首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study was aimed to develop a self‐nanoemulsifying drug delivery system (SNEDDS) for amphotericin B (AmB) potential use in leishmaniasis through topical and oral routes. Two formulations, formulation A and formulation B (FA and FB) of AmB loaded SNEDDS were developed by mixing their excipients through vortex and sonication. The SNEDDS formulation FA and FB displayed a mean droplet size of 27.70 ± 0.5 and 30.17 ± 0.7 nm and zeta potential −11.4 ± 3.25 and −13.6 ± 2.75 mV, respectively. The mucus permeation study showed that formulation FA and FB diffused 1.45 and 1.37%, respectively in up to 8 mm of mucus. The cell permeation across Caco‐2 cells monolayer was 10 and 11%, respectively. Viability of Caco‐2 cells was 89% for FA and 86.9% for FB. The anti‐leishmanial activities of FA in terms of IC50 were 0.017 µg/ml against promastigotes and 0.025 µg/ml against amastigotes, while IC50 values of FB were 0.031 and 0.056 µg/ml, respectively. FA and FB killed macrophage harboured Leishmania parasites in a dose‐dependent manner and a concentration of 0.1 µg/ml killed 100% of the parasites. These formulations have the potential to provide a promising tool for AmB use through oral and topical routes in leishmaniasis therapy.Inspec keywords: nanomedicine, drops, microorganisms, electrokinetic effects, cellular biophysics, drug delivery systems, monolayers, drugs, diseasesOther keywords: self‐nanoemulsifying drug delivery system, topical routes, oral routes, SNEDDS formulation, mucus permeation study, cell permeation, leishmaniasis treatment, amphotericin B, zeta potential, Caco‐2 cell monolayer, vortex, sonication, droplet size, Caco‐2 cell viability, antileishmanial activity, promastigotes, amastigotes, Leishmania parasites  相似文献   

2.
Soft‐rot of ginger (Zingiber officinale) is the most important disease usually caused by Fusarium oxysporum (F. oxysporum) leading to significant yield loss. In this study, chitosan, copper and sulphur nanoparticles synthesised from leaf extract of selected plants were screened against two isolates of F. oxysporum recovered from the infected rhizome of ginger and soil samples. Moreover, among these, sulphur nanoparticles showed maximum inhibition of F. oxysporum isolated from soil samples (ZOI = 12.33 mm) followed by copper (ZOI = >12 mm) and chitosan nanoparticles (ZOI = >9 mm). Similarly, in the case of F. oxysporum isolated from infected ginger, sulphur nanoparticles showed maximum inhibition (ZOI = 13.33) as compared to copper (ZOI = >11 mm) and chitosan nanoparticles (ZOI = >9 mm). Considering the high efficacy, sulphur nanoparticles were further evaluated in combination with commercial fungicides, viz., bavistin, ridomil gold, sunflex and streptocycline. The combination of sulphur nanoparticles with bavistin demonstrated maximum inhibition (ZOI = 45.16 mm, MIC −20 µg/ml), whereas the minimum inhibition was shown by its combination with ridomil gold (ZOI = 10.5 mm, MIC –40 µg/ml). Therefore, it can be concluded that the combination of sulphur nanoparticles with bavistin can be used for effective and eco‐friendly management of F. oxysporum causing soft‐rot of ginger.Inspec keywords: nanoparticles, biotechnology, microorganisms, toxicology, mass spectroscopic chemical analysis, antibacterial activity, plant diseasesOther keywords: fusarium oxysporum, sulphur nanoparticles, f. oxysporum, soil samples, bavistin demonstrated maximum inhibition, biogenically engineered nanoparticles, ginger soft‐rot, chitosan nanoparticles, ridomil gold  相似文献   

