首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Osteoarthritis (OA) is a chronic disease affecting the whole joint, which still lacks a disease-modifying treatment. This suggests an incomplete understanding of underlying molecular mechanisms. The Wnt/β-catenin pathway is involved in different pathophysiological processes of OA. Interestingly, both excessive stimulation and suppression of this pathway can contribute to the pathogenesis of OA. microRNAs have been shown to regulate different cellular processes in different diseases, including the metabolic activity of chondrocytes and osteocytes. To bridge these findings, here we attempt to give a conclusive overview of microRNA regulation of the Wnt/β-catenin pathway in bone and cartilage, which may provide insights to advance the development of miRNA-based therapeutics for OA treatment.  相似文献   

2.
The value of bone marrow aspirate concentrates for treatment of human knee cartilage lesions is unclear. Most of the studies were performed with intra-articular injections. However, subchondral bone plays an important role in the progression of osteoarthritis. We investigated by a literature review whether joint, subchondral bone, or/and scaffolds implantation of fresh autologous bone marrow aspirate concentrated (BMAC) containing mesenchymal stem cells (MSCs) would improve osteoarthritis (OA). There is in vivo evidence that suggests that all these different approaches (intra-articular injections, subchondral implantation, scaffolds loaded with BMAC) can improve the patient. This review analyzes the evidence for each different approach to treat OA. We found that the use of intra-articular injections resulted in a significant relief of pain symptoms in the short term and was maintained in 12 months. However, the clinical trials indicate that the application of autologous bone marrow concentrates in combination with scaffolds or in injection in the subchondral bone was superior to intra-articular injection for long-term results. The tendency of MSCs to differentiate into fibrocartilage affecting the outcome was a common issue faced by all the studies when biopsies were performed, except for scaffolds implantation in which some hyaline cartilage was found. The review suggests also that both implantation of subchondral BMAC and scaffolds loaded with BMAC could reduce the need for further surgery.  相似文献   

3.
4.
To determine whether there is a correlation between the concentration of Indian hedgehog (Ihh) in synovial fluid (SF) and the severity of cartilage damage in the human knee joints, the knee cartilages from patients were classified using the Outer-bridge scoring system and graded using the Modified Mankin score. Expression of Ihh in cartilage and SF samples were analyzed with immunohistochemistry (IHC), western blot, and enzyme-linked immunosorbent assay (ELISA). Furthermore, we detected and compared Ihh protein levels in rat and mice cartilages between normal control and surgery-induced osteoarthritis (OA) group by IHC and fluorescence molecular tomography in vivo respectively. Ihh expression was increased 5.2-fold in OA cartilage, 3.1-fold in relative normal OA cartilage, and 1.71-fold in OA SF compared to normal control samples. The concentrations of Ihh in cartilage and SF samples was significantly increased in early-stage OA samples when compared to normal samples (r = 0.556; p < 0.001); however, there were no significant differences between normal samples and late-stage OA samples. Up-regulation of Ihh protein was also an early event in the surgery-induced OA models. Increased Ihh is associated with the severity of OA cartilage damage. Elevated Ihh content in human knee joint synovial fluid correlates with early cartilage lesions.  相似文献   

5.
Osteoarthritis (OA) is currently the most widespread musculoskeletal condition and primarily affects weight-bearing joints such as the knees and hips. Importantly, knee OA remains a multifactorial whole-joint disease, the appearance and progression of which involves the alteration of articular cartilage as well as the synovium, subchondral bone, ligaments, and muscles through intricate pathomechanisms. Whereas it was initially depicted as a predominantly aging-related and mechanically driven condition given its clear association with old age, high body mass index (BMI), and joint malalignment, more recent research identified and described a plethora of further factors contributing to knee OA pathogenesis. However, the pathogenic intricacies between the molecular pathways involved in OA prompted the study of certain drugs for more than one therapeutic target (amelioration of cartilage and bone changes, and synovial inflammation). Most clinical studies regarding knee OA focus mainly on improvement in pain and joint function and thus do not provide sufficient evidence on the possible disease-modifying properties of the tested drugs. Currently, there is an unmet need for further research regarding OA pathogenesis as well as the introduction and exhaustive testing of potential disease-modifying pharmacotherapies in order to structure an effective treatment plan for these patients.  相似文献   

