首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In the recent decades, nanotechnology is gaining tremendous impetus due to its capability of modulating metals into their nanosize, which drastically changes the chemical, physical, biological and optical properties of metals. In this study, silver nanoparticles (AgNPs) synthesis using aqueous leaf extracts of Tagetes patula L. which act as reducing agent as well as capping agent is reported. Synthesis of AgNPs was observed at different parameters like temperature, concentration of silver nitrate, leaf extract concentration and time of reduction. The AgNPs were characterized using UV‐vis spectroscopy, scanning electron microscope with energy dispersive spectroscopy, transmission electron microscopy with selected area electron diffraction, X‐ray diffraction, Fourier transform infrared and dynamic light scattering analysis. These analyses revealed the size of nanoparticles ranging from 15 to 30 nm as well revealed their spherical shape and cubic and hexagonal lattice structure. The lower zeta potential (−14.2mV) and the FTIR spectra indicate that the synthesized AgNPs are remarkably stable for a long period due to the capped biomolecules on the surface of nanoparticles. Furthermore, these AgNPs were found to be highly toxic against phytopathogenic fungi Colletotrichum chlorophyti by both in vitro and in vivo and might be a safer alternative to chemical fungicides.Inspec keywords: silver, nanoparticles, nanofabrication, nanobiotechnology, ultraviolet spectra, visible spectra, scanning electron microscopy, X‐ray chemical analysis, electron diffraction, X‐ray diffraction, Fourier transform infrared spectra, crystal structure, electrokinetic effects, antibacterial activityOther keywords: biosynthesised silver nanoparticles, aqueous leaf extract, Tagetes patula L, antifungal activity, phytopathogenic fungi, nanotechnology, UV–vis spectroscopy, scanning electron microscope, energy dispersive spectroscopy, transmission electron microscopy, selected area electron diffraction, X‐ray diffraction, Fourier transform infrared spectra, dynamic light scattering analysis, hexagonal lattice structure, zeta potential, phytopathogenic fungi Colletotrichum chlorophyti, cubic lattice structure, size 15 nm to 30 nm, Ag  相似文献   

2.
Abstract

The state of the art and directions for the future development of two laser based technologies, direct laser fabrication in which powder is fed into the focal point of a laser, and a laser powder bed technology are outlined in this review. The areas in which these technologies have made significant contributions are: the manufacture, directly from powder, of alloys and of functionally graded materials which enables a range of compositions to be assessed rapidly and the manufacture of net shape and the repair of engineering components. It is suggested that rapid assessment of structure/property relationships in a range of compositions will continue to be a useful application of laser fabrication. It is further concluded that the two approaches, direct laser fabrication and laser powder bed will continue to be developed since each has its own advantages and disadvantages; direct laser fabrication is the preferred technique for alloy development work and for component repair but laser bed technology is currently the preferred technology for the manufacture of small components which require a good surface finish. Improvements in surface finish, in dimensional accuracy, in microstructural control and in process control with real time feedback to control properties are nevertheless required if these technologies are to increase their impact in the area of the manufacture of net shape components.  相似文献   

