首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study reveals the antibacterial and catalytic activity of biogenic gold nanoparicles (AuNPs) synthesised by biomass of Trichoderma harzianum. The antibacterial activity of AuNPs was analysed by the means of growth curve, well diffusion and colony forming unit (CFU) count methods. The minimum inhibitory concentration of AuNPs was 20 µg/ml. AuNPs at 60 µg/ml show effective antibacterial activity as optical absorption was insignificant. The well diffusion and CFU methods were also applied to analyse the effect of various concentration of AuNPs. Further, the catalytic activity of AuNPs was analysed against methylene blue (MB) as a model pollutant in water. MB was degraded 39% in 30 min in the presence of AuNPs and sodium borohydrate and the rate constant (k) was found to be 0.2 × 10−3 s−1. This shows that the biogenic AuNP is an effective candidate for antibacterial and catalytic degradation of toxic pollutants.Inspec keywords: antibacterial activity, catalysis, nanoparticles, gold, nanofabrication, biomedical materials, nanomedicine, renewable materials, surface diffusion, dyes, water pollution, reaction rate constants, toxicologyOther keywords: antibacterial activity, catalytic activity, biogenic gold nanoparticles, Trichoderma harzianum, biomass, growth curve, diffusion, colony forming unit count methods, minimum inhibitory concentration, optical absorption, CFU methods, methylene blue, water pollutant, catalytic degradation, toxic pollutants, sodium borohydrate, rate constant, Au  相似文献   

2.
The peel of Citrus maxima (C. maxima) is the primary byproducts during the process of fruit or juice in food industries, and it was always considered as biomass waste for further treatments. In this study, the authors reported a simple and eco‐friendly method to synthesise gold nanoparticles (AuNPs) using C. maxima peel extract as reducing and capping agents. The synthesised AuNPs were characterised by UV–visible spectrum, X‐ray diffraction (XRD), transmission electron microscope (TEM) and Fourier‐transform infrared spectroscopy (FTIR). The UV–visible spectrum of the AuNPs colloid showed a characteristic peak at 540 nm. The peaks of XRD analysis at (2θ) 38.30°, 44.28°, 64.62°, 77.57° and 81.75° were assigned to (111), (200), (220), (311) and (222) planes of the face‐centered cubic (fcc) lattice of gold. The TEM images showed that AuNPs were nearly spherical in shape with the size of 8–25 nm. The FTIR spectrum revealed that some bioactive compounds capped the surface of synthesised AuNPs. The biosynthesised AuNPs performed strong catalytic activity in degradation of 4‐nitrophenol to 4‐aminophenol and good antibacterial activity against both gram negative (Escherichia coli) and gram positive (Staphylococcus aureus) bacterium. The synthesis procedure was proved simple, cost effective and environment friendly.Inspec keywords: gold, nanoparticles, nanofabrication, X‐ray diffraction, ultraviolet spectra, visible spectra, transmission electron microscopy, Fourier transform infrared spectra, crystal structure, catalysis, antibacterial activity, nanobiotechnologyOther keywords: gold nanoparticles, Citrus maxima peel extract, UV–visible spectrum, X‐ray diffraction, transmission electron microscope, Fourier‐transform infrared spectroscopy, XRD analysis, faced centre cubic lattice, TEM images, catalytic activity, 4‐nitrophenol, 4‐aminophenol, antibacterial activity, gram negative bacterium, gram positive bacterium, Au  相似文献   

3.
This study reports the unprecedented, novel and eco‐friendly method for the synthesis of three‐dimensional (3D) copper nanostructure having flower like morphology using leaf extract of Ficus benghalensis. The catalytic activity of copper nanoflowers (CuNFs) was investigated against methylene blue (MB) used as a modal dye pollutant. Scanning electron micrograph evidently designated 3D appearance of nanoflowers within a size range from 250 nm to 2.5 μm. Energy‐dispersive X‐ray spectra showed the presence of copper elements in the nanoflowers. Fourier‐transform infrared spectra clearly demonstrated the presence of biomolecules which is responsible for the synthesis of CuNFs. The catalytic activity of the synthesised CuNFs was monitored by ultraviolet–visible spectroscopy. The MB was degraded by 72% in 85 min on addition of CuNFs and the rate constant (k) was found to be 0.77 × 10−3 s−1. This method adapted for synthesis of CuNFs offers a valuable contribution in the area of nanomaterial synthesis and in water research by suggesting a sustainable and an alternative route for removal of toxic solvents and waste materials.Inspec keywords: catalysis, dyes, nanostructured materials, nanofabrication, scanning electron microscopy, X‐ray chemical analysis, copper, Fourier transform infrared spectra, visible spectra, ultraviolet spectra, molecular biophysicsOther keywords: catalytic degradation, methylene blue, biosynthesised copper nanoflowers, F. benghalensis leaf extract, three‐dimensional copper nanostructure synthesis, 3D copper nanostructure synthesis, flower like morphology, Ficus benghalensis leaf extract, modal dye pollutant, electron micrograph, 3D appearance, energy‐dispersive X‐ray spectra, copper elements, Fourier‐transform infrared spectra, biomolecules, ultraviolet‐visible spectroscopy, toxic solvent removal, waste materials, size 250 nm to 2.5 mum, Cu  相似文献   