6.
In the knee joint, articular cartilage injury can often lead to osteoarthritis of the knee (OAK). Currently, no point-of-care treatment can completely address OAK symptoms and regenerate articular cartilage to restore original functions. While various cell-based therapies are being developed to address OAK, exosomes containing various components derived from their cells of origin have attracted attention as a cell-free alternative. The potential for exosomes as a novel point-of-care treatment for OAK has been studied extensively, especially in the context of intra-articular treatments. Specific exosomal microRNAs have been identified as possibly effective in treating cartilage defects. Additionally, exosomes have been studied as biomarkers through their differences in body fluid composition between joint disease patients and healthy subjects. Exosomes themselves can be utilized as a drug delivery system through their manipulation and encapsulation of specific contents to be delivered to specific cells. Through the combination of exosomes with tissue engineering, novel sustained release drug delivery systems are being developed. On the other hand, many of the functions and activities of exosomes are unknown and challenges remain for clinical applications. In this review, the possibilities of intra-articular treatments utilizing exosomes and the challenges in using exosomes in therapy are discussed.  相似文献   

7.
Biomarkers are essential tools in osteoarthritis (OA) research, clinical trials, and drug development. Detecting and evaluating biomarkers in OA research can open new avenues for researching and developing new therapeutics. In the present report, we have explored the serological detection of various osteoarthritis-related biomarkers in the preclinical model of OA. In this surgical OA model, we disrupted the medial tibial cartilage’s integrity via anterior cruciate ligament transection combined with medial meniscectomy (ACLT+MMx) of a single joint of Wistar rats. The progression of OA was verified, as shown by the microscopic deterioration of cartilage and the increasing cartilage degeneration scoring from 4 to 12 weeks postsurgery. The concentration of serological biomarkers was measured at two timepoints, along with the complete blood count and bone electrolytes, with biochemical analysis further conducted. The panel evaluated inflammatory biomarkers, bone/cartilage biomarkers, and lipid metabolic pathway biomarkers. In chronic OA rats, we found a significant reduction of total vitamin D3 and C-telopeptide fragments of type II (CTX-II) levels in the serum as compared to sham-operated rats. In contrast, the serological levels of adiponectin, leptin, and matrix metallopeptidase (MMP3) were significantly enhanced in chronic OA rats. The inflammatory markers, blood cell composition, and biochemical profile remained unchanged after surgery. In conclusion, we found that a preclinical model of single-joint OA with significant deterioration of the cartilage can lead to serological changes to the cartilage and metabolic-related biomarkers without alteration of the systemic blood and biochemical profile. Thus, this biomarker profile provides a new tool for diagnostic/therapeutic assessment in OA scientific research.  相似文献   

8.
The discovery of small RNAs such as microRNAs (miRNAs), small interfering RNAs (siRNAs), or Piwi-associated RNAs (piRNAs) has led to new challenges in the selective detection of RNAs. Many noncoding RNAs act as post-translational regulators of gene expression and are involved in the regulation of cell proliferation or apoptosis, but are difficult to amplify, label, and detect. Standard microarray detection procedures involve pre-hybridization labeling or enzymatic 3'-labeling by polymerase-catalyzed extension. Dual labeling would improve the fidelity of detection, but no polymerases for 5'-extension are known. Here we report a novel labeling method for RNAs bearing natural 5'-phosphate groups, such as miRNAs, based on enzyme-free ligation of a biotin- or fluorophore-labeled oligonucleotide to the 5' termini. The method uses in situ activation of the natural 5'-phosphate groups in these RNAs and was optimized to give near-quantitative conversion in solution. With use of biotin- or fluorophore-bearing labeling strands, different miRNA sequences were detected on microarrays with little background fluorescence. In combination with an established method of enzymatic on-chip labeling at the 3' termini, highly selective detection of related miRNAs was achieved by dual recognition at both termini, even in the case of miRNAs differing in only one nucleotide.  相似文献   