3.
Green synthesis of silver nanoparticles (AgNPs) using plant extracts has been achieved by eco‐friendly reducing and capping agents. The present study was conducted to evaluate the larvicidal efficacies of AgNPs synthesized using aqueous leaf extracts of Excoecaria agallocha against dengue vector, Aedes aegypti. The 3rd and 4th instar larvae of A. aegypti were exposed to various concentrations of aqueous extracts of E. agallocha, synthesized AgNPs and also crude solvent extracts (methanol and chloroform) for 24 h. The formation of AgNPs using aqueous leaf extracts was observed after 30 min with a characteristic colour change. The results recorded from UV‐Vis spectrum, XRD, FTIR, EDX, SEM and HR‐TEM were used to characterize and confirm the biosynthesis of AgNPs. The highest larvicidal efficacy of synthesized AgNPs was observed against 3rd instar larvae at LC50 4.65 mg/L, LC90 14.17 mg/L and 4th instar larvae with a concentration of LC50 6.10 mg/L, LC90 15.64 mg/L. A significant larvicidal activity was also observed with crude methanolic extracts against 3rd instar larvae at a concentration LC50 41.74 mg/L, LC90 123.61 mg/L and 4th instar larvae at a concentration of LC50 52.06 mg/L, LC90 166.40 mg/L as compared to the chloroform extract.Inspec keywords: silver, nanoparticles, nanofabrication, microorganisms, cellular biophysics, organic compounds, ultraviolet spectra, visible spectra, X‐ray diffraction, Fourier transform infrared spectra, X‐ray chemical analysis, scanning electron microscopy, transmission electron microscopyOther keywords: larvicidal activity, green synthesised silver nanoparticles, Excoecaria agallocha L. leaf extract, Aedes aegypti, plant extracts, capping agents, larvicidal efficacies, aqueous leaf extracts, excoecaria agallocha, dengue vector, Aedes aegypti, aegypti, aqueous extraction, E. agallocha, crude solvent extracts, methanol, chloroform, characteristic colour change, ultraviolet‐visible spectrum, X‐ray diffraction, Fourier‐transform infrared spectroscopy, EDX, scanning electron microscopy, high‐resolution transmission electron microscopy, AgNP biosynthesis, larvicidal efficacy, third instar larvae, instar larvae, crude methanolic extracts, chloroform extraction, time 24 h  相似文献   

4.
Silver nanoparticles were synthesized through UV photo-reduction of silver nitrate aqueous solution, containing ethanol and sodium dodecyl sulfate (SDS) using an UV digester equipped with high pressure mercury lamp of 500 W. The synthesized nanoparticles were characterized by UV–vis spectroscopy (UV–vis), transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The formation of silver nanoparticles was confirmed from the appearance of surface plasmon absorption maxima at 418 nm. TEM showed the spherical nanoparticles with size in 23–67 nm (average 45 ± 10 nm). The silver nanoparticles were stable for more than 8 months. The antibacterial activity of these SDS capped silver nanoparticles was tested using Pseudomonas aeruginosa as a model strain for gram-negative bacteria. SDS capped silver nanoparticles exhibit a much higher bactericidal activity compared to silver nanoparticles capped with other capping agents. Even at a low silver nanoparticle concentration of 5 μg/ml, complete inhibition of 107 colony forming units (CFU) was achieved with SDS capped silver nanoparticles. This concentration is much lower than the values reported by other authors. This enhanced bactericidal activity is attributed to much efficient transport of silver nanoparticles by SDS to the outer membrane of cell wall compared to the other capping agents and have a better interaction of nanoparticles with the cell.  相似文献   

5.
The phenomenon of magnetostriction, or the change in a body's dimensions during the magnetization process, was first reported by Joule. Since then, the interaction between strain and the magnetization process has been studied extensively, particularly in the magnetic metals and alloys that have been found to be of technological importance. The purpose of this paper is to review magnetostrictive phenomena in metallic materials and to discuss a number of devices making use of magnetostriction. After presenting some fundamentals of magnetostriction, a review is given of magnetoelastic effects and magnetoelastically induced anisotropies in magnetic films. Some of the domain patterns and domain visualization techniques that have been found to be related to the magnetostrictive properties of magnetic materials are discussed. The application of magnetostrictive materials to memory devices is reviewed. Included are such areas as magnetostrictive delay lines, ferroacoustic memories of both the flat film and wire type, thermo-strictive recording, and fiat film displays and display memories.  相似文献   

6.
Effective, one-pot method of CNTs phosphonylation is presented. Cheap and readily available reagents are used, so the process can be easily transferred to large-scale production. The product was analyzed using spectroscopic methods (FTIR, UV-vis, XPS). Thermal properties of the bis-phosphonated nanotubes are reported for the first time. Newly obtained material was tested as an adsorbent for mercury removal from water. The sorption capacity for newly developed adsorbent was as high as 223.7 mg/g. The adsorption kinetics were studied within framework of Lagergren model, and Langmuir and Freundlich isotherms have been described. The effect of pH on the adsorption process has been evaluated and the optimal environmental conditions were determined to be neutral. The presence of bivalent ions Cd2+, Ni2+ in the solution did not affect adsorption efficiency of novel materials.  相似文献   

