首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Silver nanoparticles (AgNPs) have been extensively used as antibacterial agents, owing to their ease of preparation. In the present study, leaves extract of Canarium ovatum have been employed for the biosynthesis of silver nanoparticles (CO‐AgNPs). CO‐AgNPs were synthesised under very mild, eco‐friendly manner where the plant extract acted both as reducing and capping agent. These AgNPs were synthesised by taking into account several parameters, that included, time of reaction, concentration of AgNO3, amount of extract and temperature of reaction. The optimisation studies suggested efficient synthesis of CO‐AgNPs at 25°C when 1.5 mM AgNO3 was reduced with 1:20 ratio of plant extract for 40 min. Size determination studies done on dynamic light scattering and scanning electron microscope suggested of spherical shape nanoparticles of size 119.7 ± 7 nm and 50–80 nm, respectively. Further, characterisations were done by Fourier transform infrared and energy‐dispersive X‐ray spectroscopy to evaluate the functional groups and the purity of CO‐AgNPs. The antibacterial efficacy of CO‐AgNPs was determined against the bacterial strain Pseudomonas aeruginosa. As evident from disc diffusion method studies, CO‐AgNPs remarkably inhibited the growth of the tested microorganism. This study suggested that C. ovatum extract efficiently synthesises CO‐AgNPs with significant antibacterial properties and can be good candidates for therapeutics.Inspec keywords: antibacterial activity, nanoparticles, silver, nanofabrication, particle size, light scattering, scanning electron microscopy, Fourier transform infrared spectra, X‐ray chemical analysis, microorganisms, biomedical materials, nanomedicineOther keywords: antibacterial potential, silver nanoparticles, biosynthesis, Canarium ovatum leave extract, plant extract, reducing agent, capping agent, antibacterial agents, reaction time, reaction temperature, dynamic light scattering, scanning electron microscopy, spherical shape nanoparticles, Fourier transform infrared spectroscopy, functional groups, bacterial strain Pseudomonas aeruginosa, disc diffusion method, microorganism, energy‐dispersive X‐ray spectroscopy, temperature 25 degC, time 40 min, Ag  相似文献   

2.
Green chemistry and a central composite design, to evaluate the effect of reducing agent, temperature and pH of the reaction, were employed to produce controlled cuprous oxide (Cu2 O) nanoparticles. Response surface method of the ultraviolet–visible spectroscopy is allowed to determine the most relevant factors for the size distribution of the nanoCu2 O. X‐ray diffraction reflections correspond to a cubic structure, with sizes from 31.9 to 104.3 nm. High‐resolution transmission electron microscopy reveals that the different shapes depend strongly on the conditions of the green synthesis.Inspec keywords: nanostructured materials, copper compounds, nanofabrication, pH, response surface methodology, ultraviolet spectra, X‐ray diffraction, transmission electron microscopyOther keywords: green chemistry synthesis, nanocuprous oxide, reducing agent, reaction pH, response surface method, ultraviolet‐visible spectroscopy, size distribution, cubic structure, high‐resolution transmission electron microscopy, X‐ray diffraction reflection, central composite design, Cu2 O  相似文献   

3.
Silver nanoparticles (AgNPs) have been biosynthesised through the extracts of Ribes khorassanicum fruits, which served as the reducing agents and capping agents. Biosynthesised AgNPs have been found to be ultraviolet–visible (UV–vis) absorption spectra since they have displayed one surface plasmon resonance peak at 438 nm, attesting the formation of spherical NPs. These particles have been characterised by UV–vis, field‐emission scanning electron microscopy, energy‐dispersive X‐ray spectroscopy, X‐ray diffraction, Fourier transform infrared spectroscopy, and transmission electron microscopy analysis. The formation of AgNPs at 1.0 mM concentration of AgNO3 has resulted in NPs that contained mean diameters in a range of 20–40 nm. The green‐synthesised AgNPs have demonstrated high antibacterial effect against pathogenic bacteria (i.e. Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa). Biosynthesising metal NPs through plant extracts can serve as the facile and eco‐friendly alternative for chemical and/or physical methods that are utilised for large‐scale nanometal fabrication in various medical and industrial applications.Inspec keywords: X‐ray diffraction, X‐ray chemical analysis, nanofabrication, surface plasmon resonance, nanoparticles, antibacterial activity, microorganisms, scanning electron microscopy, silver, nanomedicine, visible spectra, ultraviolet spectra, transmission electron microscopy, Fourier transform infrared spectra, field emission scanning electron microscopy, biomedical materialsOther keywords: antibacterial properties, silver nanoparticles, reducing agents, capping agents, surface plasmon resonance peak, spherical NPs, field‐emission scanning electron microscopy, energy‐dispersive X‐ray spectroscopy, X‐ray diffraction, transmission electron microscopy analysis, plant extracts, ultraviolet‐visible absorption spectra, Fourier transform infrared spectroscopy, antibacterial effect, Ribes khorassanicum fruits, Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, surface plasmon resonance, AgNO3 , Ag  相似文献   