9.
Premature ovarian insufficiency (POI) is defined as a loss of ovarian function before the age of 40 years, with a prevalence rate estimated at approximately 1%. It causes infertility and is related to serious long-term health consequences, including reduced life expectancy, increased cardiovascular risk, decreased bone mineral density and neurological disorders. There is currently no effective therapy for POI that is widely available in clinical practice; therefore, the treatment of patients with POI is based on hormone replacement therapy. One of the recent advances in the understanding of the pathophysiology of POI has been the role of microRNAs (miRNAs) and other noncoding RNAs (ncRNAs) in the disease. Moreover, intensive research on human folliculogenesis and reproductive biology has led to the development of novel promising therapeutic strategies with the use of exosomal miRNAs derived from mesenchymal stem cells to restore ovarian function in POI patients. This narrative review focuses on the new studies concerning the role of ncRNAs in the pathogenesis of POI, together with their potential as biomarkers of the disease and targets for therapy.  相似文献   

10.
Osteoarthritis (OA) is a whole joint disease characterized by an important remodeling of the osteochondral junction. It includes cartilage mineralization due to chondrocyte hypertrophic differentiation and bone sclerosis. Here, we investigated whether gremlin-1 (Grem-1) and its BMP partners could be involved in the remodeling events of the osteochondral junction in OA. We found that Grem-1, BMP-2, and BMP-4 immunostaining was detected in chondrocytes from the deep layer of cartilage and in subchondral bone of knee OA patients, and was positively correlated with cartilage damage. ELISA assays showed that bone released more Grem-1 and BMP-4 than cartilage, which released more BMP-2. In vitro experiments evidenced that compression stimulated the expression and the release of Grem-1 and BMP-4 by osteoblasts. Grem-1 was also overexpressed during the prehypertrophic to hypertrophic differentiation of murine articular chondrocytes. Recombinant Grem-1 stimulated Mmp-3 and Mmp-13 expression in murine chondrocytes and osteoblasts, whereas recombinant BMP-4 stimulated the expression of genes associated with angiogenesis (Angptl4 and osteoclastogenesis (Rankl and Ccl2). In conclusion, Grem-1 and BMP-4, whose expression at the osteochondral junction increased with OA progression, may favor the pathological remodeling of the osteochondral junction by inducing a catabolic and tissue remodeling program in hypertrophic chondrocytes and osteoblasts.  相似文献   

11.
MicroRNAs (miRNAs) are endogenous small noncoding ~22-nt RNAs, which have been reported to play a crucial role in maintaining bone development and metabolism. Osteogenesis originates from mesenchymal stem cells (MSCs) differentiating into mature osteoblasts and each period of bone formation is inseparable from the delicate regulation of various miRNAs. Of note, apprehending the sophisticated circuit between miRNAs and osteogenic homeostasis is of great value for artificial skeletal regeneration for severe bone defects. In this review, we highlight how different miRNAs interact with diverse osteo-related genes and endeavor to sketch the contours of potential manipulations of miRNA-modulated bone repair.  相似文献   

12.
Osteoarthritis (OA) is a common debilitating joint disorder, affecting large sections of the population with significant disability and impaired quality of life. During OA, functional units of joints comprising cartilage and subchondral bone undergo uncontrolled catabolic and anabolic remodeling processes to adapt to local biochemical and biological signals. Changes in cartilage and subchondral bone are not merely secondary manifestations of OA but are active components of the disease, contributing to its severity. Increased vascularization and formation of microcracks in joints during OA have suggested the facilitation of molecules from cartilage to bone and vice versa. Observations from recent studies support the view that both cartilage and subchondral bone can communicate with each other through regulation of signaling pathways for joint homeostasis under pathological conditions. In this review we have tried to summarize the current knowledge on the major signaling pathways that could control the cartilage-bone biochemical unit in joints and participate in intercellular communication between cartilage and subchondral bone during the process of OA. An understanding of molecular communication that regulates the functional behavior of chondrocytes and osteoblasts in both physiological and pathological conditions may lead to development of more effective strategies for treating OA patients.  相似文献   