3.
This study focused on synthesising nano‐scale zero valent iron (NZVI) impregnated on a low‐cost agro‐waste material, rubber seed shell (RSS), by borohydride reduction method. The characterisation studies of NZVI‐RSS were performed by Fourier transform infrared spectroscopy, scanning electron microscopy and X‐ray diffraction. The adsorption execution of NZVI‐RSS for Cu(II) ions evacuation from synthetic wastewater was explored by batch studies. The optimum condition for the present adsorption system is as follows: Cu(II) ion concentration = 25 mg/l; solution pH = 6.0; contact time = 30 min; NZVI‐RSS dose = 3 g/l; temperature = 30°C. The sorption data were best portrayed by pseudo‐first‐order and Freundlich models. The outcomes demonstrated the multilayer sorption of Cu(II) ions by NZVI‐RSS. The Langmuir capacity was observed as 48.18 mg/g. Thermodynamic parameters, ΔG °, ΔH ° and ΔS ° were ascertained, and it was watched that the adsorption system was unconstrained and exothermic. The sticking probability for Cu(II) ions by NZVI‐RSS was found to be high at lower temperature. At long last, the research inquire about reasoned that NZVI‐RSS has demonstrated unrivalled adsorption capacity. Also NZVI‐RSS is thought to be really green and financially amicable support for wastewater treatment.Inspec keywords: adsorption, copper, X‐ray diffraction, scanning electron microscopy, wastewater treatment, Fourier transform infrared spectroscopyOther keywords: nano‐scale zero valent iron, rubber seed shell, copper ions, borohydride reduction method, NZVI‐RSS, Fourier transform infrared spectroscopy, scanning electron microscopy, X‐ray diffraction, adsorption execution, synthetic wastewater, Langmuir capacity, Freundlich models, adsorption system, wastewater treatment, adsorption capacity, Cu  相似文献   

4.
This study investigated the cellular uptake of fluorescein isothiocyanate‐labelled mesoporous silica nanoparticles (FITC‐MSNs), amine‐functionalised FITC‐MSNs (AP‐FITC‐MSNs) and their gallic acid (GA)‐loaded counterparts. Mesoporous silica nanoparticles were labelled with fluorescein isothiocyanate, functionalised by 3‐aminopropyltriethoxysilane (APTES) (AP‐FITC‐MSNs) and then loaded by GA. All nanoparticles were characterised by transmission electron microscopy (TEM), Fourier transform infrared spectroscopy, and X‐ray diffraction. The cytotoxicity of different concentrations of dyed nanoparticles was investigated using (3‐(4,5‐trihydroxybenzoic acid, dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide) assay and flow cytometry. TEM images showed that the average particle sizes of FITC‐MSNs and AP‐FITC‐MSNs were about 100 and 110 nm, respectively. These nanoparticles were internalised by Caco‐2 cells, accumulated and dispersed into the cytoplasm, nucleus, and subcellular organelles. Nanoparticles containing GA clearly decreased the viability of cells. FITC‐MSNs showed no toxicity on Caco‐2 cells at concentrations of ≤50 µg/ml. Functionalisation of FITC‐MSNs using APTES decreased toxicity effects on the cells. It was found that FITC‐MSNs can be applied at low concentrations as a marker in the cells. In addition, AP‐FITC‐MSNs showed better biocompatibility with Caco‐2 cells than FITC‐MSNs, because of their positive surface charges.Inspec keywords: mesoporous materials, porosity, nanoparticles, dyes, silicon compounds, nanocomposites, nanofabrication, nanomedicine, cellular biophysics, molecular biophysics, biochemistry, transmission electron microscopy, Fourier transform infrared spectra, X‐ray diffraction, toxicology, particle size, biomedical materials, surface charging, cancerOther keywords: fluorescein isothiocyanate‐dyed mesoporous silica nanoparticles, antioxidant delivery tracking, cellular uptake, amine‐functionalised FITC‐MSNs, gallic acid‐loaded counterparts, 3‐aminopropyltriethoxysilane, transmission electron microscopy, TEM, Fourier transform infrared spectroscopy, X‐ray diffraction, cytotoxicity, dyed nanoparticles, (3‐(4,5‐trihydroxybenzoic acid‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide) assay, flow cytometry, particle sizes, AP‐FITC‐MSNs, Caco‐2 cells, cytoplasm, subcellular organelles, cell viability, biocompatibility, positive surface charges, SiO2   相似文献   

