首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Atorvastatin known to be a potential inhibitor of HMG‐CoA reductase involved in the synthesis of cholesterol. It is touted as miracle drug due to its profound effect in decreasing the low‐density lipoproteins in blood. Unfortunately, the high dosage used poses side‐effects relatively in comparison to other statins. On the other hand, curcumin has a diverse therapeutic potential in health and disease. However, the poor aqueous solubility and low bioavailability hinders the therapeutic potential of it when administrated orally. Therefore, it was thought to minimise the frequency of atorvastatin doses to avoid the possibility of drug resistance and also to overcome the limitations of curcumin for desirable therapeutic effects by using nanocarriers in drug delivery. In this investigation, synergistic effect of atorvastatin and curcumin nanocarriers was encapsulated by chitosan polymer. The chitosan nanocarriers prepared by ionic gelation method were characterised for their particle size, zeta potential, and other parameters. The drug‐loaded nanocarriers exhibited good encapsulation efficiency (74.25%) and showed a slow and sustained release of atorvastatin and curcumin 60.36 and 61.44%, respectively, in a span of 48 h. The drug‐loaded nanocarriers found to be haemocompatible and qualified for drug delivery in atherosclerosis.Inspec keywords: nanomedicine, drug delivery systems, diseases, cardiovascular system, enzymes, nanofabricationOther keywords: atorvastatin chitosan nanoformulation, curcumin‐loaded chitosan nanoformulation, oral delivery, atherosclerosis, potential inhibitor, HMG‐CoA reductase, cholesterol synthesis, miracle drug, low‐density lipoproteins, blood, diverse therapeutic potential, poor aqueous solubility, low bioavailability, drug resistance, nanocarriers, ionic gelation method, particle size, zeta potential, encapsulation efficiency  相似文献   

2.
Nanocarriers, in various forms, have the possibility of providing endless opportunities in the area of drug delivery. The purpose of this study was formulation and evaluation of betamethasone sodium phosphate (BSP) loaded chitosan nanoparticles (CNPs) using cross‐linked chitosan malic acid derivative for better therapeutic effect. The prepared BSP loaded CNPs formulations were characterised for photon correlation spectroscopy, zeta potential, transmission electron microscopy, in‐vitro release kinetics and in‐vivo toxicity studies. Mean particle diameter of BSP loaded CNPs was about 130 nm with spherical morphology. The in‐vitro drug release study of BSP loaded CNPs showed sustained drug release for 48 h and drug release was found to follow zero order. The biochemical, haematology and histopathology reports of in‐vivo toxicity studies revealed that BSP loaded CNPs do not exhibit any toxic effect on vital organs and could be safe. The developed BSP loaded CNPs are found to be safer, and used for the treatments of highly prevalent and chronic disease like rheumatoid arthritis.Inspec keywords: nanoparticles, drug delivery systems, electrokinetic effects, toxicology, photon correlation spectroscopy, transmission electron microscopy, diseases, organic compounds, nanomedicineOther keywords: betamethasone sodium phosphate, chitosan nanoparticles, antirheumatoid activity, nanocarriers, drug delivery, cross‐linked chitosan malic acid derivative, photon correlation spectroscopy, zeta potential, transmission electron microscopy, in‐vitro release kinetics, in‐vivo toxicity, spherical morphology, rheumatoid arthritis  相似文献   

3.
The aim of this study was preparation and optimisation of a controlled‐release delivery system to decrease the dose‐dependent side effects of gentamicin. Hydrogel nanoparticles composed of a polycationic polymer (chitosan) and an inorganic polyanion (sodium tripolyphosphate) were fabricated in the presence of gentamicin. An experimental design was drawn upon to determine the optimum condition of nanoparticle preparation. Various features of the nanoparticles including drug loading parameters, particle size distribution, zeta potential and in vitro drug release profile were evaluated. Ultimately, the antimicrobial activity of the gentamicin‐loaded nanoparticles was analysed by determination of the minimum inhibitory concentration (MIC) and the potency test. As a result, the nanocarriers with an average size of about 250 nm (unloaded) and 493 nm (gentamicin‐loaded) were obtained with unimodal distribution and a notable polydispersity index (≤0.3). The drug loading efficiency was between 28 and 32%. The gradual and sustained releases (∼90%) of gentamicin were achieved in 24 h. The MIC and potency test showed no significant decrease in the antibacterial activity of gentamicin‐loaded nanoparticles. The outcomes demonstrated that the optimised chitosan nanogels prepared in this study can be considered as a suitable carrier for a controlled release system.Inspec keywords: hydrogels, nanoparticles, drug delivery systems, particle size, electrokinetic effects, antibacterial activity, nanomedicineOther keywords: factorial design analysis, chitosan‐based nanogels, gentamicin, controlled‐release delivery system, hydrogel nanoparticles, polycationic polymer, inorganic polyanion, sodium tripolyphosphate, particle size distribution, drug loading parameters, zeta potential, in vitro drug release profile, antimicrobial activity, minimum inhibitory concentration, polydispersity index, drug loading efficiency, antibacterial activity  相似文献   