4.
The present study investigated the synthesis of gold nanoparticles (AuNPs) using mangrove plant extract from Avicennia marina as bioreductant for eco‐friendly bioremediation of 4‐nitrophenol (4‐NP). The AuNPs synthesised were confirmed by UV spectrum, transmission electron microscopy (TEM), X‐ray diffraction, Fourier transmission infrared spectroscopy (FTIR), dynamic light scattering (DLS), and zeta potential. The AuNPs were found to be spherical in shape with size ranging from 4 to 13 nm, as evident by TEM and DLS. Further, the AuNPs were encapsulated with sodium alginate in the form of gold nano beads and used as heterogeneous catalyst and degrading agent to reduce 4‐NP. This reduction in 4‐NP into 4‐aminophenol was confirmed by UV and FTIR. The aqueous solution of 4‐NP peaked its absorbance at 320 nm, and shifted to 400 nm, with an intense yellow colour, appeared due to formation of 4‐nitrophenolate ion. After the addition of AuNps, the 4‐NP solution became colourless and peaked at 400 nm and reduced to 290 nm corresponding to the formation of 4‐aminophenol. Hence, the present work suggested the AuNPs as the potent, eco‐friendly bionanocomposite catalyst for bioremediation of 4‐NP.Inspec keywords: gold, nanoparticles, nanobiotechnology, nanofabrication, ultraviolet spectra, transmission electron microscopy, X‐ray diffraction, Fourier transform spectra, infrared spectra, electrokinetic effects, catalysts, nanocomposites, biochemistryOther keywords: biogenic gold nanoparticles, 4‐nitrophenol, 4‐aminophenol, eco‐friendly bioremediation, mangrove plant extract, Avicennia marina, bioreductant, UV spectrum, transmission electron microscopy, TEM, X‐ray diffraction, Fourier transmission infrared spectroscopy, FTIR, dynamic light scattering, DLS, zeta potential, degrading agent, 4‐nitrophenolate, bionanocomposite catalyst, size 4 nm to 13 nm, wavelength 400 nm, wavelength 290 nm, Au  相似文献   

5.
Hence, in this study, the authors aimed to develop a dendrimer‐based imaging agent comprised of poly(ethylene glycol) (PEG)‐citrate, technetium‐99 m (99m Tc), and folic acid. The dendrimer‐G3 was synthesised and conjugated with folic acid, which confirmed by Fourier transform infrared, proton nuclear magnetic resonance, dynamic light scattering, and transition electron microscopy. 2,3‐bis‐(2‐methoxy‐4‐nitro‐5‐sulfophenyl)‐2H‐Tetrazolium‐5‐Carboxanilide cytotoxicity assay kit was used to measure the cellular toxicity of dendrimer. Imaging and biodistribution studies were conducted on the mice bearing tumour. The results showed that the fabricated dendrimer‐G3 has a size of 90 ± 3 nm, which was increased to 100 ± 4 nm following the conjugation with folic acid. The radiostablity investigation showed that the fabricated dendrimers were stable in the human serum at various times. Toxicity assessment confirmed no cellular toxicity against HEK‐293 cells at 0.25, 0.5, 1, 2, 4, and 8 mg/μl concentrations. The in vivo studies demonstrated that the synthesised dendrimers were able to provide a bright SPECT image applicable for tumour detection. In conclusion, the authors’ study documented the positive aspects of PEG‐citrate dendrimer conjugated with folic acid as the SPECT contrast agent for breast cancer detection.Inspec keywords: toxicology, single photon emission computed tomography, technetium, cancer, bone, polymers, biochemistry, tumours, electrospinning, biomedical materials, light scattering, cellular biophysics, Fourier transform infrared spectra, proton magnetic resonance, transmission electron microscopy, biological organsOther keywords: biodistribution, toxicity assessment, cellular toxicity, bright SPECT image, PEG‐citrate dendrimer, breast cancer molecular imaging agent, proton nuclear magnetic resonance, dendrimer‐based imaging agent, folic acid‐conjugated G‐399m Tc‐dendrimer, dendrimer‐G3, poly(ethylene glycol)‐citrate, Fourier transform infrared spectra, dynamic light scattering, transition electron microscopy, 2,3‐bis‐(2‐methoxy‐4‐nitro‐5‐sulfophenyl)‐2H‐tetrazolium‐5‐carboxanilide cytotoxicity assay, human serum, tumour detection  相似文献   