5.
In this study, the synthesis of a series of bay‐substituted donor–acceptor–donor (D–A–D) type perylene diimide derivatives (3a–3d) has been reported as an acceptor for the small‐molecule‐based organic solar cells (SM‐OSCs) by the Suzuki coupling method. It has been evaluated for the antimicrobial activity against some of the bacteria and fungi. The synthesised SMs were confirmed by Fourier transform‐infrared spectroscopy, nuclear magnetic resonance (NMR), and high resolution mass spectroscopy (HR‐MS). The SMs showed absorption up to 750 nm, which eventually reduced the optical band gap Egopt to  < 2 eV. SMs showed thermal stability up to 400 °C. In the SM‐OSC, the SMs showed a power conversion efficiency of  < 1% with the P3HT donor in bulk hetero‐junction device structure. Additionally, the new SMs showed antimicrobial activity against Gram‐negative bacteria such as Escherichia coli Gram‐positive bacteria such as Bacillus subtilis and antifungal activity against the Candida albicans, and Aspergillus niger. Cytotoxicity studies were carried out against the breast cancer cell lines MCF‐7 using MTT assay method. The results revealed that the SMs was able to inhibit the cancer cells. LD50 s calculated for the SMs 3a–3d were between 200 and 400 µg/ml.Inspec keywords: antibacterial activity, solar cells, microorganisms, Fourier transform spectra, infrared spectra, nuclear magnetic resonance, photonic band gap, thermal stability, cellular biophysics, toxicology, cancer, nanomedicine, organic semiconductors, mass spectroscopy, biomedical materialsOther keywords: bay‐substituted perylene diimide‐based D‐A‐D‐type SM acceptors, donor‐acceptor‐donor type perylene diimide derivatives, small‐molecule‐based organic solar cells, SM‐OSC, Suzuki coupling method, antimicrobial activity, bacteria, fungi, Fourier transform infrared spectroscopy, NMR, HR‐MS, optical band gap, P3HT donor, bulk hetero‐junction device structure, Gram‐negative bacteria, Escherichia coli Gram‐positive bacteria, Bacillus subtilis, antifungal activity, Candida albicans, Aspergillus niger, cytotoxicity, breast cancer cell lines MCF‐7, MTT assay method, cancer cells, wavelength 750 nm, temperature 400 degC  相似文献   

6.
Silver nanoparticles (AgNPs) were synthesised from aqueous Ag nitrate through a simple, competent and eco‐friendly method using the leaf extract of Ipomoea eriocarpa as reducing as well as capping agent. Ultraviolet–visible absorption spectroscopy was used to confirm the formation of AgNPs which displayed the substantiation of surface plasmon bands at 425 nm. The NPs were also characterised using Fourier transformer infrared spectroscopy, X‐ray diffraction method, transmission electron microscope and zeta potential. The characterisation study confirmed the formation of AgNPs, their spherical shape and average diameter of 12.85 ± 8.65 nm. Zeta potential value of −20.5 mV suggested that the AgNPs are stable in the suspension. The aqueous extract and the AgNPs were further screened for in vivo anti‐inflammatory activity using carrageenan‐induced paw edema in male Wistar rats. The study demonstrated that the AgNPs (1 ml kg−1) had a significant (p  < 0.05) anti‐edemic effect and inhibition was observed from the first hour (21.31 ± 1.34) until the sixth hour (52.67 ± 1.41), when the inhibitory effect was greatest and superior to the aqueous extract and the standard, diclofenac.Inspec keywords: silver, nanoparticles, nanofabrication, ultraviolet spectra, visible spectra, absorption coefficients, surface plasmons, Fourier transform infrared spectra, X‐ray diffraction, transmission electron microscopy, suspensions, drugs, nanomedicineOther keywords: biosynthesis, aqueous leaf extract, ipomoea eriocarpa, antiinflammatory effect, carrageenan‐induced paw edema, male Wistar rats, silver nanoparticles, aqueous nitrate, capping agent, ultraviolet‐visible absorption spectroscopy, surface plasmon band, Fourier transformer infrared spectroscopy, X‐ray diffraction, transmission electron microscopy, zeta potential, spherical shape, suspension, aqueous extract, in vivo antiinflammatory activity, antiedemic effect, inhibitory effect, diclofenac, wavelength 425 nm, size 12.85 nm to 8.65 nm, Ag  相似文献   

7.
In this study, an electrical DNA detection method was applied to bacterial detection. DNA was extracted from bacteria and amplified by polymerase chain reaction. The microbeads were labelled with amplicons, altering their surface conductance and therefore their dielectrophoresis characteristics. Amplicon‐labelled microbeads could thus be trapped within a high‐strength electric field, where they formed a pearl chain between the electrodes, resulting in an increased conductance between the electrodes. This method reduces the amplicon detection time from 1–2 h to 15 min, compared with the conventional method. The presented method realised quantitative detection of specific bacteria at concentrations above 1 × 105 and 2.4 × 104 CFU/ml for bacterial solutions with and without other bacterial presence, respectively.Inspec keywords: microorganisms, enzymes, molecular biophysics, biochemistry, electrophoresis, bioelectric phenomena, DNA, biosensors, electrochemical electrodes, electrochemical sensors, microsensors, bioMEMS, surface conductivityOther keywords: bacterial detection, polymerase chain reaction, microbead dielectrophoresis characteristics, electrical DNA detection, surface conductance, amplicon‐labelled microbeads, high‐strength electric field, pearl chain, electrodes, amplicon detection time, quantitative detection, bacterial solutions, time 15 min to 2 h  相似文献   