7.
Facile green synthesis of silver nanoparticles (AgNPs) using an aqueous extract of Carissa carandas (C. carandas) leaves was studied. Fabrication of AgNPs was confirmed by the UV–visible spectroscopy which gives absorption maxima at 420 nm. C. carandas leaves are the rich source of the bioactive molecules, acts as a reducing and stabilising agent in AgNPs, confirmed by Fourier transforms infrared spectroscopy. The field emission scanning electron microscope revealed the spherical shape of biosynthesised AgNPs. A distinctive peak of silver at 3 keV was determined by energy dispersive X‐ray spectroscopy. X‐ray diffraction showed the facecentred cubic structure of biosynthesised AgNPs and thermal stability was confirmed by the thermogravimetric analysis. Total flavonoid and total phenolic contents were evaluated in biosynthesised AgNPs. Biosynthesised AgNPs showed free radical scavenging activities against 2, 2‐diphenyl‐1‐picrylhydrazyl test and ferric reducing antioxidant power assay. In vitro cytotoxicity against hepatic cell lines (HUH‐7) and renal cell lines (HEK‐293) were also assessed. Finally, biosynthesised AgNPs were scrutinised for their antibacterial activity against methicillin‐resistant Staphylococcus aureus, Shigella sonnei, Shigella boydii and Salmonella typhimurium. This study demonstrated the biofabrication of AgNPs by using C. carandas leaves extract and a potential in vitro biological application as antioxidant, anticancer and antibacterial agents.Inspec keywords: antibacterial activity, biomedical materials, cancer, tumours, nanomedicine, silver, nanoparticles, reduction (chemical), nanofabrication, ultraviolet spectra, visible spectra, field emission scanning electron microscopy, Fourier transform infrared spectra, X‐ray chemical analysis, X‐ray diffraction, thermal stability, thermal analysis, free radical reactions, toxicology, cellular biophysics, microorganismsOther keywords: total phenolic contents, free radical scavenging activities, 2,2‐diphenyl‐1‐picrylhydrazyl test, ferric reducing antioxidant power assay, in vitro cytotoxicity, hepatic cell lines HUH‐7, renal cell lines HEK‐293, antibacterial activity, methicillin‐resistant Staphylococcus aureus, Shigella sonnei, Shigella boydii, Salmonella typhimurium, biofabrication, in vitro biological application, Ag, total flavonoid contents, thermogravimetric analysis, thermal stability, face‐centred cubic structure, X‐ray diffraction, energy dispersive X‐ray spectroscopy, distinctive peak, spherical shape, field emission scanning electron microscope, Fourier transforms infrared spectroscopy, stabilising agent, reducing agent, bioactive molecules, absorption maxima, UV‐visible spectroscopy, plant extract colour, antibacterial activities, anticancer activities, antioxidant activities, Carissa carandas, aqueous leaves extract, silver nanoparticles, structural characterisation, one‐pot green synthesis  相似文献   

8.
The alarming effect of antibiotic resistance prompted the search for alternative medicine to resolve the microbial resistance conflict. Over the last two decades, scientists have become increasingly interested in metallic nanoparticles to discover their new dimensions. Green nano synthesis is a rapidly expanding field of interest in nanotechnology due to its feasibility, low toxicity, eco‐friendly nature, and long‐term viability. Some plants have long been used in medicine because they contain a variety of bioactive compounds. Silver has long been known for its antibacterial properties. Silver nanoparticles have taken a special place among other metal nanoparticles. Silver nanotechnology has a big impact on medical applications like bio‐coating, novel antimicrobial agents, and drug delivery systems. This review aims to provide a comprehensive understanding of the pharmaceutical qualities of medicinal plants, as well as a convenient guideline for plant‐based silver nanoparticles and their antimicrobial activity.  相似文献   