4.
5.
Biotinylated chitosan/poly(methyl vinyl ether‐alt ‐maleic acid) (PMVEMA) copolymer was synthesised by an amide reaction in two steps. Structural characterisation was performed using 1 HNMR and Fourier transform infra‐red (FTIR) spectra. Critical micelle concentration (CMC) of the copolymer was determined by pyrene as a fluorescent probe. Doxorubicin (DOX) was loaded in the micelles by the direct dissolution method. The effects of different variables including type of copolymer, copolymer concentration, stirring rate and stirring time were studied on the physicochemical properties of the micelles including: particle size, zeta potential, release efficiency and loading efficiency of nanoparticles using an irregular factorial design. The in vitro cytotoxicity of DOX‐loaded biotin‐targeted micelles was studied in HepG2 cells which over express biotin receptors by 3, 5‐[dimethylthiazol‐2‐yl]‐2, 5‐diphenyl tetrazolium bromide assay. The successful synthesis of the biotinylated copolymer of chitosan/PMVEMA was confirmed by FTIR and 1 HNMR. The optimised micelles showed the CMC of 33 μg/ml, particle size of 247 ± 2 nm, zeta potential of +9.46 mV, polydispersity index of 0.22, drug‐loading efficiency of 71% and release efficiency of 84.5 ± 1.6%. The synthesised copolymer was not cytotoxic. The cytotoxicity of DOX‐loaded in targeted micelles on HepG2 cell line was about 2.2‐fold compared with free drug.Inspec keywords: biomedical materials, cellular biophysics, dissolving, drug delivery systems, drugs, electrokinetic effects, fluorescence, Fourier transform infrared spectra, particle size, polymer blends, spectrochemical analysis, toxicologyOther keywords: 1 HNMR spectra, biotin‐targeted chitosan‐poly (methyl vinyl ether‐alt‐maleic acid) copolymeric micelles, doxorubicin delivery, amide reaction, structural characterisation, Fourier transform infrared spectra, pyrene, fluorescent probe, direct dissolution method, physicochemical properties, particle size, zeta potential, nanoparticles, irregular factorial design, in vitro cytotoxicity, DOX‐loaded biotin‐targeted micelles, 3, 5‐[dimethylthiazol‐2‐yl]‐2, 5‐diphenyl tetrazolium bromide assay, polydispersity index, drug‐loading efficiency, HepG2 cell line, voltage 9.46 mV  相似文献   

6.
In this study, the ketoconazole‐conjugated zinc oxide (ZnO) nanoparticles were prepared in a single‐step approach using dextrose as an intermediate compound. The physical parameters confirmed the drug conjugation with ZnO and their size was around 70–75 nm. The drug loading and in vivo drug release studies indicated that the –CHO group from the dextrose increase the drug loading up to 65% and their release kinetics were also studied. The anti‐fungal studies indicated that the prepared nanoparticles exhibit strong anti‐fungal activity and the minimum concentration needed is 10 mg/ml. The nanoparticles loaded semi‐solid gel was prepared using carbopol, methylparaben, propyl paraben and propylene glycol. The in vitro penetration of the ketoconazole‐conjugated nanoparticles was studied using the skin. The results indicated that the semi‐solid gel preparations influenced the penetration and also favoured the accumulation into the skin membrane. The veterinary clinical studies indicated that the prepared gel is highly suitable for treatment of Malassezia.Inspec keywords: II‐VI semiconductors, skin, biomedical materials, antibacterial activity, wide band gap semiconductors, drug delivery systems, nanomedicine, drugs, diseases, gels, nanofabrication, nanoparticles, zinc compounds, biomembranes, veterinary medicineOther keywords: strong anti‐fungal activity, propyl paraben, propylene glycol, semisolid gel preparations, skin membrane, veterinary clinical studies, semisolid formulation, skin disease, ketoconazole‐conjugated zinc oxide nanoparticles, single‐step approach, physical parameters, drug conjugation, drug loading, release kinetics, dextrose, in vivo drug release studies, carbopol, methylparaben, in vitro penetration, Malassezia, ZnO  相似文献   