6.
7.
In the present study, a phyto‐mediated synthesis of gold nanoparticles (AuNPs) using an isoflavone, Dalspinosin (5,7‐dihydroxy‐6,3′,4′‐trimethoxy isoflavone) isolated from the alcoholic extract of roots of Dalbergia coromandeliana is reported. It is observed that Dalspinosin itself acts both as a reducing and a capping agent in the synthesis of the nanoparticles (NPs). An ultraviolet–visible (UV–Vis) spectral study showed a surface plasmon resonance band at 526 nm confirming the formation of AuNPs. The NPs formed were characterised by UV–Vis spectroscopy, Fourier transform‐infrared spectroscopy, X‐ray diffraction (XRD), high‐resolution transmission electron microscopy (HR‐TEM) with energy‐dispersive x‐ray spectroscopy (EDX) and dynamic light scattering. HR‐TEM analysis showed the synthesised AuNPs were spherical in shape with a size of 7.5 nm. The AuNPs were found to be stable for seven months when tested by in vitro methods showed good antioxidant and anti‐inflammatory activities. They also showed moderate anti‐microbial activities when tested against Gram positive (Staphylococcus aureus and Streptococcus sp), Gram negative bacterial strains (Klebsiella pneumonia and Klebsiella terrigena) and fungal strain (Candida glabrata). The biosynthesised AuNPs showed significant catalytic activity in the reduction of methylene blue with NaBH4 to leucomethylene blue.Inspec keywords: biomedical materials, catalysis, Fourier transform infrared spectra, gold, light scattering, microorganisms, nanomedicine, nanoparticles, spectrochemical analysis, surface plasmon resonance, transmission electron microscopy, ultraviolet spectra, visible spectra, X‐ray chemical analysis, X‐ray diffractionOther keywords: phyto‐mediated synthesis, biological activity studies, catalytic activity studies, dalspinosin (5,7‐dihydroxy‐6,3′,4′‐trimethoxy isoflavone), alcoholic extract, roots, Dalbergia coromandeliana, ultraviolet‐visible spectral study, surface plasmon resonance band, UV‐Vis spectroscopy, Fourier transform‐infrared spectroscopy, X‐ray diffraction, high‐resolution transmission electron microscopy, EDX analysis, dynamic light scattering, HR‐TEM analysis, antioxidant activities, antiinflammatory activities, antimicrobial activities, Gram positive bacterial strains, Staphylococcus aureus, Streptococcus sp, Gram negative bacterial strains, wavelength 526 nm, size 7.5 nm, time 7 month, Au  相似文献   

8.
Bio‐fabrication of gold nanoparticles (AuNPs) has several advantages like biocompatibility, less toxicity, and eco‐friendly in nature over their chemical and physical methods. Currently, the authors fabricated AuNPs using aqueous root extract of Momordica dioica (M. dioica) and explored their anticancer application with mechanistic approaches. Different biophysical techniques such as UV–visible spectroscopy, Fourier transform infrared, X‐ray diffraction, transmission electron microscopy, selected area electron diffraction, and dynamic light scattering were employed for AuNPs characterisation. The synthesised AuNPs were mono‐dispersed, crystalline in nature, anionic surface (−23.9 mV), and spherical particle of an average diameter of 9.4 nm. In addition, the AuNPs were stable in buffers solutions and also biocompatible towards normal human cells (human vascular endothelial cells and human lung cells). The AuNPs were exhibited anticancer activity against different cancer cell lines such as human breast cancer cells, human cervical cancer cells (HeLa) and human lung cancer cells. Further, the pro‐apoptotic genes such as Bcl2 were down‐regulated and BAX, Caspase‐3, −8, and −9 were up‐regulated in HeLa cells as compared to untreated cells. Annexin‐V‐FITC assay results showed that the AuNPs were induced apoptosis by accumulation of intracellular reactive oxygen species. To their knowledge, this is the first report on the synthesis of bioactive metal nanoparticles from M. dioica and it may open up new avenues in therapeutic applications.Inspec keywords: nanomedicine, tumours, lung, visible spectra, drug delivery systems, cancer, transmission electron microscopy, biomedical materials, molecular biophysics, light scattering, toxicology, electron diffraction, X‐ray diffraction, ultraviolet spectra, biomembranes, drugs, gold, biochemistry, particle size, cellular biophysics, nanoparticles, nanofabrication, Fourier transform infrared spectraOther keywords: extrinsic apoptosis, intrinsic apoptosis, mediated gold nanoparticles, biofabrication, physical methods, biophysical techniques, UV‐visible spectroscopy, X‐ray diffraction, transmission electron microscopy, selected area electron diffraction, AuNPs characterisation, normal human cells, human vascular endothelial cells, cancer cell lines, human breast cancer cells, human cervical cancer cells, human lung cancer cells, HeLa cells, untreated cells, bioactive metal nanoparticles, Momordica dioica mediated gold nanoparticles, Fourier transform infrared spectra, proapoptotic genes, Bcl2 , BAX, Caspase‐3, Caspase‐9, Caspase‐8, Annexin‐V‐FITC assay, intracellular reactive oxygen species, therapeutic applications, voltage ‐23.9 mV, size 9.4 nm, Au  相似文献   