4.
The authors report the comparative antibacterial activity of silver nanoparticles synthesised by biological (using Fusarium oxysporum) and chemical routes in the presence and absence of pluronic F68 as a stabilising agent. The production of silver nanoparticles was evidenced by UV–visible spectra, with absorbance at about 420 nm in the case of both biological and chemical synthesis. X‐ray diffraction pattern confirmed the presence of face‐centred cubic structure (FCC plane). The nanoparticles characterised by transmission and scanning electron microscopy showed spherical silver nanoparticles with size range of 5–40 and 10–70 nm in the case of biologically and chemically synthesised nanoparticles, respectively. Addition of pluronic F68 showed the stabilisation of silver nanoparticles. Antibacterial efficacy of silver nanoparticles demonstrated different inhibitory activity against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. Overall, biologically synthesised silver nanoparticles showed higher activity as compared with chemically synthesised nanoparticles. Silver nanoparticles synthesised in the presence of pluronic F68 by the chemical route exhibited synergism in antibacterial activity as compared with those synthesised without pluronic F68. On the contrary, biogenic silver nanoparticles without pluronic F68 showed higher antibacterial potential.Inspec keywords: antibacterial activity, nanofabrication, silver, X‐ray diffraction, biomedical materials, nanomedicine, transmission electron microscopy, scanning electron microscopy, ultraviolet spectra, visible spectra, materials preparation, nanoparticlesOther keywords: pluronic F68, stabilising agent, comparative antibacterial activity, Fusarium oxysporum, UV‐visible spectra, biological synthesis, chemical synthesis, X‐ray diffraction pattern, face‐centred cubic structure, FCC plane, transmission electron microscopy, scanning electron microscopy, spherical silver nanoparticles, antibacterial efficacy, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, synergism, biogenic silver nanoparticles, wavelength 420 nm, size 10 nm to 70 nm, size 5 nm to 40 nm, Ag  相似文献   

5.
In this study, the authors investigated antimicrobial activity of TiO2 nanoparticles (NPs) synthesised by sol–gel method. As synthesised TiO2 NPs were characterised by X‐ray diffraction, scanning electron microscopy and ultraviolet‐visible absorption spectroscopy. The antimicrobial activity of calcined TiO2 nanoparticle samples was examined in day light on Gram positive bacteria (Staphylococcus aureus, Streptococcus pneumonia and Bacillus subtilis), Gram negative bacteria (Proteus vulgaris, Pseudomonas aeruginosa and Escherichia coli) and fungal test pathogen Candida albicans. The synthesised TiO2 NPs were found to be effective in visible light against Streptococcus pneumonia, Staphylococcus aureus, Proteus vulgaris, Pseudomonas aeruginosa and Candida albicans.Inspec keywords: titanium compounds, microorganisms, nanomedicine, biomedical materials, nanofabrication, sol‐gel processing, ultraviolet spectra, visible spectra, X‐ray diffraction, scanning electron microscopy, nanoparticles, antibacterial activityOther keywords: microbicidal activity, titanium dioxide nanoparticle, sol‐gel method, antimicrobial activity, X‐ray diffraction, scanning electron microscopy, ultraviolet‐visible absorption spectroscopy, Gram positive bacteria, Staphylococcus aureus, Streptococcus pneumonia, Bacillus subtilis, TiO2 , Candida albicans, fungal test pathogen, Escherichia coli, Pseudomonas aeruginosa, Proteus vulgaris, Gram negative bacteria  相似文献   