7.
The aim of the present study was to synthesize a novel biopolymeric micelle based on punicic acid (PA) and polyacrylamide (PAM) for carrying chemotherapeutic drugs used in prostate cancer treatment. A polymer composite micelle was prepared by chemical conjugation between PAM and PA. The micelles were prepared by self‐assembly via film casting followed by ultrasonication method. The successful production of PAMPA copolymeric micelles was confirmed using FTIR, 1H‐NMR, and TEM. Then, flutamide was loaded in the designed nanomicelles and they were characterized. The cell cytotoxicity of the micelles was studied on PC3 cells of prostate cancer. The prepared nanomicelles showed the particle size of 88 nm, PDI of 0.246, zeta potential of −9 mV, drug loading efficiency of 94.5%, drug release of 85.6% until 10 hours in pH 7.4 and CMC of 74.13 μg/ml. The cell viability in blank nanocarriers was about 70% in PC3 cells at concentration of 25 μM. More significant cytotoxic effects were seen for flutamide loaded micelles at this concentration compared to the free drug. The results suggest that the PAMPA co‐polymeric nanomicelles can be utilized as an effective carrier to enhance the cytotoxic effects of flutamide in prostate cancer.Inspec keywords: nanoparticles, cellular biophysics, drugs, biomedical materials, drug delivery systems, colloids, hydrophilicity, pH, transmission electron microscopy, particle size, cancer, casting, toxicology, electrokinetic effects, polymer blends, proton magnetic resonance, nanomedicine, self‐assembly, nanofabrication, Fourier transform infrared spectraOther keywords: PC3 cells, chemotherapeutic drugs, prostate cancer treatment, polymer composite micelle, chemical conjugation, proton nuclear magnetic resonance, cell cytotoxicity, prepared nanomicelles, drug loading efficiency, drug release, critical micelle concentration, cell viability, cytotoxic effects, flutamideloaded micelles, flutamide delivery, polyacrylamide‐punicic acid conjugate‐based micelles, PAMPA copolymeric nanomicelles, biopolymeric micelle, PAM‐punicic acid copolymer copolymeric micelles, hydrophilic shell, self‐assembly, film casting, ultrasonication method, Fourier transform infrared spectra, transmission electron microscopy, particle size, polydisperity index, zeta potential, pH, blank nanocarriers, time 10.0 hour  相似文献   

8.
The purpose of this study was to design a targeted anti‐cancer drug delivery system for breast cancer. Therefore, doxorubicin (DOX) loaded poly(methyl vinyl ether maleic acid) nanoparticles (NPs) were prepared by ionic cross‐linking method using Zn2+ ions. To optimise the effect of DOX/polymer ratio, Zn/polymer ratio, and stirrer rate a full factorial design was used and their effects on particle size, zeta potential, loading efficiency (LE, %), and release efficiency in 72 h (RE72, %) were studied. Targeted NPs were prepared by chemical coating of tiptorelin/polyallylamin conjugate on the surface of NPs by using 1‐ethyl‐3‐(3‐dimethylaminopropyl) carboiimid HCl as cross‐linking agent. Conjugation efficiency was measured by Bradford assay. Conjugated triptorelin and targeted NPs were studied by Fourier‐transform infrared spectroscopy (FTIR). The cytotoxicity of DOX loaded in targeted NPs and non‐targeted ones were studied on MCF‐7 cells which overexpress luteinizing hormone‐releasing hormone (LHRH) receptors and SKOV3 cells as negative LHRH receptors using Thiazolyl blue tetrazolium bromide assay. The best results obtained from NPs prepared by DOX/polymer ratio of 5%, Zn/polymer ratio of 50%, and stirrer rate of 960 rpm. FTIR spectrum confirmed successful conjugation of triptorelin to NPs. The conjugation efficiency was about 70%. The targeted NPs showed significantly less IC50 for MCF‐7 cells compared to free DOX and non‐targeted NPs.Inspec keywords: nanoparticles, polymer blends, cancer, cellular biophysics, drug delivery systems, drugs, biomedical materials, zinc, positive ions, Fourier transform infrared spectra, nanomedicine, proteinsOther keywords: luteinizing hormone‐releasing hormone, poly(methyl vinyl ether maleic acid), doxorubicin delivery, MCF‐7 breast cancer cell, anticancer drug delivery system, doxorubicin‐loaded PVM‐MA nanoparticle, ionic cross‐linking method, zinc ion, doxorubicin‐polymer ratio effect, zinc‐polymer ratio effect, particle size, zeta potential, loading efficiency, release efficiency, chemical coating, tiptorelin‐polyallylamin conjugation, PVM‐MA nanoparticle surface, 1‐ethyl‐3‐(3‐dimethylaminopropyl) carboiimid HCl, cross‐linking agent, Bradford assay, Fourier transform infrared spectroscopy, cytotoxicity, LHRH receptor, SKOV3 cell, Thiazolyl blue tetrazolium bromide assay, conjugation efficiency, time 72 h, Zn2+   相似文献   