9.
A single pot, green method for platinum nanoparticles (Pt NP) production was devised with gum ghatti (Anogeissus latifolia). Analytical tools: ultraviolet–visible (UV‐vis), dynamic light scattering, zeta potential, transmission electron microscope, X‐ray diffraction (XRD), and Fourier transform infrared spectroscopy were employed. Wide continuous UV‐vis absorption and black solution colouration proved Pt NP formation. Face‐centred cubic crystalline structure of NP was evidenced from XRD. NPs formed were nearly spherical with a mean particle size of 3 nm. NP demonstrated a myriad of properties including catalytic, peroxidase, polymerase chain reaction (PCR) enhancing and antioxidant activities. Catalytic action of NP was probed via NaBH4 reduction of arsenazo‐III dye. NP displayed considerable peroxidase activity via catalysis of 3, 3′, 5, 5′‐tetramethylbenzidine oxidation by H2 O2. NP showed exceptional stability towards varying pH (3–11), temperature (25–100°C), salt concentration (0–100 mM) and storage time duration (0–12 months). In comparison with horse radish peroxidase, its applicability as an artificial peroxidase is advantageous. NP caused a two‐fold enhancement in PCR yield at 0.4 nM. Also showed significant 1′, 1′ diphenyl picryl‐hydrazyle scavenging (80.1%) at 15 µg/mL. Author envisages that the biogenic Pt NP can be used in a range of biological and environmental applications.Inspec keywords: nanofabrication, ultraviolet spectra, catalysis, molecular biophysics, enzymes, dyes, platinum, electrokinetic effects, transmission electron microscopy, particle size, X‐ray diffraction, visible spectra, pH, nanomedicine, nanoparticles, biochemistry, light scattering, scanning electron microscopy, Fourier transform infrared spectra, reduction (chemical), oxidationOther keywords: antioxidant activities, catalytic action, salt concentration, artificial peroxidase, two‐fold enhancement, PCR yield, multifaceted activities, plant gum synthesised platinum nanoparticles, gum ghatti, anogeissus latifolia, analytical characterisation tools, dynamic light scattering, zeta potential, X‐ray diffraction, XRD, black solution colouration, Pt NP formation, face‐centred cubic crystalline structure, peroxidase activity, ultraviolet‐visible spectroscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, particle size, catalytic activity, PCR enhancing activity, single pot green method, wide continuous UV‐visible absorption, polymerase chain reaction enhancing activity, arsenazo‐III, azo dye decolourisation, 3, 3′, 5, 5′‐tetramethylbenzidine oxidation, pH, environmental conditions, 1′,1′ diphenyl picryl‐hydrazyle scavenging, time 0.0 month to 12.0 month, temperature 25.0 degC to 100.0 degC, Pt  相似文献   

10.
A green bioreductive approach with methanobactin was adopted to fabricate bimetallic Au–Pd/Al2 O3 catalysts for solvent‐free oxidation of glucose to gluconic acid with H2 O2 at atmospheric pressure. The catalyst was characterised by diffuse reflectance UV–vis spectroscopy, transmission electron microscopy, X‐ray photoelectron spectroscopy, and X‐ray diffraction techniques to understand synergistic interactions between Au and Pd. Effects of Au to Pd molar ratio on the catalytic activity of Au–Pd/Al2 O3 were investigated. The Au–Pd/Al2 O3 catalyst with Au/Pd molar ratio of 0.8:0.2 exhibited excellent catalytic performance. With the catalyst, the oxidation activities of glucose to gluconic acid 2856 mmol min−1 g−1 and selectivity 99.6% were attained at 323 K with H2 O2. The results indicated the activity and selectivity was affected by the ratio of Au/Pd on the Al2 O3. The formation of Au0.8 Pd0.2 /Al2 O3 was favourable for the catalytic reaction.Inspec keywords: sugar, oxidation, biochemistry, gold, lead, aluminium compounds, catalysts, X‐ray diffraction, ultraviolet spectra, X‐ray photoelectron spectra, transmission electron microscopy, visible spectra, catalysis, biological techniquesOther keywords: bimetallic Au‐Pd‐Al2 O3 methanobactin‐mediated synthesis, glucose oxidation, green bioreductive approach, bimetallic Au‐Pd‐Al2 O3 catalysts, glucose solvent‐free oxidation, gluconic acid, Au‐to‐Pd molar ratio, catalytic reaction, X‐ray diffraction, X‐ray photoelectron spectroscopy, transmission electron microscopy, diffuse reflectance UV‐vis spectroscopy, temperature 323 K, Au‐Pd‐Al2 O3   相似文献   