6.
High‐quality colloidal silver nanoparticles (AgNP) were synthesised via a green approach by using hydroalcoholic extracts of Malva sylvestris. Silver nitrate was used as a substrate ion while the plant extract successfully played the role of reducing and stabilising agents. The synthesised nanoparticles were carefully characterised by using transmission electron microscopy, atomic‐force microscopy, energy dispersive X‐ray spectroscopy, Fourier transform infrared spectroscopy and UV–vis spectroscopy. The maximum absorption wavelengths of the colloidal solutions synthesised using 70 and 96% ethanol and 100% methanol, as extraction solvents, were 430, 485 and 504 nm, respectively. Interestingly, the size distribution of nanoparticles depended on the used solvent. The best particle size distribution belonged to the nanoparticles synthesised by 70% ethanol extract, which was 20–40 nm. The antibacterial activity of the synthesised nanoparticles was studied on Escherichia coli, Staphylococcus aureus and Streptococcus pyogenes using disk diffusion, minimum inhibitory concentrations and minimum bactericidal concentrations assays. The best antibacterial activity obtained for the AgNPs produced by using 96% ethanolic extract.Inspec keywords: silver, nanoparticles, nanofabrication, antibacterial activity, colloids, particle size, transmission electron microscopy, atomic force microscopy, X‐ray chemical analysis, Fourier transform spectra, infrared spectra, ultraviolet spectra, visible spectra, microorganisms, nanomedicine, biomedical materialsOther keywords: Green synthesis, flower extract, Malva sylvestris, antibacterial activity, high‐quality colloidal silver nanoparticles, hydroalcoholic extracts, plant extract, reducing agents, stabilising agents, transmission electron microscopy, atomic‐force microscopy, energy dispersive X‐ray spectroscopy, Fourier transform infrared spectroscopy, UV– vis spectroscopy, colloidal solutions, particle size distribution, Escherichia coli, Staphylococcus aureus, Streptococcus pyogenes, disk diffusion, minimum inhibitory concentrations, minimum bactericidal concentrations assays, ethanolic extract, size 430 nm, size 485 nm, size 504 nm, size 20 nm to 40 nm, Ag  相似文献   

7.
Currently, the evolution of green chemistry in the synthesis of nanoparticles (NPs) with the usage of plants has captivated a great response. In this study, in vitro plantlets and callus of Silybum marianum were exploited as a stabilising agent for the synthesis of zinc oxide (ZnO) NPs using zinc acetate and sodium hydroxide as a substitute for chemical method. The contemporary investigation defines the synthesis of ZnO NPs prepared by chemical and bio‐extract‐assisted methods. Characterisation techniques such as X‐ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy and energy dispersive X‐ray were used to confirm the synthesis. Although chemical and bio‐assisted methods are suitable choices for NPs synthesis, the bio‐assisted green assembly is advantageous due to superior stability. Moreover, this report describes the antibacterial activity of the synthesised NPs against standard strains of Klebsiella pneumonia and Bacillus subtilis.Inspec keywords: zinc compounds, II‐VI semiconductors, wide band gap semiconductors, nanoparticles, nanofabrication, semiconductor growth, antibacterial activity, X‐ray diffraction, X‐ray chemical analysis, scanning electron microscopy, Fourier transform infrared spectra, nanobiotechnologyOther keywords: chemical methods, bio‐assisted methods, Silybum marianum in vitro plantlets methods, Silybum marianum in vitro callus extract methods, green chemistry, zinc oxide nanoparticles, sodium hydroxide, zinc acetate, X‐ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, energy dispersive X‐ray analysis, bio‐assisted green assembly, antibacterial activity, Klebsiella pneumonia, Bacillus subtilis, ZnO  相似文献   

8.
In the first section of this research, superparamagnetic nanoparticles (NPs) (Fe3 O4) modified with hydroxyapatite (HAP) and zirconium oxide (ZrO2) and thereby Fe3 O4 /HAP and Fe3 O4 /ZrO2 NPs were synthesised through co‐precipitation method. Then Fe3 O4 /HAP and Fe3 O4 /ZrO2 NPs characterised with various techniques such as X‐ray photoelectron spectroscopy, X‐ray diffraction, scanning electron microscopy, energy dispersive X‐ray analysis, Brunauer–Emmett–Teller, Fourier transform infrared, and vibrating sample magnetometer. Observed results confirmed the successful synthesis of desired NPs. In the second section, the antibacterial activity of synthesised magnetic NPs (MNPs) was investigated. This investigation performed with multiple microbial cultivations on the two bacteria; Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). Obtained results proved that although both MNPs have good antibacterial properties, however, Fe3 O4 /HAP NP has greater antibacterial performance than the other. Based on minimum inhibitory concentration and minimum bactericidal concentration evaluations, S. aureus bacteria are more sensitive to both NPs. These nanocomposites combine the advantages of MNP and antibacterial effects, with distinctive merits including easy preparation, high inactivation capacity, and easy isolation from sample solutions by the application of an external magnetic field.Inspec keywords: nanocomposites, X‐ray chemical analysis, microorganisms, magnetic particles, scanning electron microscopy, precipitation (physical chemistry), nanomagnetics, X‐ray diffraction, X‐ray photoelectron spectra, nanoparticles, superparamagnetism, iron compounds, antibacterial activity, biomedical materials, nanomedicine, calcium compounds, nanofabrication, Fourier transform infrared spectra, magnetometers, zirconium compoundsOther keywords: antibacterial effects, antibacterial property, superparamagnetic nanoparticles, X‐ray photoelectron spectroscopy, X‐ray diffraction, X‐ray analysis, antibacterial activity, bactericidal concentration, S. aureus bacteria, Staphylococcus aureus, Escherichia coli, hydroxyapatite, coprecipitation method, scanning electron microscopy, energy dispersive X‐ray analysis, Brunauer‐Emmett‐Teller method, Fourier transform infrared spectroscopy, vibrating sample magnetometer, microbial cultivations, nanocomposites  相似文献   