9.
Owing to the numerous biological applications, cost effectiveness and low cytotoxicity of the biomimetic nanoparticles (NPs), the authors optimised the production of silver NPs (AgNPs) using aqueous extract of Teucrium stocksianum Boiss. The NPs were characterised by ultraviolet‐visible (UV‐vis) spectroscopy, X‐ray diffraction (XRD), scanning electron microscopy (SEM), dynamic light scattering (DLS) and Fourier transform‐infrared spectroscopy (FTIR). The UV‐vis spectroscopy revealed a surface plasmon resonance (410‐440 nm) at an incubation temperature of 90°C when 1 mM Ag nitrate combined to 5 mg/ml extract concentration in the ratio of 1:10. DLS results show an average zeta size of ∼44.61 nm and zeta potential of −15.3 mV. SEM and XRD confirmed the high crystallinity and cubical symmetry with an average size below 100 nm. FTIR measurement shows the presence of various functional groups, responsible for the capping and reduction of Ag metal. The 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide cell viability assay shows that AgNPs are less cytotoxic to J774 and L929 cells as compared with enhanced anticancer activity with low IC50 concentrations (68.24 µg/ml) against Michigan Cancer Foundation‐7 (MCF‐7) cells. The ethidium bromide/acridine orange assay shows that the AgNPs kill the cell by apoptosis. Overall, the results show that AgNPs possesses potent anticancer activities.Inspec keywords: cellular biophysics, cancer, nanobiotechnology, nanomedicine, ultraviolet spectra, X‐ray diffraction, scanning electron microscopes, light scattering, patient treatmentOther keywords: anticancer assessment, in vitro cytotoxic assessment, aqueous extract‐mediated AgNPs, Teucrium stocksianum Boiss, nanoparticles, biological applications, biosynthesis, silver NPs, X‐ray diffraction, scanning electron microscopy, dynamic light scattering, Fourier transform‐infrared spectroscopy, UV‐vis spectroscopy, surface plasmon resonance, extract concentration, zeta potential, high crystallinity, FTIR measurement, amide molecules, viability assay, enhanced anticancer activity, potent anticancer activities  相似文献   

10.
Quorum sensing (QS) is a signalling mechanism by which bacteria produce, release and then detect and respond to changes in their density and biosignals called autoinducers (AIs). There are multiple feedback loops in the QS system of Vibrio harveyi. However, how these feedback loops function to control signal processing remains unclear. In this study, the authors present a computational model for the switch‐like regulation of signal transduction by small regulatory RNA‐mediated QS based on intertwined network involving AIs, LuxO, LuxU, Qrr sRNAs and LuxR. In agreement with experimental observations, the model suggests that different feedbacks play critical roles in the switch‐like regulation. The authors results reveal that V. harveyi uses multiple feedbacks to precisely control signal transduction.Inspec keywords: biocommunications, biocontrol, biology computing, cellular biophysics, physiological models, RNAOther keywords: RNA‐mediated switch‐like regulation, bacterial quorum sensing, signaling mechanism, autoinducers, Vibrio harveyi, feedback loops function, signal processing control, switch‐like regulation  相似文献   

11.
Biodegradable polymers have greatly promoted the development of environmental, biomedical and allied sciences because of their biocompatibility and doping chemistry. The emergence of nanotechnology has envisaged greater options for the development of biodegradable materials. Polyaniline grafted chitosan (i.e. biodegradable PANI) copolymer was prepared by the chemical in situ polymerisation of aniline using ammonium per sulphate as initiator while Ag nanoparticle were synthesised by chemical reduction method and incorporated in to the polymer matrix. The as prepared materials were characterised by X‐ray diffraction, Fourier transform Infra‐red spectroscopy, transmission electron microscopy, energy dispersive X‐ray analysis. Moreover energy storage capacity, impedance properties were also studied. The main focus was on the photocatalytic degradation of organic dyes to remove the toxic and carcinogenic pollutants. This polymer nano‐biocomposite has multifold applications and can be used as excellent materials for enhanced photodegradation and removal of toxic contaminants from waste waters and natural water streams. In addition, the biocompatible materials with excellent mechanical properties and low toxicity can also be used for tissue engineering, drug delivery and electrical energy storage devices.Inspec keywords: silver, filled polymers, polymer blends, nanocomposites, nanoparticles, nanofabrication, biodegradable materials, polymerisation, reduction (chemical), Fourier transform infrared spectra, transmission electron microscopy, X‐ray chemical analysis, X‐ray diffractionOther keywords: polyaniline‐chitosan‐silver‐nanobiocomposite, biodegradable polymers, biocompatibility, doping chemistry, nanotechnology, biodegradable PANI, polyaniline grafted chitosan copolymer, biodegradable materials, chemical in situ polymerisation, nanoparticle, polymer matrix, chemical reduction method, Fourier transform Infrared spectroscopy, transmission electron microscopy, energy dispersive X‐ray analysis, X‐ray diffraction, energy storage capacity, impedance properties, carcinogenic pollutants, toxic pollutants, photodegradation, toxic contaminants, natural water streams, waste waters, drug delivery, tissue engineering, electrical energy storage devices, mechanical properties, Ag  相似文献   