11.
In this study, saponin capped triangular silver nanocrystals have been synthesised using fenugreek seed extract, where the extract acts both as a reducing and capping agent. X‐ray diffraction study confirms the purity and crystalline nature of the prepared nanocrystals and transmission electron microscopic study shows the triangular morphology with the average edge length of 72 nm, along with the atomic force microscopy study for the height or the width of the triangular nanocrystals. These nanocrystals have been investigated against a few pulses (seeds) such as Pisum sativum, Cicer arietinum and Vigna radiata for their effect on the germination as well as growth of root and shoot. Considering different concentration of silver nanocrystals solution, it has been found that 25 × 10−4 and 80 × 10−4 μg/ml are the minimum and maximum concentrations of silver nanocrystals, within this range, germination and subsequent growth of root and shoot are effective. The result shows significant positive influence on the growth of root and shoot of all seeds in comparison to those of unexposed control germination. Therefore, the result of this experiment has confirmed that the use of saponin capped silver nanocrystals enhances the germination and growth of plants.Inspec keywords: transmission electron microscopy, atomic force microscopy, nanofabrication, silver, nanostructured materials, X‐ray diffraction, crystal morphology, nanobiotechnology, botanyOther keywords: Pisum sativum, saponin capped nanocrystals, nanocrystals solution, atomic force microscopy, transmission electron microscopy, reducing agent, Vigna radiata seeds, Cicer arietinum, unexposed control germination, triangular nanocrystals, triangular morphology, x‐ray diffraction study, fenugreek seed  相似文献   

12.
The flow injection combined with tris‐(bipyridyl) ruthenium (II)‐cerium (IV) chemiluminescence (CL) method based on the sensitisation of silver nanoparticles (AgNPs) has been established for the quantitative analysis of gatifloxacin (GFX). AgNPs were synthesised using the reaction between ammonia gas and silver nitrate solution and was used to increase the CL intensity of the proposed system. The enhancement of CL intensity was linear with the concentration of GFX added. Effects of different experimental parameters were studied. Under the optimal conditions, the linear relationship was established between the concentration range of 1.4 × 10−10 –4.5 × 10−8 M, with the correlation coefficient (r2) 02E9999. The limit of detection was found to be 4.6 × 10−11 M. The relative standard deviation obtained was 3.2% for six replicate measurements of GFX (1.2 × 10−9 M). The proposed CL method was applied to the commercial drug and the result was in agreement with the labelled amount. The technique was further adopted to the analysis of GFX in spiked urine samples. Negligible interference was found (variation in CL intensity <5%) from a few common foreign excipients applied in preparation of pharmaceutical drug. The comparative results with a few reported methods indicates that the proposed method is more sensitive than other methods..Inspec keywords: chemiluminescence, chemical sensors, optical sensors, silver, nanoparticles, nanosensors, transmission electron microscopy, measurement standardsOther keywords: CL sensitisation, tris‐(bipyridyl) ruthenium (II)–cerium (IV) reaction system, NP, GFX determination, flow injection, chemiluminescence sensitisation, nanoparticle, gatifloxacin determination, morphological characterisation, ultraviolet spectrometry, transmission electron microscopy imaging, spiked urine sample, interference, pharmaceutical drug, Ag  相似文献   