9.
CuO nanoparticles (NPs) were prepared by Convolvulus percicus leaves extract as a reducing and stabilising agent. The green synthesised copper oxide NPs was characterised by transmission electron microscope, energy dispersive X‐Ray spectroscopy, X‐ray diffraction, Fourier transform infrared and ultraviolet‐visible analysis. The activities of the CuO NPs as catalyst were tested in the formation of C‐N and C‐O bonds. The N ‐arylated and O ‐arylated products of amides, N‐H heterocycles and phenols were obtained in excellent yields. Furthermore, the separation and recovery of copper oxide NPs was very simple, effective and economical. The recovered catalyst can be reused several times without significant loss of its catalytic activity. Moreover, the antibacterial activity of these NPs was tested against two human pathogenic microbes and showed significant antimicrobial activity against these pathogenic bacteria.Inspec keywords: copper compounds, nanoparticles, nanomedicine, antibacterial activity, biomedical materials, nanofabrication, microorganisms, catalysts, transmission electron microscopy, X‐ray chemical analysis, X‐ray diffraction, Fourier transform spectra, infrared spectra, ultraviolet spectra, visible spectra, catalysisOther keywords: green synthesis, copper oxide nanoparticles, Convolvulus percicus L. aqueous extract, reusable catalysts, cross‐coupling reactions, antibacterial activity, reducing agent, stabilising agent, transmission electron microscope, energy dispersive X‐ray spectroscopy, X‐ray diffraction, Fourier transform infrared spectra, ultraviolet‐visible spectra, C‐N bonds, C‐O bonds, N‐arylated products, O‐arylated products, amides, N‐H heterocycles, phenols, catalytic activity, human pathogenic microbes, antimicrobial activity, CuO  相似文献   

10.
The present investigation aims for the synthesis of copper oxide nanoparticles (CuO NPs) using Nilgirianthus ciliatus plant extract. The obtained CuO NPs were characterised by X‐ray diffraction, Fourier transform infrared spectrum, ultraviolet–visible spectroscopy, photoluminescence, scanning electron microscopy and transmission electron microscopy analysis. Significant bacterial activity was manifested by CuO nanoparticles against both Gram‐positive (Staphylococcus aureus and Staphylococcus mutans) and Gram‐negative (Escherichia coli and Pseudomonas aeruginosa) bacteria. The synthesised CuO NPs have good cytotoxicity against both human breast cancer cell line (MCF‐7) and lung cancer cell line (A549) with minimum cytotoxic effect on normal L929 (fibroblast) cell lines.Inspec keywords: microorganisms, ultraviolet spectra, nanomedicine, transmission electron microscopy, visible spectra, cellular biophysics, antibacterial activity, nanoparticles, X‐ray diffraction, lung, copper compounds, cancer, toxicology, biomedical materials, scanning electron microscopy, photoluminescence, Fourier transform infrared spectraOther keywords: antibacterial activity, anticancer activity, biosynthesised CuO nanoparticles, copper oxide nanoparticles, Nilgirianthus ciliatus plant, X‐ray diffraction, infrared spectrum, ultraviolet–visible spectroscopy, transmission electron microscopy analysis, bacterial activity, Gram‐negative bacteria, synthesised CuO NPs, human breast cancer cell line, Staphylococcus aureus, Staphylococcus mutans, CuO  相似文献   

11.
The present study reports an eco‐friendly and rapid method for the synthesis of core–shell nanoclusters using the modified reverse micelle method. It is a green synthetic method which uses Sesbania grandiflora Linn extract which acts as a reducing and capping agent. It is observed that this method is very fast and convenient and the nanoclusters are formed with 5–10 min of the reaction time without using harsh conditions. The core–shell nanoclusters so prepared were characterised using UV–Vis spectroscopy, scanning electron microscopy, transmission electron microscopy, X‐ray diffraction, and X‐ray photoelectron spectroscopy. Further, their effective antibacterial activity towards the gram‐positive bacteria Staphylococcus aureus was found to be due to their smaller particle size.Inspec keywords: iron compounds, copper compounds, nanoparticles, particle size, nanofabrication, nanomedicine, biomedical materials, core‐shell nanostructures, antibacterial activity, ultraviolet spectra, visible spectra, microorganisms, reduction (chemical), scanning electron microscopy, transmission electron microscopy, X‐ray diffraction, X‐ray photoelectron spectraOther keywords: biosynthesis, γ‐Fe2 O3 ‐CuO core‐shell nanoclusters, aqueous extract, Sesbania grandiflora Linn fresh leaves, antimicrobial activity, Staphylococcus aureus strains, eco‐friendly method, modified reverse micelle method, green synthetic method, reducing agent, capping agent, UV‐visible spectroscopy, scanning electron microscopy, transmission electron microscopy, X‐ray diffraction, X‐ray photoelectron spectroscopy, antibacterial activity, gram‐positive bacteria Staphylococcus aureus, particle size, time 5 min to 10 min, Fe2 O3 ‐CuO  相似文献   