12.
Synthesis of iron nanoparticles (INPs) with a biocompatible coating usually is a multistep process which requires harsh, special and protected reaction conditions. In the current experiment, the authors used Xanthomonas campestris cells to develop a facile method for fabrication of biocompatible INPs. Bacterial cells were supplied with ferric citrate as an iron precursor. Transmission electron microscopy micrographs exhibited that xanthan gum‐coated INPs are synthesised and deposited on the surface of X. campestris cells and produced nanoparticles were 20–80 nm in diameter with 41.7 nm mean particle size. Xanthan gum coating with about 7 nm thickness formed a clear hollow around each nanoparticle. According to thermogravimetric analysis, the coating was about 13.4% of the total INPs weight. Prepared particles had a zeta potential of −114 mv which is an ideal surface charge to make particles colloidally stable in aqueous matrixes. Xanthan gum‐coated INPs were non‐crystalline with low saturation magnetisation value of about 0.26 emu/g.Inspec keywords: nanoparticles, nanofabrication, iron, microorganisms, transmission electron microscopy, particle size, electrokinetic effects, surface charging, magnetisation, organic compoundsOther keywords: biosynthesis, xanthan gum‐coated INPs, Xanthomonas campestris cells, iron nanoparticles, biocompatible coating, bacterial cells, ferric citrate, transmission electron microscopy micrographs, mean particle size, thermogravimetric analysis, zeta potential, surface charge, saturation magnetisation, size 20 nm to 80 nm, Fe  相似文献   

13.
Present investigation aimed to prepare, optimise, and characterise lipid nanocapsules (LNCs) for improving the solubility and bioavailability of efavirenz (EFV). EFV‐loaded LNCs were prepared by the phase‐inversion temperature method and the influence of various formulation variables was assessed using Box–Behnken design. The prepared formulations were characterised for particle size, polydispersity index (PdI), zeta potential, encapsulation efficiency (EE), and release efficiency (RE). The biocompatibility of optimised formulation on Caco‐2 cells was determined using 3‐[4,5‐dimethylthiazol‐2‐yl]‐2,5‐diphenyltetrazolium bromide assay. Then, it was subjected to ex‐vivo permeation using rat intestine. EFV‐loaded LNCs were found to be spherical shape in the range of 20–100 nm with EE of 82–97%. The best results obtained from LNCs prepared by 17.5% labrafac and 10% solutol HS15 when the volume ratio of the diluting aqueous phase to the initial emulsion was 3.5. The mean particle size, zeta potential, PdI, EE, drug loading%, and RE during 144 h of optimised formulation were confirmed to 60.71 nm, −35.93 mV, 0.09, 92.60, 7.39 and 55.96%, respectively. Optimised LNCs increased the ex vivo intestinal permeation of EFV when compared with drug suspension. Thus, LNCs could be promising for improved oral delivery of EFV.Inspec keywords: biomedical materials, solubility, drugs, encapsulation, emulsions, nanoparticles, particle size, nanofabrication, suspensions, toxicology, nanomedicine, cellular biophysics, lipid bilayers, electrokinetic effects, drug delivery systems, molecular biophysicsOther keywords: ex‐vivo permeation, diluting aqueous phase, mean particle size, zeta potential, drug loading, optimised formulation, ex vivo intestinal permeation, improved oral delivery, efavirenz oral delivery, optimisation, ex‐vivo gut permeation study, solubility, bioavailability, phase‐inversion temperature method, formulation variables, Box–Behnken design, polydispersity index, encapsulation efficiency, Caco‐2 cells, lipid nanocapsules, 3‐[4,5‐dimethylthiazol‐2‐yl]‐2,5‐diphenyltetrazolium bromide assay, EFV‐loaded LNC, drug suspension, size 20.0 nm to 100.0 nm, time 144.0 hour, size 60.71 nm, voltage ‐35.93 mV  相似文献   