13.
MiR‐155 plays a critical role in the formation of cancers and other diseases. In this study, the authors aimed to design and fabricate a biosensor based on cross‐linking gold nanoparticles (AuNPs) aggregation for the detection and quantification of miR‐155. Also, they intended to compare this method with SYBR Green real‐time polymerase chain reaction (PCR). Primers for real‐time PCR, and two thiolated capture probes for biosensor, complementary with miR‐155, were designed. Citrate capped AuNPs (18.7 ± 3.6 nm) were synthesised and thiolated capture probes immobilised to AuNPs. The various concentrations of synthetic miR‐155 were measured by this biosensor and real‐time PCR method. Colorimetric changes were studied, and the calibration curves were plotted. Results showed the detection limit of 10 nM for the fabricated biosensor and real‐time PCR. Also, eye detection using colour showed the weaker detection limit (1 µM), for this biosensor. MiR‐133b as the non‐complementary target could not cause a change in both colour and UV–visible spectrum. The increase in hydrodynamic diameter and negative zeta potential of AuNPs after the addition of probes verified the biosensor accurately fabricated. This fabricated biosensor could detect miR‐155 simpler and faster than previous methods.Inspec keywords: RNA, molecular biophysics, biochemistry, cancer, nanoparticles, gold, aggregation, surface plasmon resonance, molecular configurations, nanosensors, enzymes, calibration, ultraviolet spectra, visible spectra, eye, hydrodynamics, electrokinetic effects, biosensors, nanofabricationOther keywords: cross‐linking gold nanoparticles aggregation method, localised surface plasmon resonance, quantitative detection, cancers, diseases, biosensor, miR‐155 detection, miR‐155 quantification, SYBR green real‐time polymerase chain reaction, thiolated capture probes, citrate capped AuNPs, synthetic miR‐155, real‐time PCR method, colorimetric changes, calibration curves, eye detection, colour, detection limit, MiR‐133b, noncomplementary target, UV‐visible spectrum, hydrodynamic diameter, negative zeta potential, Au  相似文献   

14.
In this study, CuO nanoparticles supported on the seashell (CuO NPs/seashell) was prepared using Rumex crispus seeds extract as a chelating and capping agent. The prepared nanocomposite was characterised by Fourier transform infrared spectroscopy, X‐ray diffraction, field emission scanning electron microscopy, energy‐dispersive X‐ray spectroscopy and transmission electron microscopy. The particle size of CuO NPs on the seashell sheets was in the range of 8–60 nm. Catalytic ability of CuO NPs/seashell was investigated for the reduction of 4‐nitrophenol (4‐NP) and Congo red (CR). It was observed that catalyst can be easily recovered and reused several times without any significant loss of catalytic efficiency.Inspec keywords: nanocomposites, nanoparticles, catalysis, dyes, Fourier transform infrared spectra, X‐ray diffraction, field emission electron microscopy, scanning electron microscopy, X‐ray chemical analysis, transmission electron microscopy, particle size, copper compoundsOther keywords: CuO, size 8 nm to 60 nm, Congo red, 4‐nitrophenol, particle size, transmission electron microscopy, energy dispersive X‐ray spectroscopy, field emission scanning electron microscopy, X‐ray diffraction, Fourier transform infrared spectroscopy, nanocomposite, capping agent, chelating agent, dye reduction, catalytic application, Rumex crispus seeds extract, seashell surface, nanoparticles, green synthesis  相似文献   

15.
Mastitis is an important economic disease causing production losses in dairy industry. Antibiotics are becoming ineffective in controlling mastitis due to the emergence of resistant strains requiring the development of novel therapeutic agents. In this study, the authors present the phytochemical synthesis of silver nanoparticles (AgNPs) with acetyl‐11‐α‐keto‐β‐boswellic acid and evaluation of their activity in Staphylococcus aureus induced murine mastitis. Boswellic acid mediated AgNP (BANS) were oval, polydispersed (99.8 nm) with an minimum inhibitory concentration of 0.033 µg ml−1 against S. aureus, inhibitory concentration (IC50) of 30.04 µg ml−1 on mouse splenocytes and safe at an in vivo acute oral dose of 3.5 mg kg−1 in mice. Mastitis was induced in lactating mice by inoculating S. aureus (log10 5.60 cfu) and treated 6 h post‐inoculation with BANS (0.12 mg kg−1, intramammary and intraperitoneal), and cefepime (1 mg kg−1, intraperitoneal). S. aureus inoculated mice showed increased bacterial load, neutrophil infiltration in mammary glands and elevated C‐reactive protein (CRP) in serum. Oxidative stress was also observed with elevated malondialdehyde level, superoxide dismutase (SOD) and catalase (CAT) activities. BANS treatment significantly (P  < 0.05) reduced bacterial load, CRP, SOD, CAT activities and neutrophil infiltration in affected mammary glands. BANS could be a potential therapeutic agent for managing bovine mastitis.Inspec keywords: nanomedicine, nanoparticles, silver, antibacterial activity, drugs, diseases, enzymesOther keywords: antibacterial effects, antiinflammatory effects, antioxidant effects, acetyl‐11‐α‐keto‐β‐boswellic acid, mediated silver nanoparticles, experimental murine mastitis, economic disease, dairy industry, resistant strains, phytochemical synthesis, Staphylococcus aureus, minimum inhibitory concentration, inoculating S. aureus, neutrophil infiltration, mammary glands, elevated C‐reactive protein, superoxide dismutase, catalase, bovine mastitis, Ag  相似文献   