9.
High‐quality colloidal silver nanoparticles (AgNP) were synthesised via a green approach by using hydroalcoholic extracts of Malva sylvestris. Silver nitrate was used as a substrate ion while the plant extract successfully played the role of reducing and stabilising agents. The synthesised nanoparticles were carefully characterised by using transmission electron microscopy, atomic‐force microscopy, energy dispersive X‐ray spectroscopy, Fourier transform infrared spectroscopy and UV–vis spectroscopy. The maximum absorption wavelengths of the colloidal solutions synthesised using 70 and 96% ethanol and 100% methanol, as extraction solvents, were 430, 485 and 504 nm, respectively. Interestingly, the size distribution of nanoparticles depended on the used solvent. The best particle size distribution belonged to the nanoparticles synthesised by 70% ethanol extract, which was 20–40 nm. The antibacterial activity of the synthesised nanoparticles was studied on Escherichia coli, Staphylococcus aureus and Streptococcus pyogenes using disk diffusion, minimum inhibitory concentrations and minimum bactericidal concentrations assays. The best antibacterial activity obtained for the AgNPs produced by using 96% ethanolic extract.Inspec keywords: silver, nanoparticles, nanofabrication, antibacterial activity, colloids, particle size, transmission electron microscopy, atomic force microscopy, X‐ray chemical analysis, Fourier transform spectra, infrared spectra, ultraviolet spectra, visible spectra, microorganisms, nanomedicine, biomedical materialsOther keywords: Green synthesis, flower extract, Malva sylvestris, antibacterial activity, high‐quality colloidal silver nanoparticles, hydroalcoholic extracts, plant extract, reducing agents, stabilising agents, transmission electron microscopy, atomic‐force microscopy, energy dispersive X‐ray spectroscopy, Fourier transform infrared spectroscopy, UV– vis spectroscopy, colloidal solutions, particle size distribution, Escherichia coli, Staphylococcus aureus, Streptococcus pyogenes, disk diffusion, minimum inhibitory concentrations, minimum bactericidal concentrations assays, ethanolic extract, size 430 nm, size 485 nm, size 504 nm, size 20 nm to 40 nm, Ag  相似文献   

10.
11.
In the present study, phytochemicals-mediated rapid, stable and eco-friendly synthesis of gold nanoparticles (GNPs) using Pterocarpus santalinus L. (Red Sanders) bark extract is reported. The powerful characteristics of different phytochemicals present in P. santalinus L. bark prompted us to determine their efficacy in the bio-reduction of gold chloride trihydrate to the corresponding GNPs. The biosynthesis of GNPs was investigated at the physiological condition (pH?=?7.4). The synthesized GNPs were characterized by UV–visible spectroscopy by measuring the peak in the range of 400–700?nm. The GNPs synthesized at physiological conditions revealed surface plasmon resonance (SPR) at 545?nm. The crystalline nature of GNPs was confirmed by using x-ray diffraction (XRD), and the functional groups adhered on the surface of the GNPs were analyzed by Fourier Transform Infrared spectroscopy (FTIR). Transmission Electron Microscopy (TEM) analysis showed spherical GNPs in the size range of 13–26?nm. The synthesized GNPs exhibited antibacterial activity against Gram-positive and Gram-negative bacterial strains.  相似文献   

12.
A simple and eco‐friendly method for efficient synthesis of stable colloidal silver nanoparticles (AgNPs) using Mentha pulegium extracts is described. A series of reactions was conducted using different types and concentrations of plant extract as well as metal ions to optimize the reaction conditions. AgNPs were characterized by using UV–vis spectroscopy, transmission electron microscopy, atomic force microscopy, dynamic light scattering, zetasizer, energy‐dispersive X‐ray spectroscopy (EDAX) and Fourier transform infrared spectroscopy (FTIR). At the optimized conditions, plate shaped AgNPs with zeta potential value of ‐15.7 and plasmon absorption maximum at 450 nm were obtained using high concentration of aqueous extract. Efficient adsorption of organic compounds on the nanoparticles was confirmed by FTIR and EDAX. The biogenic AgNPs displayed promising antibacterial activity on Escherichia coli, Staphylococcus aureus, and Streptococcus pyogenes. The highest antibacterial activity of 25 µg mL‐1 was obtained for all the strains using aqueous extract synthesized AgNPs. The aqueous extract synthesised AgNPs also showed considerable antifungal activity against fluconazole resistant Candida albicans. The cytotoxicity assay revealed considerable anticancer activity of AgNPs on HeLa and MCF‐7 cancer cells. Overall results indicated high potential of M. pulegium extract to synthesis high quality AgNPs for biomedical applications.Inspec keywords: silver, nanoparticles, nanofabrication, botany, antibacterial activity, biomedical materials, nanomedicine, ultraviolet spectra, visible spectra, transmission electron microscopy, atomic force microscopy, X‐ray chemical analysis, Fourier transform infrared spectra, electrokinetic effects, microorganisms, cellular biophysics, cancerOther keywords: antibacterial activity, antifungal activity, anticancer activity, stable colloidal silver nanoparticle, Mentha pulegium, plant extract, UV‐visible spectroscopy, transmission electron microscopy, atomic force microscopy, DLS, zetasizer, energy‐dispersive X‐ray spectroscopy, Fourier transform infrared spectroscopy, methanolic extract, aqueous extract, plate‐shaped silver nanoparticle, zeta potential, plasmon absorption maximum, organic compounds adsorption, biogenic silver nanoparticle, Escherichia coli, Staphylococcus aureus, Streptococcus pyogenes, fluconazole‐resistant Candida albicans, MTT assay, HeLa cancer cell, MCF‐7 cancer cell, Ag  相似文献   