13.
14.
Early blood biomarkers to diagnose acute stroke could drastically reduce treatment delays. We investigated whether circulating small non-coding RNAs can serve as biomarkers to distinguish between acute ischemic stroke (IS), intracerebral hemorrhage (ICH) and stroke mimics (SM). In an ongoing observational cohort study, we performed small RNA-sequencing in plasma obtained from a discovery cohort of 26 patients (9 IS, 8 ICH and 9 SM) presented to the emergency department within 6 h of symptom onset. We validated our results in an independent dataset of 20 IS patients and 20 healthy controls. ICH plasma had the highest abundance of ribosomal and tRNA-derived fragments, while microRNAs were most abundant in plasma of IS patients. Combinations of four to five tRNAs yielded diagnostic accuracies (areas under the receiver operating characteristics curve) up to 0.986 (ICH vs. IS and SM) in the discovery cohort. Validation of the IS and SM models in the independent dataset yielded diagnostic accuracies of 0.870 and 0.885 to distinguish IS from healthy controls. Thus, we identified tRNA-derived fragments as a promising novel class of biomarkers to distinguish between acute IS, ICH and SM, as well as healthy controls.  相似文献   

15.
The liver is well recognized as a non-immunological visceral organ that is involved in various metabolic activities, nutrient storage, and detoxification. Recently, many studies have demonstrated that resident immune cells in the liver drive various immunological reactions by means of several molecular modulators. Understanding the mechanistic details of interactions between hepatic host immune cells, including Kupffer cells and lymphocytes, and various hepatic pathogens, especially viruses, bacteria, and parasites, is necessary. MicroRNAs (miRNAs), over 2600 of which have been discovered, are small, endogenous, interfering, noncoding RNAs that are predicted to regulate more than 15,000 genes by degrading specific messenger RNAs. Several recent studies have demonstrated that some miRNAs are associated with the immune response to pathogens in the liver. However, the details of the underlying mechanisms of miRNA interference in hepatic host–pathogen interactions still remain elusive. In this review, we summarize the relationship between the immunological interactions of various pathogens and hepatic resident immune cells, as well as the role of miRNAs in the maintenance of liver immunity against pathogens.  相似文献   

16.
Colorectal cancer (CRC) is one of the most common malignant tumors in the gastrointestinal tract. It is a multifactorial disease that involves environmental factors, genetic factors, and lifestyle factors. Due to the absence of specific and sensitive biomarkers, CRC patients are usually diagnosed at an advanced stage and consequently suffer from a low 5-year overall survival rate. Despite improvements in surgical resection and adjuvant chemotherapy, the prognosis of patients with CRC remains unfavorable due to local and distant metastases. Several studies have shown that small noncoding RNAs, such as microRNAs packed in exosomes, are potential biomarkers in various types of cancers, including CRC, and that they can be detected in a stable form in both serum and plasma. In this review, we report the potential of circulating exosomal miRNAs to act as biomarkers for the diagnosis and prognosis of CRC.  相似文献   

17.
This paper aims to provide a comprehensive review of the changing role of hepatocyte growth factor (HGF) signaling in the healthy and diseased synovial joint and spine. HGF is a multifunctional growth factor that, like its specific receptor c-Met, is widely expressed in several bone and joint tissues. HGF has profound effects on cell survival and proliferation, matrix metabolism, inflammatory response, and neurotrophic action. HGF plays an important role in normal bone and cartilage turnover. Changes in HGF/c-Met have also been linked to pathophysiological changes in degenerative joint diseases, such as osteoarthritis (OA) and intervertebral disc degeneration (IDD). A therapeutic role of HGF has been proposed in the regeneration of osteoarticular tissues. HGF also influences bone remodeling and peripheral nerve activity. Studies aimed at elucidating the changing role of HGF/c-Met signaling in OA and IDD at different pathophysiological stages, and their specific molecular mechanisms are needed. Such studies will contribute to safe and effective HGF/c-Met signaling-based treatments for OA and IDD.  相似文献   