8.
Present investigation aimed to prepare, optimise, and characterise lipid nanocapsules (LNCs) for improving the solubility and bioavailability of efavirenz (EFV). EFV‐loaded LNCs were prepared by the phase‐inversion temperature method and the influence of various formulation variables was assessed using Box–Behnken design. The prepared formulations were characterised for particle size, polydispersity index (PdI), zeta potential, encapsulation efficiency (EE), and release efficiency (RE). The biocompatibility of optimised formulation on Caco‐2 cells was determined using 3‐[4,5‐dimethylthiazol‐2‐yl]‐2,5‐diphenyltetrazolium bromide assay. Then, it was subjected to ex‐vivo permeation using rat intestine. EFV‐loaded LNCs were found to be spherical shape in the range of 20–100 nm with EE of 82–97%. The best results obtained from LNCs prepared by 17.5% labrafac and 10% solutol HS15 when the volume ratio of the diluting aqueous phase to the initial emulsion was 3.5. The mean particle size, zeta potential, PdI, EE, drug loading%, and RE during 144 h of optimised formulation were confirmed to 60.71 nm, −35.93 mV, 0.09, 92.60, 7.39 and 55.96%, respectively. Optimised LNCs increased the ex vivo intestinal permeation of EFV when compared with drug suspension. Thus, LNCs could be promising for improved oral delivery of EFV.Inspec keywords: biomedical materials, solubility, drugs, encapsulation, emulsions, nanoparticles, particle size, nanofabrication, suspensions, toxicology, nanomedicine, cellular biophysics, lipid bilayers, electrokinetic effects, drug delivery systems, molecular biophysicsOther keywords: ex‐vivo permeation, diluting aqueous phase, mean particle size, zeta potential, drug loading, optimised formulation, ex vivo intestinal permeation, improved oral delivery, efavirenz oral delivery, optimisation, ex‐vivo gut permeation study, solubility, bioavailability, phase‐inversion temperature method, formulation variables, Box–Behnken design, polydispersity index, encapsulation efficiency, Caco‐2 cells, lipid nanocapsules, 3‐[4,5‐dimethylthiazol‐2‐yl]‐2,5‐diphenyltetrazolium bromide assay, EFV‐loaded LNC, drug suspension, size 20.0 nm to 100.0 nm, time 144.0 hour, size 60.71 nm, voltage ‐35.93 mV  相似文献   

9.
The electrospinning technique was used for the nanofiber production of Alyssum lepidium mucilage with acetic acid and polyvinyl alcohol (PVA) polymer. Some parameters such as voltage, polymer concentration, tip‐to‐collector distance, and feed rate were optimised and applied for the fabrication of the nanofiber membranes of the seeds mucilage. The scanning electron microscopy images were used to find the optimised conditions for the electrospinning process. It was found that the aqueous solution of Alyssum mucilage/PVA (80:20), voltage (18 kV), polymer concentration (50%), tip‐to‐collector distance (10 cm) and feed rate (0.125 ml/h) could be successfully used to obtain uniform nanofibers with diameters as low as 139.9 nm. X‐ray diffraction and Fourier transform infrared spectrometer analysis also proved the presence of the alyssum mucilage/PVA nanofiber. In this study, the used electrospun procedure was biodegradable, inexpensive, non‐toxic, and maintainable enough to optimise the mucilage nanofiber fabrication as a new source, thereby improving the potential application of the nanofiber biomembrane in filtration and medical systems with biocompatible and biodegradable properties.Inspec keywords: electrospinning, nanofibres, nanofabrication, polymer fibres, scanning electron microscopy, X‐ray diffraction, Fourier transform infrared spectraOther keywords: Alyssum lepidium mucilage, electrospinning, physicochemical characterisation, nanofiber production, acetic acid, polyvinyl alcohol, PVA polymer, polymer concentration, tip‐to‐collector distance, feed rate, scanning electron microscopy, X‐ray diffraction, Fourier transform infrared spectrometer analysis, voltage 18 kV, distance 10 cm  相似文献   