12.
In this study, the leaf extract of an important medicinal plant Crescentia cujete L. (CC) was employed as a green reducing agent to synthesise highly‐stable C. cujete silver nanoparticles (CCAgNPs). The reduction of Ag+ to Ag0 nanoparticles was initially observed by a colour change which generates an intense surface plasmon resonance peak at 417 nm using a UV‐Vis spectrophotometer. Various optimisation factors such as temperature, pH, time and the stoichiometric proportion of the reaction mixture were performed, which influence the size, dispersity and synthesis rate of CCAgNPs. In addition, surface chemistry of synthesised CCAgNPs through Fourier transform infrared spectroscopy reveals the reducing/stabilising agent present in the aqueous extract of C. cujete and synthesised CCAgNPs. Transmission electron microscopy analysis features the spherical shape of CCAgNPs with an average size of 39.74 nm. Furthermore, an X‐ray diffraction study confirms that the synthesised CCAgNPs were face‐centred cubic crystalline in nature. The CCAgNPs display tremendous bactericidal activity against human pathogens Bacillus subtilis, Staphylococcus epidermidis, Rhodococcus rhodochrous, Salmonella typhi, Mycobacterium smegmatis, Shigella flexneri and Vibrio cholerae via penetrating into the bacterial cell membrane and causing failure of an internal chain reaction.Inspec keywords: silver, nanoparticles, nanofabrication, surface plasmon resonance, ultraviolet spectra, visible spectra, spectrochemical analysis, surface chemistry, Fourier transform infrared spectra, stoichiometry, transmission electron microscopy, X‐ray diffraction, biomembranes, cellular biophysics, antibacterial activity, nanomedicineOther keywords: one pot green fabrication, metallic silver nanoscale materials, Crescentia cujete L, bactericidal activity, silver nanoparticles, leaf extract, surface plasmon resonance, UV‐vis spectrophotometer, optimisation factors, surface chemistry, stoichiometric proportion, Fourier transform infrared spectroscopy, transmission electron microscopy, X‐ray diffraction, face‐centred cubic crystalline, human pathogens, bacterial cell membrane, Ag  相似文献   

13.
In this study, the authors report a simple and eco‐friendly method for the synthesis of silver nanoparticles (AgNPs) using Trigonella foenum‐graecum (TFG) seed extract. They explored several parameters dictating the biosynthesis of TFG‐AgNPs such as reaction time, temperature, concentration of AgNO3, and TFG extract amount. Physicochemical characterisation of TFG‐AgNPs was done on dynamic light scattering (DLS), field emission electron microscopy, energy dispersive X‐ray spectroscopy, X‐ray diffraction and Fourier transform infrared spectroscopy. The size determination studies using DLS revealed of TFG‐AgNPs size between 95 and 110 nm. The antibacterial activity was studied against Escherichia coli, Proteus vulgaris, Pseudomonas aeruginosa and Staphylococcus aureus. The biosynthesised TFG‐AgNPs showed remarkable anticancer efficacy against skin cancer cell line, A431 and also exhibited significant antioxidant efficacy.Inspec keywords: antibacterial activity, cancer, biomedical materials, silver, nanofabrication, nanomedicine, nanoparticles, microorganisms, skin, cellular biophysics, biochemistry, light scattering, X‐ray chemical analysis, X‐ray diffraction, Fourier transform infrared spectra, particle sizeOther keywords: antibacterial potential, anticancer potential, antioxidant potential, silver nanoparticles, Trigonella foenum‐graecum seed extract, eco‐friendly method, biosynthesis, reaction time, AgNO3 concentration, TFG extract amount, physicochemical characterisation, dynamic light scattering, field emission electron microscopy, energy dispersive X‐ray spectroscopy, X‐ray diffraction, Fourier transform infrared spectroscopy, size determination, TFG‐AgNPs size, Escherichia coli, Proteus vulgaris, Pseudomonas aeruginosa, Staphylococcus aureus, skin cancer cell line A431, Ag  相似文献   