14.
Virgin coconut oil (VCO) is the finest grade of coconut oil, rich in phenolic content, antioxidant activity and contains medium chain triglycerides (MCTs). In this work formulation, characterisation and penetration of VCO‐solid lipid particles (VCO‐SLP) have been studied. VCO‐SLP were prepared using ultrasonication of molten stearic acid and VCO in an aqueous solution. The electron microscopy imaging revealed that VCO‐SLP were solid and spherical in shape. Ultrasonication was performed at several power intensities which resulted in particle sizes of VCO‐SLP ranged from 0.608 ± 0.002 µm to 44.265 ± 1.870 µm. The particle size was directly proportional to the applied power intensity of ultrasonication. The zeta potential values of the particles were from −43.2 ± 0.28 mV to −47.5 ± 0.42 mV showing good stability. The cumulative permeation for the smallest sized VCO‐SLP (0.608 µm) was 3.83 ± 0.01 µg/cm2 whereas for larger carriers it was reduced (3.59 ± 0.02 µg/cm2). It is concluded that SLP have the potential to be exploited as a micro/nano scale cosmeceutical carrying vehicle for improved dermal delivery of VCO.Inspec keywords: skin, cosmetics, vegetable oils, ultrasonic applications, electron microscopy, particle sizeOther keywords: empty nanostructured lipid carrier, empty microstructured lipid carrier, virgin coconut oil, skin moisturisation, phenolic content, antioxidant activity, medium chain triglyceride, MCT, VCO‐solid lipid particle, VCO‐SLP, molten stearic acid ultrasonication, electron microscopy imaging, power intensity, particle size, dermal delivery  相似文献   

15.
Poly‐methyl methacrylate (PMMA) polymer with remarkable properties and merits are being preferred in various biomedical applications due to its biocompatibility, non‐toxicity and cost effectiveness. In this investigation, oxytetracycline‐loaded PMMA nanoparticles were prepared using nano‐precipitation method for the treatment of anaplasmosis. The prepared nanoparticles were characterised using dynamic light scattering (DLS), atomic force microscopy (AFM), differential scanning calorimetry (DSC) and Fourier transform infrared (FTIR) spectroscopy. The mean average diameter of the nanoparticles ranged between 190–240 nm and zeta potential was found to be −19 mV. The drug loading capacity and entrapment efficiency of nanoparticles was found varied between 33.7–62.2% and 40.5–60.0%. The in vitro drug release profile exhibited a biphasic phenomenon indicating controlled drug release. The uptake of coumarin‐6(C‐6)‐loaded PMMA nanoparticles in Plasmodium falciparum (Pf 3D7) culture model was studied. The preferential uptake of C‐6‐loaded nanoparticles by the Plasmodium infected erythrocytes in comparison with the uninfected erythrocytes was observed under fluorescence microscopy. These findings suggest that oxytetracycline‐loaded PMMA nanoparticles were found to be an effective oral delivery vehicle and an alternative pharmaceutical formulation in anaplasmosis treatment, too.Inspec keywords: nanoparticles, nanomedicine, conducting polymers, microorganisms, cellular biophysics, toxicology, drug delivery systems, light scattering, atomic force microscopy, differential scanning calorimetry, Fourier transform infrared spectra, bloodOther keywords: in vitro evaluation, oxytetracycline‐loaded PMMA nanoparticles, anaplasmosis, polymethyl methacrylate polymer, biocompatibility, toxicity, oxytetracycline‐nanoparticles, nanoprecipitation method, dynamic light scattering, atomic force microscopy, AFM, differential scanning calorimetry, DSC, Fourier transform infrared spectroscopy, FTIR spectroscopy, zeta potential, drug loading capacity, entrapment efficiency, in vitro drug release profile, biphasic phenomenon, coumarin‐6(C‐6)‐loaded PMMA nanoparticles, plasmodium falciparum culture model, preferential uptake, plasmodium infected erythrocytes, fluorescence microscopy, oral delivery vehicle, anaplasmosis treatment, size 190 nm to 240 nm  相似文献   