10.
This study aimed to perform a systematic review and meta‐analysis of papers discussing the efficacy of microbial synthesised metallic nanoparticles (MNPs) against cancerous and normal cell lines by exploiting Bayesian generalised linear (BGL) model. Data was systematically collected from published papers via Cochrane library, Web of Science, PubMed, Science Direct, ProQuest, Scopus, and Embase. Impressively, most of the studies were carried out on HeLa and A549 cancer cell lines. Specifically, a hefty 65.67% of studies employed bacteria to biofabricate MNPs. Significantly, BGL meta‐analysis represented highly valuable information. Hence, based on adjusted analysis, the MNPs with the size of 25–50 nm were found to be far less cytotoxic than the MNPs with the size of ≤25 nm (OR = 0.233, P  ˂ 0.05) against either cancerous or normal cell lines. Interestingly, it was found that the odds of cytotoxicity in cancerous cell lines were practically nine times more than normal cell lines, representing the substantially more cytotoxicity of MNPs in cancerous cell lines (OR = 9.004, P  ˂ 0.001). Green MNPs mentioned here may be developed as novel anti‐cancer agents, which could lead to a revolution in the treatment of cancer.Inspec keywords: reviews, nanoparticles, cancer, nanomedicine, magnetic particles, nanomagnetics, nanofabrication, cellular biophysics, Bayes methods, microorganisms, toxicology, antibacterial activityOther keywords: green nanoparticles, cancerous cell lines, normal cell lines, review, meta‐analysis, microbial synthesised metallic nanoparticles, Bayesian generalised linear model, HeLa cancer cell lines, A549 cancer cell lines, gram‐negative bacteria, gram‐positive bacteria, cytotoxicity, anticancer agents, cancer disease treatment  相似文献   

11.
Here, a rapid and easy transformation by electroporation technique for gene transfer in plants using cell penetrating amino nanocomplex (nanoplex) has been demonstrated in Nicotiana. Nanoplex was prepared using cell penetrating amino acids (CPAs) such as poly‐L‐lysine (PLL) and Argenine (Arg), in combination with the gold nanoparticles (AuNPs). PLLs‐modified nanoplex with zeta potential of 34.2 ± 1.22 mV charge showed 63.3% efficiency for gene transformation in plant cells as compared to 60% when modified with Arg and the zeta potential was found to be 30.0 ± 0.83 mV; whereas, the transformation efficiency without nanoplex was found to be 6.6%. The findings indicate that the zeta potential of positively charged nanocomplex (AuNPs/CPAs/DNA/CPAs) increases the transformation efficiency because of their ability to protect the DNA from electroporation wave and endogenous enzyme damage. Transformation was confirmed by GUS assay and amplification of npt gene. This technique may open up new possibilities of gene transfer in plants, which will enable to produce large number of transgenic plants.Inspec keywords: biochemistry, electrokinetic effects, DNA, biomedical materials, nanomedicine, nanoparticles, gold, cellular biophysics, enzymes, genetics, molecular biophysics, genomicsOther keywords: nanoplex‐mediated plant transformation approach, electroporation technique, gene transfer, cell penetrating amino nanocomplex, cell penetrating amino acids, poly‐L‐lysine, Arg, gold nanoparticles, PLLs‐modified nanoplex, zeta potential, gene transformation, plant cells, transformation efficiency, positively charged nanocomplex, electroporation wave, npt gene, transgenic plants, AuNPs‐CPAs‐DNA‐CPAs, voltage 32.980000000000004 mV to 35.42 mV, voltage 29.169999999999998 mV to 30.830000000000002 mV, Au  相似文献   

12.
Biotinylated chitosan/poly(methyl vinyl ether‐alt ‐maleic acid) (PMVEMA) copolymer was synthesised by an amide reaction in two steps. Structural characterisation was performed using 1 HNMR and Fourier transform infra‐red (FTIR) spectra. Critical micelle concentration (CMC) of the copolymer was determined by pyrene as a fluorescent probe. Doxorubicin (DOX) was loaded in the micelles by the direct dissolution method. The effects of different variables including type of copolymer, copolymer concentration, stirring rate and stirring time were studied on the physicochemical properties of the micelles including: particle size, zeta potential, release efficiency and loading efficiency of nanoparticles using an irregular factorial design. The in vitro cytotoxicity of DOX‐loaded biotin‐targeted micelles was studied in HepG2 cells which over express biotin receptors by 3, 5‐[dimethylthiazol‐2‐yl]‐2, 5‐diphenyl tetrazolium bromide assay. The successful synthesis of the biotinylated copolymer of chitosan/PMVEMA was confirmed by FTIR and 1 HNMR. The optimised micelles showed the CMC of 33 μg/ml, particle size of 247 ± 2 nm, zeta potential of +9.46 mV, polydispersity index of 0.22, drug‐loading efficiency of 71% and release efficiency of 84.5 ± 1.6%. The synthesised copolymer was not cytotoxic. The cytotoxicity of DOX‐loaded in targeted micelles on HepG2 cell line was about 2.2‐fold compared with free drug.Inspec keywords: biomedical materials, cellular biophysics, dissolving, drug delivery systems, drugs, electrokinetic effects, fluorescence, Fourier transform infrared spectra, particle size, polymer blends, spectrochemical analysis, toxicologyOther keywords: 1 HNMR spectra, biotin‐targeted chitosan‐poly (methyl vinyl ether‐alt‐maleic acid) copolymeric micelles, doxorubicin delivery, amide reaction, structural characterisation, Fourier transform infrared spectra, pyrene, fluorescent probe, direct dissolution method, physicochemical properties, particle size, zeta potential, nanoparticles, irregular factorial design, in vitro cytotoxicity, DOX‐loaded biotin‐targeted micelles, 3, 5‐[dimethylthiazol‐2‐yl]‐2, 5‐diphenyl tetrazolium bromide assay, polydispersity index, drug‐loading efficiency, HepG2 cell line, voltage 9.46 mV  相似文献   