16.
The electrochemiluminescence (ECL) system based on the ruthenium complex has become a powerful tool in the field of analytical chemistry. However, the non‐aqueous ECL luminescence system, which does not involve complex nano‐modification, has not been widely used for the determination of analytes. In this study, N ‐methyl pyrrolidone was selected as the solvent, and it could also act as a co‐reactant of Rubpy32+. Based on this, a simple ECL system without nanomaterials was established. Strong ECL was generated. Furthermore, a quenching effect between the excited state of Rubpy32+ and sulphamethoxazole (SMZ) was observed. Based on this, a sensitive ECL sensor for detecting SMZ is constructed. A linear relationship between ECL signal quenching intensity (ΔI) and the logarithm of SMZ concentration (log C) in the concentration range of 1 × 10−7 –1 × 10−5 mol/l is obtained. The limit of detection is as low as 3.33 × 10−9 mol/l. The method has been applied to the detection of SMZ in tap water samples with different concentration levels with satisfactory results, and the recovery was 95.3–102.6%.Inspec keywords: biosensors, electrochemical sensors, electroluminescence, chemiluminescence, organic compounds, electrochemistryOther keywords: ruthenium complex, analytical chemistry, nonaqueous ECL luminescence system, complex nanomodification, quenching effect, ECL signal quenching intensity, ECL sensor system, nanofree electrochemiluminescence biosensor system, sulphamethoxazole detection, tris(2,2′‐bipyridyl)ruthenium(II), N‐methyl pyrrolidone recognition, analyte determination, nanomaterials, SMZ concentration detection  相似文献   

17.
Nanoparticles of magnetite passivated with gelatin and starch were synthesised using a co‐precipitation technique. The nanoparticles were characterised using ultraviolet–visible (UV–vis), dynamic light scattering (DLS), Zeta potential, transmission electron microscope (TEM), X‐ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). The UV–vis spectra showed characteristic surface plasmon resonance of magnetite nanoparticles. The DLS results showed the nanoparticles to have average hydrodynamic diameters of 138 ± 2 and 283 ± 21 nm for particles passivated with gelatin and starch, respectively. The stability in a colloidal solution was greater in nanoparticles passivated with gelatin than nanoparticles obtained with starch, as can be seen by their Zeta potential value (−31 ± 2 and −16 ± 0.5 mV, respectively). According to the TEM evaluation, the use of gelatin allowed to obtain nanoparticles with a spherical morphology and an average size of 10 ± 2 nm. However, when using starch the nanoparticles exhibited diverse morphologies with an average size of 25 ± 7 nm. The XRD results confirmed the crystalline structure of the samples, which showed crystallite sizes of 14.90 and 24.43 nm for nanoparticles passivated with gelatin and starch, respectively. FTIR analysis proved the establishment of interactions between functional groups of biopolymers and magnetite nanoparticles.Inspec keywords: crystallites, nanofabrication, ultraviolet spectra, gelatin, surface plasmon resonance, transmission electron microscopy, scanning electron microscopy, visible spectra, X‐ray diffraction, iron compounds, electrokinetic effects, particle size, colloids, nanoparticles, nanomedicine, precipitation (physical chemistry), light scattering, magnetic particles, Fourier transform infrared spectra, nanomagnetics, filled polymers, nanocompositesOther keywords: magnetite nanoparticles, gelatin, starch, characteristic surface plasmon resonance, capping agents, passivation, co‐precipitation technique, ultraviolet–visible spectra, zeta potential value, dynamic light scattering, DLS, transmission electron microscopy, TEM, X‐ray diffraction, XRD, Fourier transform infrared spectroscopy, FTIR, surface plasmon resonance, hydrodynamic diameters, colloidal solution, spherical morphology, crystalline structure, crystallite size, biopolymers, Fe2 O3   相似文献   

