction, X‐ray chemical analysisOther keywords: green synthesis, silver nanoparticles, antimicrobial efficacy, biochemical profiling, Citrus reticulata, plant extract, nanotechnology, medical sciences, environment friendly AgNPs, biomedical fields, leaves, Moringa oleifera, reducing agent, stabilising agent, ultraviolet‐visible spectroscopy, characteristic surface plasmon band, scanning electron microscopy, rectangular shape, X‐ray diffraction analysis, crystalline nature, energy dispersive X‐ray spectroscopy, disease incidence, disease intensity, applied treatments, Alternaria brown spot disease, total phenolic content, dry weight, total flavonoid content, T4 treatment, superoxide dismutase activity, fresh weight, maximum peroxidase production, DPPH radical scavenging assay, biological control, citrus disease, secondary metabolites antioxidants  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号