13.
Abstract

Eco-friendly green synthesis of nanoparticles using medicinal plants gained immense importance due to its potential therapeutic uses. In the current study, silver nanoparticles (AgNPs) were synthesized using water extract of Jurinea dolomiaea leaf and root at room temperature. MTT assay was used to study anticancer potential of AgNPs against cervical cancer cell line (HeLa), breast cancer cell lines (MCF-7), and mouse embryonic fibroblast (NIH-3 T3) cell line for toxicity evaluation. The antioxidant potential was evaluated using stable DPPH radicals. In addition, the apoptotic nuclear changes prompted by AgNPs in more susceptible HeLa cells were observed using fluorescence microscope through DAPI and PI staining. Physiochemical properties of biosynthesized AgNPs were characterized using various techniques. AgNPs were formed in very short time and UV–vis spectra showed characteristic absorption peak of AgNPs. SEM and TEM showed spherical shape of AgNPs and XRD revealed their crystalline nature. EDX analysis revealed high percentage of silver in green synthesized AgNPs. FTIR analysis indicated involvement of secondary metabolites in fabrication of AgNPs. In vitro cytotoxic and antioxidant study revealed that herb and biosynthesized AgNPs exhibited significant dose-dependent and time-dependent anticancer and antioxidant potential. Furthermore, study on normal cell line and microscopic analysis of apoptosis revealed that AgNPs exhibited good safety profile as compared to cisplatin and induces significant apoptosis effect. Based on the current findings, it is strongly believe that use of J. dolomiaea offers large scale production of biocompatible AgNPs that can be used as alternative anticancer agents against cancer cell lines tested.  相似文献   

14.
The plant‐based biological molecules possess exceptionally controlled assembling properties to make them suitable in the synthesis of metal nanoparticles. In the present study, an efficient simple one‐pot method was employed for the synthesis of silver nanoparticles (SNPs) from the Rangoon creeper (RC) aqueous leaf extract. Biomolecules present in the leaf extract play a significant role as reducing agent as well as capping agent in the formation of RC‐SNPs. The formation of RC‐SNPs was confirmed by using several analytical techniques such as Fourier‐transform infrared spectroscopy and ultraviolet–visible spectrophotometer studies. The presence of a sharp surface plasmon resonance peak at 449 nm showed the formation of RC‐SNPs. X‐ray diffraction analysis showed the crystalline nature of the RC‐SNPs with a face‐centred cubic structure. Elemental analysis of RC‐SNPs was done by using energy‐dispersive X‐ray spectroscopy and X‐ray photoelectron spectroscopy. The morphology of RC‐SNPs was examined by transmission electron microscopy (TEM) in the nano range 12 nm, and thermogravimetric‐differential thermal analysis demonstrated the mechanical strength of RC‐SNPs at various temperatures. The authors’ newly synthesised RC‐SNPs exhibited significant anti‐bacterial activity against Staphylococcus aureus and Escherichia coli. Inspec keywords: silver, nanoparticles, X‐ray photoelectron spectra, antibacterial activity, ultraviolet spectra, microorganisms, X‐ray chemical analysis, differential thermal analysis, X‐ray diffraction, transmission electron microscopy, visible spectra, nanofabrication, surface plasmon resonance, Fourier transform infrared spectra, mechanical strengthOther keywords: silver nanoparticles, ultraviolet–visible spectrophotometry, antibacterial activity, sustainable green synthesis, plant‐based biological molecules, assembling properties, reducing agent, capping agent, Fourier‐transform infrared spectroscopy, surface plasmon resonance, Rangoon creeper aqueous leaf extract, X‐ray diffraction, face‐centred cubic structure, elemental analysis, energy‐dispersive X‐ray spectroscopy, X‐ray photoelectron spectroscopy, transmission electron microscopy, TEM, thermogravimetric‐differential thermal analysis, mechanical strength, Staphylococcus aureus, Escherichia coli, Ag  相似文献   