18.
Molecular mechanisms of RNA-triggered gene silencing machineries   总被引:1,自引:0,他引:1  
Gene silencing by RNA triggers is an ancient, evolutionarily conserved, and widespread phenomenon. This process, known as RNA interference (RNAi), occurs when double-stranded RNA helices induce cleavage of their complementary mRNAs. Because these RNA molecules can be introduced exogenously as small interfering RNAs (siRNAs), RNAi has become an everyday experimental tool in laboratory research. In addition, the number of RNA-based therapeutics that are currently in clinical trials for a variety of human diseases demonstrate the therapeutic potential of RNAi. In this Account, we focus on our current understanding of the structure and function of various classes of RNAi triggers and how this knowledge has contributed to our understanding of the biogenesis and catalytic functions of siRNA and microRNA in mammalian cells. Mechanistic studies to understand the structure and function of small RNAs that induce RNAi have illuminated broad functions of the ancient RNAi machinery in animals and plants. In addition, such studies have provided insight to identify endogenous physiological gene silencing RNA triggers that engage functional machineries similar to siRNAs. Several endogenous small RNA species have been identified: small noncoding RNAs (microRNAs), piwi-interacting RNAs (piRNAs), and endogenous siRNAs (endo-siRNAs). microRNAs are the most widespread class of small RNAs in mammalian cells. Despite their importance in biology and medicine, the molecular and cellular mechanisms of microRNA biogenesis and function are not fully understood. We provide an overview of the current understanding of how these molecules are synthesized within cells and how they act on gene targets. Interesting questions remain both for understanding the effects of modifications and editing on microRNAs and the interactions between microRNAs and other cellular RNAs such as long noncoding RNAs.  相似文献   

19.
Ischemic strokes (IS) and spinal cord injuries (SCI) are major causes of disability. RhoA is a small GTPase protein that activates a downstream effector, ROCK. The up-regulation of the RhoA/ROCK pathway contributes to neuronal apoptosis, neuroinflammation, blood-brain barrier dysfunction, astrogliosis, and axon growth inhibition in IS and SCI. Noncoding RNAs (ncRNAs), such as microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), were previously considered to be non-functional. However, they have attracted much attention because they play an essential role in regulating gene expression in physiological and pathological conditions. There is growing evidence that ROCK inhibitors, such as fasudil and VX-210, can reduce injury in IS and SCI in animal models and clinical trials. Recently, it has been reported that miRNAs are decreased in IS and SCI, while lncRNAs are increased. Inhibiting the Rho/ROCK pathway with miRNAs alleviates apoptosis, neuroinflammation, oxidative stress, and axon growth inhibition in IS and SCI. Further studies are required to explore the significance of ncRNAs in IS and SCI and to establish new strategies for preventing and treating these devastating diseases.  相似文献   

20.
Small noncoding RNAs that are 19–23 nucleotides long, known as microRNAs (miRNAs), are involved in almost all biological mechanisms during carcinogenesis. Recent studies show that miRNAs released from live cells are detectable in body fluids and may be taken up by other cells to confer cell-cell communication. These released miRNAs (here referred to as extracellular miRNAs) are often protected by RNA-binding proteins or embedded inside circulating microvesicles. Due to their relative stability, extracellular miRNAs are believed to be promising candidates as biomarkers for diagnosis and prognosis of disease, or even as therapeutic agents for targeted treatment. In this review, we first describe biogenesis and characteristics of these miRNAs. We then summarize recent publications involving extracellular miRNA profiling studies in three representative urologic cancers, including: prostate cancer, bladder cancer, and renal cell carcinoma. We focus on the diagnostic, prognostic, and therapeutic potential of these miRNAs in biological fluids, such as serum, plasma, and urine. Finally, we discuss advantages and challenges of these miRNAs in clinical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号