13.
In this study, gold nanoshell (GNS) were synthesised utilising the Halas method. The obtained nanoparticles (NPs) were characterised by Fourier‐transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV–Vis spectroscopy and dynamic light scattering. FTIR spectra demonstrated the successful functionalisation of silica NP with 3‐aminopropyl trimethoxysilane. SEM and TEM images showed the morphology and diameter of the synthesised silica NPs (137 ± 26 nm) and GNS. UV–Vis spectrum illustrated the maximum absorbance of the resultant GNS and their average hydrodynamic diameter was 159 nm. For in vitro study, HCT‐116 cells were exposed to gold nanoshells and intense pulsed light in different experiment groups. The results showed that exposing the cells to nanoshells and 30 s irradiation would efficiently decrease the viability percentage of the cells to about 30% compared with the control. A continued exposure of 4 min decreased the viability of the cancer cells to 20%. The results demonstrated that photothermal therapy would be promising in treatment of colon cancer cells utilising gold nanoshells.Inspec keywords: gold, silicon compounds, nanomedicine, plasmonics, radiation therapy, bio‐optics, cancer, cellular biophysics, nanoparticles, Fourier transform spectra, infrared spectra, scanning electron microscopy, transmission electron microscopy, ultraviolet spectra, visible spectraOther keywords: plasmonic photothermal therapy, colon cancer cells, gold‐silica nanoshells, GNS, Halas method, Fourier transform infrared spectroscopy, FTIR, scanning electron microscopy, SEM, transmission electron microscopy, TEM, UV‐vis spectroscopy, dynamic light scattering, FTIR spectra, 3‐aminopropyl trimethoxysilane, morphology, in vitro study, HCT‐116 cells, cell viability, nanoparticles, time 30 s, time 4 min, Au  相似文献   

14.
This study explains a newly developed parallel algorithm for phylogenetic analysis of DNA sequences. The newly designed D‐Phylo is a more advanced algorithm for phylogenetic analysis using maximum likelihood approach. The D‐Phylo while misusing the seeking capacity of k ‐means keeps away from its real constraint of getting stuck at privately conserved motifs. The authors have tested the behaviour of D‐Phylo on Amazon Linux Amazon Machine Image(Hardware Virtual Machine)i2.4xlarge, six central processing unit, 122 GiB memory, 8 ×  800 Solid‐state drive Elastic Block Store volume, high network performance up to 15 processors for several real‐life datasets. Distributing the clusters evenly on all the processors provides us the capacity to accomplish a near direct speed if there should arise an occurrence of huge number of processors.Inspec keywords: parallel algorithms, Linux, pattern clustering, DNA, molecular biophysics, genetics, biology computingOther keywords: D‐Phylo algorithm parallel implementation, maximum likelihood clusters, DNA sequence phylogenetic analysis, Amazon Linux AMI, HVM, central processing unit, SSD, real‐life datasets, processors, high‐network performance  相似文献   

15.
This study reports the fabrication of cellulose nanoparticles through electrospraying the solution of cellulose in N,N ‐dimethylacetamide/lithium chloride solvent as well as investigating the effect of electrospraying conditions and molecular weight on the average size of electrosprayed nanoparticles. Electrospraying of cellulose was carried out with the following range for each factor, namely concentration = 1–3 wt%, voltage = 15–23 kV, nozzle–collector distance = 10–25 cm, and feed rate = 0.03–0.0875 ml/h. The smallest nanoparticles had an average size of around 40 nm. Results showed that lowering the solution concentration and feed rate, as well as increasing the nozzle–collector distance and applied voltage led to a decrease in the average size of the electrosprayed cellulose nanoparticles. Fourier transform infrared analysis proved that no chemical change had occurred in the cellulose structure after the electrospraying process. According to X‐ray diffraction (XRD) results, cellulose nanoparticles showed a lower degree of crystallinity in comparison with the raw cellulose powder. XRD results also proved the absence of LiCl salt in the electrosprayed nanoparticles.Inspec keywords: polymers, nanoparticles, nanofabrication, spraying, molecular weight, particle size, Fourier transform infrared spectra, X‐ray diffraction, polymer structureOther keywords: cellulose nanoparticles, electrospraying, N,N‐dimethylacetamide‐lithium chloride solvent, molecular weight, solution concentration, feed rate, nozzle‐collector distance, Fourier transform infrared analysis, X‐ray diffraction, XRD, crystallinity, cellulose powder, voltage 15 kV to 23 kV  相似文献   