15.
The present study focused on the synthesis of spherical silver nanoparticles (Ag NPs) using Gundelia tournefortii L. aerial part extract. The plant extract could reduce silver ions into Ag NPs. To identify the compounds responsible for the reduction of silver ions, functional groups present in plant extract were investigated by Fourier transform infrared spectroscopy. Techniques used to characterise synthesised nanoparticles included field emission scanning electron microscopy, X‐ray diffraction and transmission electron microscopy. UV‐visible spectrophotometer showed the absorbance peak in the range of 400–450 nm. The Ag NPs showed antibacterial activities against both gram positive (Staphylococcus aureus and Bacillus Cereus) and gram negative (Salmonella typhimurium and Escherichia coli) microorganisms. The results confirmed that this protocol was simple, rapid, eco‐friendly, low‐priced and non‐toxic; therefore, it could be used as an alternative to conventional physical/chemical methods. Only 5 min were required for the conversion of silver ions into Ag NPs at room temperature, without the involvement of any hazardous chemical.Inspec keywords: nanoparticles, silver, nanofabrication, microorganisms, Fourier transform infrared spectra, transmission electron microscopy, ultraviolet spectra, visible spectraOther keywords: Ag, temperature 293 K to 298 K, chemical method, physical method, Salmonella typhimurium, Escherichia coli, gram negative microorganisms, Bacillus Cereus, Staphylococcus aureus, gram positive microorganisms, antibacterial activities, absorbance peak, UV‐visible spectrophotometer, transmission electron microscopy, X‐ray diffraction, field emission scanning electron microscopy, Fourier transform infrared spectroscopy, functional groups, plant extract, Gundelia tournefortii L. aerial part extract, spherical silver nanoparticle synthesis, silver nanoparticle green synthesis, natural source  相似文献   

16.
The metal nanoparticles, due to interesting features such as electrical, optical, chemical and magnetic properties, have been investigated repeatedly. Also, the mentioned nanoparticles have specific uses in terms of their antibacterial activity. The biosynthesis method is more appropriate than the chemical method for producing the nanoparticles because it does not need any special facilities; it is also economically affordable. In the current study, the silver nanoparticles (AgNPs) were obtained by using a very simple and low‐cost method via Glaucium corniculatum (L.) Curtis plant extract. The characteristics of the AgNPs were investigated using techniques including: X‐ray diffraction, transmission electron microscopy (TEM), scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy. The SEM and TEM images showed that the nanoparticles had a spherical shape, and the mean diameter of them was 53.7 and 45 nm, respectively. The results of the disc diffusion test used for measuring the anti‐bacterial activity of the synthesised nanoparticles indicated that the formed nanoparticles possessed a suitable anti‐bacterial activity.Inspec keywords: silver, nanoparticles, antibacterial activity, nanomedicine, nanofabrication, X‐ray diffraction, transmission electron microscopy, scanning electron microscopy, Fourier transform infrared spectraOther keywords: green synthesis, silver nanoparticles, Glaucium corniculatum Curtis extract, antibacterial activity, metal nanoparticles, biosynthesis method, X‐ray diffraction, transmission electron microscopy, scanning electron microscopy, Fourier transform infrared spectroscopy, SEM, TEM, spherical shape, disc diffusion test, Ag  相似文献   