14.
The aqueous extract of Chinese winter jujube (Ziziphus jujuba Mill. cv. Dongzao) was used as reducing and capping agents for the synthesis of silver nanoparticles (AgNPs) for the first time. The resulting AgNPs were characterised by UV/Visible (UV–Vis) spectroscopy, atomic force microscope, transmission electron microscopy, selected area electron diffraction, X‐ray diffraction, scanning electron microscopy, energy‐dispersive X‐ray and Fourier transform infrared spectroscopy (FTIR). The colloidal solution of AgNPs gave a maximum UV–Vis absorbance at 446 nm. The synthesised nanoparticles were almost in the spherical shapes with an average size of 11.5 ± 4. 8 nm. FTIR spectra were applied to identify the functional groups which were possibly responsible for the conversion of metal ions into nanoparticles. The results showed that the prepared AgNPs were coated with the biomolecules in the extract. The biosynthesised AgNPs showed a remarkable catalytic activity at room temperature, and they also showed good antibacterial properties against Escherichia coli and Staphylococcus aureus.Inspec keywords: silver, nanoparticles, nanofabrication, antibacterial activity, biomedical materials, nanobiotechnology, scanning electron microscopy, X‐ray diffraction, transmission electron microscopy, ultraviolet spectra, visible spectra, X‐ray chemical analysis, Fourier transform infrared spectra, catalysisOther keywords: wavelength 446 nm, temperature 293 K to 298 K, Ag, Escherichia coli, Staphylococcus aureus, biomolecules, catalytic activity, metal ions, colloidal solution, FTIR spectra, UV‐vis absorbance, TEM, SEM, XRD, Fourier transform infrared spectroscopy, energy‐dispersive X‐ray spectroscopy, scanning electron microscopy, X‐ray diffraction, selected area electron diffraction, transmission electron microscopy, atomic force microscopy, UV‐visible spectroscopy, catalytic properties, antibacterial properties, Chinese winter jujube extract, silver nanoparticles, facile phyto‐mediated synthesis  相似文献   

15.
Development of a green chemistry process for the synthesis of silver nanoparticles (AgNPs) has become a focus of interest. Characteristics of AgNPs were determined using techniques, such as ultraviolet–visible spectroscopy (UV–vis), Fourier transform infrared (FTIR) analysis, scanning electron microscopy (SEM), energy‐dispersive X‐ray spectroscopy and X‐ray diffraction (XRD). The synthesised AgNPs using Thymus kotschyanus had the most growth inhibition against gram‐positive bacteria such as Staphylococcus aureus and Bacillus subtilise, while the growth inhibition of AgNPs at 1000–500 µg/ml occurred against Klebsiella pneumonia and at 1000–250 µg/ml of AgNPs was observed against E. coli. The UV–vis absorption spectra confirmed the formation of the AgNPs with the characteristic peak at 415 nm and SEM micrograph acknowledged spherical particles in a nanosize range. FTIR measured the possible biomolecules that are responsible for stabilisation of AgNPs. XRD analysis exhibited the crystalline nature of AgNPs and showed face‐centred cubic structure. The synthesised AgNPs revealed significant antibacterial activity against gram‐positive bacteria.Inspec keywords: visible spectra, microorganisms, ultraviolet spectra, biomedical materials, nanofabrication, nanoparticles, X‐ray diffraction, scanning electron microscopy, molecular biophysics, X‐ray chemical analysis, nanomedicine, silver, antibacterial activity, Fourier transform infrared spectraOther keywords: green chemistry process, ultraviolet–visible spectroscopy, gram‐positive bacteria, silver nanoparticles, Thymus kotschyanus aqueous extract, UV–vis spectroscopy, Fourier transform infrared spectroscopy, FTIR analysis, scanning electron microscopy, energy‐dispersive X‐ray spectroscopy, SEM micrograph, X‐ray diffraction, XRD, Staphylococcus aureus, Bacillus subtilise, Klebsiella pneumonia, E. coli, UV–vis absorption spectra, face‐centred cubic structure, antibacterial activity, antimicrobial activity, wavelength 415.0 nm, Ag  相似文献   

16.
Green synthesis of nanoparticles is considered an efficient method when compared with chemical and physical methods because of its bulk production, eco‐friendliness and low cost norms. The present study reports, for the first time, green synthesis of silver nanoparticles (AgNPs) at room temperature using Solanum viarum fruit extract. The visual appearance of brownish colour with an absorption band at 450 nm, as detected by ultraviolet‐visible spectrophotometer analysis, confirmed the formation of AgNPs. X‐ray diffraction confirmed the AgNPs to be crystalline with a face‐centred lattice. The transmission electron microscopy‐energy dispersive X‐ray spectroscopy image showed the AgNPs are poly‐dispersed and are mostly spherical and oval in shape with particle size ranging from 2 to 40 nm. Furthermore, Fourier transform‐infrared spectra of the synthesised AgNPs confirmed the presence of phytoconstituents as a capping agent. The antimicrobial activity study showed that the AgNPs exhibited high microbial activity against Bacillus subtilis, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus susp. aureus, Aspergillus niger, and Candida albicans. The highest antimicrobial activity of AgNPs synthesised by S. viarum fruit extract was observed in P. aeruginosa, S. aureus susp. aureus and C. albicans with zone of inhibition, 26.67 mm.Inspec keywords: nanomedicine, antibacterial activity, X‐ray chemical analysis, nanoparticles, transmission electron microscopy, particle size, infrared spectra, microorganisms, X‐ray diffraction, Fourier transform spectra, ultraviolet spectra, scanning electron microscopy, visible spectra, nanofabricationOther keywords: green biosynthesis, antimicrobial activities, silver nanoparticles, green synthesis, physical methods, study reports, solanum viarum fruit, ultraviolet‐visible spectrophotometer analysis, high microbial activity, highest antimicrobial activity, s. viarum fruit, transmission electron microscopy, energy dispersive X‐ray spectroscopy image  相似文献   