18.
Herein, the authors reported a carbon dots mediated synthesis of gold nanoparticles (AuNPs) at room temperature. Transmission electron microscopy revealed that the AuNPs are spherical in shape with a size of 10 nm. As‐prepared AuNPs was immobilised on carbon paste electrode and subjected to electrochemical sensing of an important neurotransmitter dopamine. Differential pulse voltammetry studies revealed sensitive and selective determination of dopamine in the presence of commonly interfering ascorbic acid and uric acid. The linear detection range was 10–600 μM and the limit of detection was 0.7 ± 0.18 μM. The practical application was demonstrated by measuring dopamine in human blood serum and urine samples. The catalytic activity of AuNPs was evaluated by sodium borohydride mediated reduction of nitroaromatic compounds. The reduction kinetics was found to be pseudo‐first‐order kinetics. All the tested nitroaromatics reduced to corresponding amines in <10 min.Inspec keywords: voltammetry (chemical analysis), electrochemical sensors, biosensors, nanosensors, reduction (chemical), organic compounds, nanofabrication, gold, catalysis, transmission electron microscopy, electrochemical electrodes, blood, nanoparticles, carbon, chemical variables measurement, catalysts, particle sizeOther keywords: nitroaromatic compounds, reduction kinetics, gold nanoparticles, chemocatalyst, nitroaromatic reduction, carbon dots mediated synthesis, room temperature, transmission electron microscopy, carbon paste electrode, electrochemical sensing, ascorbic acid, uric acid, linear detection range, human blood serum, urine samples, sodium borohydride mediated reduction, neurotransmitter dopamine, differential pulse voltammetry, catalytic activity, pseudofirst‐order kinetics, amines, temperature 293 K to 298 K, C‐Au  相似文献   

19.
The micromechanical properties of spider air flow hair sensilla (trichobothria) were characterized with nanometre resolution using surface force spectroscopy (SFS) under conditions of different constant deflection angular velocities (rad s−1) for hairs 900–950 μm long prior to shortening for measurement purposes. In the range of angular velocities examined (4×10−4−2.6×10−1 rad s−1), the torque T (Nm) resisting hair motion and its time rate of change (Nm s−1) were found to vary with deflection velocity according to power functions. In this range of angular velocities, the motion of the hair is most accurately captured by a three-parameter solid model, which numerically describes the properties of the hair suspension. A fit of the three-parameter model (3p) to the experimental data yielded the two torsional restoring parameters, S 3p=2.91×10−11 Nm rad−1 and =2.77×10−11 Nm rad−1 and the damping parameter R 3p=1.46×10−12 Nm s rad−1. For angular velocities larger than 0.05 rad s−1, which are common under natural conditions, a more accurate angular momentum equation was found to be given by a two-parameter Kelvin solid model. For this case, the multiple regression fit yielded S 2p=4.89×10−11 Nm rad−1 and R 2p=2.83×10−14 Nm s rad−1 for the model parameters. While the two-parameter model has been used extensively in earlier work primarily at high hair angular velocities, to correctly capture the motion of the hair at both low and high angular velocities it is necessary to employ the three-parameter model. It is suggested that the viscoelastic mechanical properties of the hair suspension work to promote the phasic response behaviour of the sensilla.  相似文献   

20.
Gold nanoparticles (AuNPs) possess colourful light‐scattering properties due to different composition, size and shape. Their unique physical, optical and chemical properties coupled with advantages, have increased the scope of anisotropic AuNPs in various fields. This study reports a green methodology developed for the synthesis of anisotropic AuNPs. The aqueous extracts of Alternanthera sessilis (PGK), Portulaca oleracea (PAK) and Sterculia foetida (SF) with gold ions produced violet, purple and pink coloured AuNPs, respectively, under sonication and room temperature methods revealing the formation of different shapes of AuNPs. The results of TEM analysis of AuNPs confirmed the formation of triangular plate AuNPs of the size 35 nm for PAK extract. Spherical‐shaped AuNPs (10–20 nm) were obtained using an extract of PGK. SF extract produced rod, hexagon, pentagon‐shaped AuNPs and nanorice gold particles. The cell viability studies of the PGK, PAK and SF‐mediated AuNPs on MCF‐7 cell lines by MTT assay revealed the cytotoxic activity of AuNPs to depend on the size, shape and the nature of capping agents. The synthesised AuNPs significantly inhibited the growth of cancer cells (MCF‐7) in a concentration‐dependent manner. The size and shape of these anisotropic AuNPs also reveal its potency to be used as sensors, catalysis, photothermal and therapeutic agents.Inspec keywords: toxicology, gold, transmission electron microscopy, catalysis, nanofabrication, biomedical materials, nanomedicine, particle size, cellular biophysics, nanoparticles, cancer, biological organsOther keywords: Au, size 10.0 nm to 20.0 nm, temperature 293.0 K to 298.0 K, size 35.0 nm, TEM analysis, Sterculia foetida, Portulaca oleracea, Alternanthera sessilis, chemical properties, colourful light‐scattering properties, anisotropic AuNP, triangular plate AuNP, spherical‐shaped AuNP, SF‐mediated AuNP, cancer cells, MCF‐7 cell lines, cell viability, nanorice gold particles, gold ions, optical properties, breast cancer cell lines, anisotropic gold nanoparticles  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号