16.
Drug encapsulation in nanocarriers such as polymeric nanoparticles (Nps) may help to overcome the limitations associated with cannabinoids. In this study, the authors’ work aimed to highlight the use of electrospraying techniques for the development of carrier Nps of anandamide (AEA), an endocannabinoid with attractive pharmacological effects but underestimated due to its unfavourable physicochemical and pharmacokinetic properties added to its undesirable effects at the level of the central nervous system. The authors characterised physicochemically and evaluated in vitro biological activity of anandamide/ɛ‐polycaprolactone nanoparticles (Nps‐AEA/PCL) obtained by electrospraying in epithelial cells of the human proximal tubule (HK2), to prove the utility of this method and to validate the biological effect of Nps‐AEA/PCL. They obtained particles from 100 to 900 nm of diameter with a predominance of 200–400 nm. Their zeta potential was −20 ± 1.86 mV. They demonstrated the stable encapsulation of AEA in Nps‐AEA/PCL, as well as its dose‐dependent capacity to induce the expression of iNOS and NO levels and to decrease the Na+ /K+ ATPase activity in HK2 cells. Obtaining Nps‐AEA/PCL by electrospraying would represent a promising methodology for a novel AEA pharmaceutical formulation development with optimal physicochemical properties, physical stability and biological activity on HK2 cells.Inspec keywords: cellular biophysics, molecular biophysics, nanoparticles, nanofabrication, biochemistry, encapsulation, drugs, neurophysiology, electrokinetic effects, enzymes, biomedical materials, nanomedicine, polymers, sprayingOther keywords: electrospraying techniques, pharmacological effects, pharmacokinetic properties, in vitro biological activity, biological effect, HK2 cells, optimal physicochemical properties, polymeric nanoparticles, AEA pharmaceutical formulation development, anandamide‐ε‐polycaprolactone nanoparticles, drug encapsulation, nanocarriers, endocannabinoid, central nervous system, epithelial cells, human proximal tubule, zeta potential, stable encapsulation, dose‐dependent capacity, Na+ ‐K+ ATPase activity, physical stability, size 100.0 nm to 900.0 nm, NO, Na+ ‐K+   相似文献   

17.
New drug delivery system (ZnO@CMS) of the redox and pH dual‐stimuli responsive based on colloidal mesoporous silica nanoparticles (CMS) has been designed, in which zinc oxide quantum dots (ZnO QDs) as a capping agent was conjugated on the surface of nanoparticles by amide bonds. The release behaviour of doxorubicin (DOX) as the model drug from ZnO@CMS (ZnO@CMS‐DOX) indicated the redox and pH dual‐stimuli responsive properties due to the acidic dissolution of ZnO QDs and cleavage of the disulphide bonds. The haemolysis and bovine serum albumin adsorption assays showed that the modification of ZnO QDs on the mesoporous silica nanoparticles modified by mercapto groups (CMS‐SH)(ZnO@CMS) had better biocompatibility compared to CMS‐SH. The cell viability and cellular uptake tests revealed that the ZnO@CMS might achieve the antitumour effect on cancer cells due to the cytotoxicity of ZnO QDs. Therefore, ZnO@CMS might be potential nanocarriers of the drug delivery system in cancer therapy. The in vivo evaluation of ZnO@CMS would be carried out in future work.Inspec keywords: biochemistry, nanomedicine, cellular biophysics, pH, toxicology, tumours, semiconductor quantum dots, proteins, colloids, II‐VI semiconductors, mesoporous materials, silicon compounds, oxidation, cancer, drug delivery systems, zinc compounds, adsorption, molecular biophysics, nanomagnetics, drugs, biomedical materials, nanofabrication, nanoparticles, nanoporous materialsOther keywords: cancer therapy, drug delivery system, amide bonds, haemolysis, bovine serum albumin adsorption assays, mercapto groups, cancer cells, cytotoxicity, antitumour effect, redox/pH dual stimuli‐responsive zinc oxide quantum dots‐gated colloidal mesoporous silica nanoparticles, ZnO, SiO2   相似文献   

18.
The present study investigated the synthesis of gold nanoparticles (AuNPs) using mangrove plant extract from Avicennia marina as bioreductant for eco‐friendly bioremediation of 4‐nitrophenol (4‐NP). The AuNPs synthesised were confirmed by UV spectrum, transmission electron microscopy (TEM), X‐ray diffraction, Fourier transmission infrared spectroscopy (FTIR), dynamic light scattering (DLS), and zeta potential. The AuNPs were found to be spherical in shape with size ranging from 4 to 13 nm, as evident by TEM and DLS. Further, the AuNPs were encapsulated with sodium alginate in the form of gold nano beads and used as heterogeneous catalyst and degrading agent to reduce 4‐NP. This reduction in 4‐NP into 4‐aminophenol was confirmed by UV and FTIR. The aqueous solution of 4‐NP peaked its absorbance at 320 nm, and shifted to 400 nm, with an intense yellow colour, appeared due to formation of 4‐nitrophenolate ion. After the addition of AuNps, the 4‐NP solution became colourless and peaked at 400 nm and reduced to 290 nm corresponding to the formation of 4‐aminophenol. Hence, the present work suggested the AuNPs as the potent, eco‐friendly bionanocomposite catalyst for bioremediation of 4‐NP.Inspec keywords: gold, nanoparticles, nanobiotechnology, nanofabrication, ultraviolet spectra, transmission electron microscopy, X‐ray diffraction, Fourier transform spectra, infrared spectra, electrokinetic effects, catalysts, nanocomposites, biochemistryOther keywords: biogenic gold nanoparticles, 4‐nitrophenol, 4‐aminophenol, eco‐friendly bioremediation, mangrove plant extract, Avicennia marina, bioreductant, UV spectrum, transmission electron microscopy, TEM, X‐ray diffraction, Fourier transmission infrared spectroscopy, FTIR, dynamic light scattering, DLS, zeta potential, degrading agent, 4‐nitrophenolate, bionanocomposite catalyst, size 4 nm to 13 nm, wavelength 400 nm, wavelength 290 nm, Au  相似文献   