17.
The development of new and simple green chemical methods for synthesizing colloidal solutions of functional nanoparticles is desirable for environment-friendly applications. In the present work, we report a feasible method for synthesizing colloidal solutions of silver nanoparticles (Ag NPs) based on the modified Tollens technique. The Ag NPs were stabilized by using oleic acid as a surfactant and were produced for the first time by the reduction of silver ammonium complex [Ag(NH3)2]+(aq) by glucose with UV irradiation treatment. A stable and nearly monodisperse aqueous Ag NPs solution with average-sized particles (~ 9–10 nm) was obtained. The Ag NPs exhibited high antibacterial activity against both Gram-negative Escherichia Coli (E. coli) and Gram-positive Staphylococcus aureus bacteria. Electron microscopic images and analyses provided further insights into the interaction and bactericidal mechanism of the Ag NPs. The proposed method of synthesis is an effective way to produce highly bactericidal colloidal solutions for medical, microbiological, and industrial applications.  相似文献   

18.
Silver nanoparticles stabilised with anionic polymeric polyelectrolytes were successfully synthesised by high-energy UV reduction. Three types of polyelectrolytes were used including poly(methacrylic acid) (PMA), poly(acrylic acid) (PAA) and poly(4-styrenesulphonic acid-co-maleic acid) (CoPSS). The formation of the prepared solutions exhibited surface plasmon resonance at the wavelength of 475, 730 and 408 nm by using PMA, PAA and CoPSS as the stabilising agents. UV–visible spectrophotometer, transmission electron microscope (TEM) and zeta potential analyser were employed to characterise the formation of the prepared solutions. The silver nanoparticles stabilised with anionic polyelectrolytes were immobilised on polyester air filters using a layer-by-layer technique. This is the sequential dipping of polyester air filters in a dilute solution of cationic poly(diallyldimethylammonium chloride) and anionic polymeric polyelectrolytes capped silver. The surface topography of the polyester air filters were measured by field emission scanning electron microscope. Results showed that silver nanoparticles had the highest surface coverage on the polyester air filters probably because it is a good bonding candidate and insures strong film growth. The multilayers polyester air filters coated silver nanoparticles were tested against the gram positive pathogen Staphylococcus aureus. The deposition of silver nanoparticles onto the polyester air filters resulted in 92.18%, 84.32% and 71.19% of bacteria removal using PMA, PAA and CoPSS as the stabilising agent.  相似文献   

19.
《Materials Research Bulletin》2013,48(11):4531-4537
In this study, we demonstrate a green approach for the synthesis of silver nanoparticles (AgNPs) using aqueous leaf extract of Rosmarinus officinalis under ambient conditions. The uniqueness of this method lies in its rapid synthesis within 15 min. The synthesized AgNPs were characterized using UV–vis, FTIR, XRD, FE-SEM coupled with EDX, TEM and AFM. The synthesized particles were found to be 14.20–42.42 nm with face centered cubic geometry. The functional group of flavonoids and terpenoids was largely identified by FTIR which was found to be responsible for the synthesis and stabilization of the AgNPs. Further, antibacterial efficacy of the biologically synthesized AgNPs was investigated by the standard method against Pseudomonas aeruginosa and Staphylococcus aureus. The results showed that the aqueous leaf extract mediated synthesized AgNPs is an excellent antibacterial agent against clinical pathogens.  相似文献   

20.
纳米树枝状银的电化学制备及其光学性质   总被引:1,自引:0,他引:1  
骆伟  邓巧平  刘宝琦  赵晓鹏 《功能材料》2008,39(6):1011-1014
采用化学电沉积的方法在导电玻璃表面制备了银的二维纳米树枝状结构.通过调节沉积电压可以得到不同形貌和尺寸的树枝状银结构.研究发现,在一定范围内,沉积电压越高,制备的树枝状结构密度和尺寸越小.在银树枝表面沉积绝缘薄膜,将它与未沉积绝缘薄膜的银树枝组合成"三明治"结构,测试了它的光透过率.实验表明,由0.9V沉积电压下制备的树枝状银组成的"三明治"复合结构在360~800nm范围内对多种频率的光有吸收,光透射曲线呈锯齿状,这种特殊的光透射行为可能是光波在"三明治"结构间电磁响应引起的.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号