17.
Green synthesis of metal nanoparticles (NPs) has now received the attention of researchers due to ease of preparation and its potential to overcome hazards of these chemicals for an eco‐friendly milieu. In this study, copper oxide (CuO) NPs were synthesised via Desmodium gangeticum aqueous root extract and standard chemical method, further characterised by UV–visible spectroscopy, Fourier transform infrared spectroscopy, X‐ray diffraction, Thermogravimetric analysis and scanning electron microscopy. The nephrotoxicity of the NP obtained from two routes were compared and evaluated at subcellular level in Wistar rat, renal proximal epithelial cells (LLC PK1 cell lines) and isolated renal mitochondria. CuO NP synthesised by chemical route showed prominent nephrotoxicity measured via adverse cytotoxicity to LLC PK1 cells, elevated renal oxidative stress and damage to renal tissue (determined by impaired alanine transaminase, aspartate transaminase, urea, uric acid and creatinine in the blood). However, at the level of cell organelle, CuO NP from both routes are non‐toxic to mitochondrial functional activity. The authors’ finding suggests that CuO NP synthesised by chemical route may induce nephrotoxicity, but may be overcome by co‐administration of antioxidants, as it is not mito‐toxic.Inspec keywords: cellular biophysics, scanning electron microscopy, toxicology, nanomedicine, oxidation, nanoparticles, enzymes, blood, visible spectra, X‐ray diffraction, biochemistry, nanofabrication, antibacterial activity, ultraviolet spectra, copper compounds, Fourier transform infrared spectra, molecular biophysics, thermal analysis, biological tissuesOther keywords: green synthesised copper oxide nanoparticles, murine model, metal nanoparticles, chemicals, eco‐friendly milieu, copper oxide NPs, standard chemical method, X‐ray diffraction, scanning electron microscopy, subcellular level, renal proximal epithelial cells, LLC PK1 cell lines, renal mitochondria, renal tissue, cell organelle, mitochondrial functional activity, UV‐visible spectroscopy, Fourier transform infrared spectroscopy, nephrotoxicity, renal oxidative stress, Desmodium gangeticum aqueous root extract, thermogravimetric analysis, Wistar rat, cytotoxicity, impaired alanine transaminase, aspartate transaminase, urea, uric acid, creatinine, blood, CuO  相似文献   

18.
Silver phosphate nanoparticles were biologically synthesised, for the first time, using a dilute silver nitrate solution as the silver ion supplier, and without any source of phosphate ion. The applied bacterium was Sporosarcina pasteurii formerly known as Bacillus pasteurii which is capable of solubilising phosphate from soils. It was speculated that the microbe accumulated phosphate from the organic source during the growth period, and then released it to deionised water. According to the transmission electron microscopy images and X‐ray diffraction results, the produced nanoparticles were around 20 nm in size and identified as silver phosphate nanocrystals. The outcomes were also approved by energy‐dispersive X‐ray analysis, thermogravimetric and differential scanning calorimetry analyses, ultraviolet–visible spectroscopy, and Fourier transform infrared spectroscopy analysis. Finally, the antibacterial effect of the obtained nanoparticles was verified by testing them against Bacillus cereus, Staphylococcus aureus, Escherichia coli, and Salmonella typhimurium. The activity of silver phosphate nanoparticles against gram‐negative strains was better than the gram positives. It should be mentioned that the concentrations of 500 and 1000 mg/l were found to be strongly inhibitory for all of the strains.Inspec keywords: nanoparticles, silver compounds, nanofabrication, microorganisms, antibacterial activity, transmission electron microscopy, X‐ray diffraction, X‐ray chemical analysis, differential scanning calorimetry, ultraviolet spectra, visible spectra, Fourier transform infrared spectraOther keywords: biosynthesis, phosphate source, phosphorus mineralising bacterium, silver phosphate nanoparticles, Sporosarcina pasteurii, Bacillus pasteurii, deionised water, transmission electron microscopy images, X‐ray diffraction, energy‐dispersive X‐ray analysis, thermogravimetric analyses, differential scanning calorimetry analyses, ultraviolet–visible spectroscopy, Fourier transform infrared spectroscopy, antibacterial effect, Bacillus cereus, Staphylococcus aureus, Escherichia coli, Salmonella typhimurium, Ag3 PO4   相似文献   