16.
The artificial materials for bone implant applications are gaining more importance in the recent years. The series titania‐chitosan‐chondroitin 4–sulphate nanocomposites of three different concentrations (2:1:x, where x ‐ 0.125, 0.25, 0.5) have been synthesised by in situ sol–gel method and characterised by various techniques. The particle size of the nanocomposites ranges from 30–50 nm. The bioactivity, swelling nature, and the antimicrobial nature of the nanocomposites were investigated. The swelling ability and bioactivity of the composites is significantly greater and they possess high zone of inhibition against the microorganisms such as Staphylococcus aureus and Escherichia coli. The cell viability of the nanocomposites were evaluated by using MG‐63 and observed the composites possess high cell viability at low concentration. The excellent bioactivity and biocompatibility makes these nanocomposites a promising biomaterial for bone implant applications.Inspec keywords: titanium compounds, filled polymers, nanocomposites, bone, orthopaedics, biomedical materials, sol‐gel processing, nanofabrication, particle size, swelling, microorganisms, cellular biophysics, nanomedicine, prostheticsOther keywords: in situ synthesised TiO2 ‐chitosan‐chondroitin 4‐sulphate nanocomposites, bone implant applications, artificial materials, in situ sol‐gel method, particle size, swelling nature, antimicrobial nature, microorganisms, Staphylococcus aureus, Escherichia coli, cell viability, MG‐63, biomaterial, size 30 nm to 50 nm, TiO2   相似文献   

17.
18.
Nanomaterials play a vital role in textile industries due to their unique properties and applications. There is an increase in the use of nanoscale phyto products in textiles to control the bacterial infection in fabrics. Here, natural herbal nanoparticles of different sizes were prepared from shade‐dried Aloe vera plant leaves using ball milling technique without any additives. The amorphous herbal A. vera nanoparticles possess an average particle size of 40 ± 2 nm and UV‐absorption maximum at 269 nm. A. vera nanopowders–chitosan nanocomposites were prepared and coated on cotton fabrics using pad‐dry cure method. The evaluation of antibacterial activity against Escherichia coli (22.05 ± 0.06 mm) and Staphylococcus aureus (27.17 ± 0.02 mm), UV‐protection properties (UV‐protection factor = 57.2 ± 0.1), and superhydrophobic nature (155 ± 3°) of the prepared herbal nanoparticles and their composites were analysed by disc diffusion, UV–visible spectral analysis, and contact angle analysis. Understanding the functional properties of herbal nanoparticles, coated particles on fabrics highlights their potential applications in protective clothing with better antimicrobial properties, hydrophobicity, and UV‐protection properties. This study of using A. vera herbal nanoparticles in textiles significantly enhances the fabric performance to develop protective textile fabrics in defence and biomedical fields.Inspec keywords: nanoparticles, particle size, nanofabrication, nanomedicine, antibacterial activity, biomedical materials, hydrophobicity, ultraviolet spectra, visible spectra, radiation protection, textile fibres, cotton fabrics, ball milling, X‐ray diffraction, light scattering, scanning electron microscopy, X‐ray fluorescence analysis, fluorescence, amorphous state, nanocomposites, filled polymers, protective coatings, curing, microorganisms, biodiffusion, contact angle, surface morphology, protective clothingOther keywords: UV‐blocking, antimicrobial properties, disc diffusion, UV‐visible spectral analysis, contact angle analysis, morphological characteristics, protective clothing, protective textile fabrics, biomedical fields, superhydrophobic nature, UV‐protection factor, UV‐protection properties, Staphylococcus aureus, Escherichia coli, pad‐dry cure method, cotton fabrics, A. vera nanopowders‐chitosan nanocomposites, UV‐absorption maximum, average particle size, amorphous herbal A. vera nanoparticles, X‐ray fluorescence spectrometry, scanning electron microscopy, dynamic light scattering, UV‐visible spectrophotometry, X‐ray diffraction, ball milling, shade‐dried Aloe vera plant leaves, natural herbal nanoparticle size, bacterial infection, nanoscale phyto products, textile industries, nanomaterials, textile applications  相似文献   