19.
Cisplatin treatment results in acute kidney injury (AKI) by the phosphorylation of mixed lineage kinase domain‐like protein (MLKL). The knockout of MLKL, which is a principle mediator of necroptosis, is believed to alleviate the AKI symptoms. The present study was aimed to improve the therapeutic efficacy in AKI. For this purpose, miR‐500a‐3P was identified as appropriate miRNA therapeutics and loaded in liposome delivery carrier. The authors have showed that the miR‐LIP directly controls the expression of RIPK3 and MLKL – a modulator of necroptosis and thereby reduces the severity of kidney injury. The miR‐LIP significantly controlled the phosphorylation of MLKL compared to that of CDDP‐treated HK2 cells. Similar results are observed with RIPK3. The miR‐LIP has also been demonstrated to control the inflammatory response in tubular cells. Western blot analysis further revealed that the phosphorylation of P‐65 was mainly responsible for the inflammatory response and miR‐LIP significantly decreased the CDDP‐induced NF‐kB phosphorylation. Overall, the present study explored the molecular mechanism behind the necroptosis in AKI and potential of miRNA in targeting MLKL pathways. Study further highlights the potential advantage of liposome as a delivery carrier for miRNA therapeutics.Inspec keywords: medical disorders, biochemistry, cancer, cellular biophysics, kidney, enzymes, drugs, toxicology, patient treatment, injuries, genetics, molecular biophysicsOther keywords: current 500.0 A, functional role, microRNA‐500a‐3P‐loaded liposomes, cisplatin‐induced AKI, cisplatin treatment results, acute kidney injury, phosphorylation, mixed lineage kinase domain, necroptosis, AKI symptoms, therapeutic efficacy, appropriate miRNA therapeutics, liposome delivery carrier, miR‐LIP, RIPK3, inflammatory response, CDDP‐induced NF‐kB, MLKL pathways  相似文献   

20.
Over the past few years, there have been several attempts to deliver anticancer drugs into the body. It has been shown that compared to other available carriers, colloidal gelatin nanoparticles (CGNPs) have distinct properties due to their exceptional physico‐chemical and biological characteristics. In this study, a novel water‐soluble palladium (II) anticancer complex was first synthesised, and then loaded into CGNPs. The CGNPs were synthesised through a two‐step desolvation method with an average particle size of 378 nm. After confirming the stability of the drug in the nanoparticles, the drug‐loaded CGNPs were tested for in vitro cytotoxicity against human breast cancer cells. The results showed that the average drug encapsulating efficiency and drug loading of CGNPs were 64 and 10 ± 2.1% (w/w), respectively. There was a slight shift to higher values of cumulative release, when the samples were tested in lower pH values. In addition, the in vitro cytotoxicity test indicated that the number of growing cells significantly decreased after 48 h in the presence of different concentrations of drug. The results also demonstrated that the released drug could bind to DNA by a static mechanism at low concentrations (0.57 µM) on the basis of hydrophobic and hydrogen binding interactions.Inspec keywords: cancer, drug delivery systems, drugs, palladium compounds, colloids, gelatin, nanoparticles, nanomedicine, biomedical materials, nanofabrication, nanocomposites, molecular biophysics, molecular configurations, pH, solubility, particle size, cellular biophysics, encapsulation, DNA, hydrophobicity, hydrogen bondsOther keywords: controllable synthesis, sustained‐release delivery system, cancer therapy, palladium (II) anticancer complex‐loaded colloidal gelatin nanoparticles, anticancer drug delivery, physicochemical characteristics, biological characteristics, therapeutic pathways, water‐soluble palladium (II) anticancer complex, two‐step desolvation method, particle size, drug stability, gelatin matrix, drug‐loaded CGNPs, in vitro cytotoxic activity, human breast cancer cells, average drug encapsulating efficiency, pH values, cell growth, drug concentrations, DNA, static mechanism, hydrophobic interaction, hydrogen binding interactions  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号