19.
Biogenic synthesis of gold (Au), silver (Ag) and bimetallic alloy Au–Ag nanoparticles (NPs) from aqueous solutions using Cannabis sativa as reducing and stabilising agent has been presented in this report. Formation of NPs was monitored using UV–visible spectroscopy. Morphology of the synthesised metallic and bimetallic NPs was investigated using X‐ray diffraction and scanning electron microscopy. Elemental composition and the surface chemical state of NPs were confirmed by energy dispersive X‐ray spectroscopy analysis. Fourier transform‐infrared spectroscopy was utilised to identify the possible biomolecules responsible for the reduction and stabilisation of the NPs. Biological applicability of biosynthesised NPs was tested against five bacterial strains namely Klebsiella pneumonia, Bacillus subtilis (B. subtilis), Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa (P. aeruginosa) and Leishmania major promastigotes. The results showed considerable antibacterial and anti‐leishmanial activity. The Au–Ag bimetallic NPs showed improved antibacterial activity against B. subtilis and P. aeruginosa as compared to Au and Ag alone, while maximum anti‐leishmanial activity was observed at 250 μg ml−1 NP concentration. These results suggest that biosynthesised NPs can be used as potent antibiotic and anti‐leishmanial agents.Inspec keywords: silver, silver alloys, gold, gold alloys, nanoparticles, nanofabrication, reduction (chemical), ultraviolet spectra, visible spectra, X‐ray diffraction, scanning electron microscopy, X‐ray chemical analysis, Fourier transform infrared spectra, microorganisms, antibacterial activityOther keywords: biogenic synthesis, Cannabis sativa leaf extract, bimetallic alloy Au–Ag nanoparticles, aqueous solutions, reducing agent, stabilising agent, UV–visible spectroscopy, X‐ray diffraction, scanning electron microscopy, elemental composition, surface chemical state, energy dispersive X‐ray spectroscopy analysis, Fourier transform‐infrared spectroscopy, biomolecules, bacterial strains, Klebsiella pneumonia, Bacillus subtilis, Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Leishmania major promastigotes, antibacterial activity, anti‐leishmanial activity, Ag, Au, AuAg  相似文献   

20.
The biosynthesis of silver nanoparticles (AgNPs) is substantial for its application in lots of fields. Tomato and grape fruit juices were used as a reducing and capping agents for the biosynthesis of AgNPs. Ultraviolet spectroscopic analysis offered peaks in the range of 396‒420 nm that indicate the production of AgNPs. Fourier transform infrared spectroscopy analysis revealed attachment of different functional groups with Ag ion in both tomato and grape fruit extracts NPs. The X‒ray diffraction analysis confirmed that the synthesised AgNPs have a face centred cubic confirmation. Scanning electron microscopy confirms the size of NPs that varies from 10 to 30 nm. The DPPH free radical scavenging assay, total antioxidant capacity, reducing power assay, total flavonoid contents and total phenolic contents determination confirmed that synthesised AgNPs are potent antioxidant agents; can be used as an effective scavenger of free radicals. Biosynthesised AgNPs also showed good antibacterial activity against Pseudomonas septica, Staphylococcus aureus, Micrococcus luteus, Enterobacter aerogenes, Bacillus subtilis and Salmonella typhi. Protein kinase inhibition activity showed a clear zone which indicates anticancerous potential of biosynthesised AgNPs. The efficacious bioactivities indicate that the tomato and grape derived AgNPs can be used efficiently in pharmaceutical and medical industries.Inspec keywords: silver, nanoparticles, nanomedicine, biomedical materials, nanofabrication, Fourier transform infrared spectra, X‐ray diffraction, scanning electron microscopy, microorganisms, antibacterial activity, enzymes, cancer, ultraviolet spectraOther keywords: silver nanoparticle green synthesis, grape juice, tomato juice, biological activity evaluation, ultraviolet spectroscopic analysis, silver nanoparticle production, Fourier transform infrared spectroscopy analysis, silver ion, X‐ray diffraction analysis, scanning electron microscopy, DPPH free radical scavenging assay, antioxidant capacity, flavonoid content, phenolic content determination, antioxidant agent, antibacterial activity, Pseudomonas septica, Staphylococcus aureus, Micrococcus luteus, Enterobacter aerogenes, Bacillus subtilis, Salmonella typhi, protein kinase, size 10 nm to 30 nm  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号