19.
In this study, an eco‐friendly biosynthesis of stable gold nanoparticles (T‐GNPs) was carried out using different concentrations of tomato juice (nutraceuticals) as a reducing agent and tetrachloroauric acid as a metal precursor to explore their potential application in cancer therapeutics. The synthesis of T‐GNPs was monitored by UV‐visible absorption spectroscopy, which unveiled their formation by exhibiting the typical surface plasmon absorption maxima at 522 nm. The size of T‐GNPs was found to be 10.86 ± 0.6 nm. T‐GNPs were characterised by dynamic light scattering, zeta potential, transmission electron microscopy analysis and Fourier transform infrared spectroscopy. T‐GNPs were further investigated for their anti‐cancer activity against human lung carcinoma cell line (A 549) and human cervical cancer cell line wherein the IC50 values were found to be 0.286 and 0.200 mM, respectively. T‐GNPs inhibited the growth of cancer cells by generating ROS and inducing apoptosis. T‐GNPs were found highly effective by virtue of their size, metallic property and capping molecules. Thus, this study opens up the prospects of using nutraceutical (tomato juice) as nutratherapeutic agent (T‐GNPs) against critical diseases like lung cancer and cervical cancer.Inspec keywords: gold, nanoparticles, particle size, cancer, ultraviolet spectra, visible spectra, electrokinetic effects, transmission electron microscopy, Fourier transform infrared spectra, cellular biophysics, spectrochemical analysis, nanomedicine, nanofabricationOther keywords: tomato‐mediated synthesised gold nanoparticles, tomato juice, reducing agent, tetrachloroauric acid, cancer therapeutics, UV‐visible absorption spectroscopy, surface plasmon absorption, dynamic light scattering, zeta potential, transmission electron microscopy analysis, Fourier transform infrared spectroscopy, human lung carcinoma cell line, anticancer activity, human cervical cancer cell line, nutratherapeutic agent, lung cancer, Au  相似文献   

20.
The objective of this study was to develop an in‐situ gel containing lorazepam (LZM) loaded nanostructured lipid carriers (NLCs) for direct nose‐to‐brain delivery in order to increase drug therapeutic efficacy in the treatment of epilepsy. Accordingly, LZM loaded NLCs were formulated using emulsification solvent diffusion and evaporation method; then the effects of the formulation variables on different physicochemical characteristics of NLCs were investigated. Thermosensitive in‐situ gels containing LZM‐NLCs were prepared using a combination of chitosan and β‐glycerol phosphate (β‐GP). The anticonvulsant efficacy of LZM‐NLCs‐Gel was then examined using the pentylenetetrazole (PTZ) model. The optimised NLCs were spherical, showing the particle size of 71.70 ± 5.16 nm and the zeta potential of −20.06 ± 2.70 mV. The pH and gelation time for the chitosan solution with 15% (w/v) β‐GP were determined to be 7.12 ± 0.03 and 5.33 ± 0.58 min, respectively. The in‐vivo findings showed that compared with the control group and the group that received LZM‐Gel, the occurrence of PTZ‐induced seizures in the rats was significantly reduced by LZM‐NLCs‐Gel after intranasal administration. These results, therefore, suggested that the LZM‐NLCs‐Gel system could have potential applications for brain targeting through nasal route and might increase LZM therapeutic efficacy in the treatment of epilepsy.Inspec keywords: biomedical materials, nanomedicine, cellular biophysics, electrokinetic effects, drug delivery systems, nanoparticles, brain, pH, drugs, particle size, nanofabrication, medical disorders, polymer gelsOther keywords: evaporation method, β‐glycerol phosphate, β‐GP, optimised NLCs, received LZM‐Gel, LZM therapeutic efficacy, chitosan‐based thermosensitive gel, lorazepam NLCs, nose‐to‐brain delivery, drug therapeutic efficacy, emulsification solvent diffusion, in‐vivo evaluation, in‐vitro evaluation, LZM‐NLC‐gel system, status epilepticus treatment, lorazepam loaded nanostructured lipid carriers, epilepsy treatment, physicochemical characteristics, thermosensitive in‐situ gel, anticonvulsant efficacy, pentylenetetrazole model, particle size, zeta potential, pH, gelation time, chitosan solution, PTZ‐induced seizures, intranasal administration  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号