首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
MODELING THE PHYSICS OF METAL CUTTING IN HIGH-SPEED MACHINING   总被引:3,自引:0,他引:3  
Physical modeling of metal cutting was carried out to provide an understanding and prediction of machining process details. The models are based on finite element analysis (FEA), using a Lagrangian formulation with explicit dynamics. Requirements for material constitutive models are discussed in the context of high-speed machining. Model results address metal cutting characteristics such as segmented chip formation, dynamic cutting forces, unconstrained plastic flow of material during chip formation, and thermomechanical environments of the work-piece and the cutting tool. Examples are presented for aerospace aluminum and titanium alloys. The results are suited for analysis of key process issues of cutting tool performance, including tool geometry, tool sharpness, workpiece material buildup, and tool wear.  相似文献   

2.
ABSTRACT

The use of cooling lubricants in metal machining increases both the tool life and the quality of workpieces and improves the overall sustainability of production systems. In addition to fulfilling these main functions, the focus of machining processes is also related to the reduction of environmental pollution. This can for example be achieved by an optimized arrangement of the cutting tool cooling channels. Therefore, the active cutting edges of the tool should be effectively supplied with a sufficient amount of cooling lubricant. An analysis of the tribological stress is rather difficult because the complex contact zone is inaccessible. Hence, optical investigations are often limited to only observing the chip formation or analyzing the process without considering the influence of the chips.

This article presents an innovative method, which enables a deeper three-dimensional insight into the chip formation zone during drilling with internal cooling channels, considering the cooling lubricant distribution and chip formation. The chip formation simulation based on the finite element method and the computational fluid dynamics flow simulation are combined. In this way, the differences between the different geometric models that do not allow any joint generation of numerical information due to missing interfaces are overcome.  相似文献   

3.
Abstract

The Oxley machining theory which allows for the high strain-rate/high temperature flow stress and thermal properties of the work material is described. It is shown how the theory that was originally developed for the orthogonal process and later extended to oblique machining, can be used to predict cutting forces, temperatures and subsequently built-up edge formation conditions, tool life and cutting edge deformation conditions. It is also shown how the theory can be applied to obtain predictions in machining with restricted contact tools and in intermittent cutting processes, and to obtain work material properties using machining test results. Finally, some consideration is given to the future directions of machining research at UNSW. The Oxley Model can be used for predicting the performance parameters for different machining processes by taking into account the fundamentals of the chip formation process.  相似文献   

4.
ABSTRACT

For the past fifty years researchers have developed various machining models to improve cutting performance. Several approaches have been taken including analytical techniques, slipline field solutions, empirical approaches and finite element techniques. Of these, the finite element approach provides the most detailed information on chip formation and chip interaction with the cutting tool. Finite element models have been developed for calculating the stress, strain, strain-rate, and temperature distributions in both the chip and the workpiece. In addition, tool temperatures, machining forces and cutting power requirements can be determined. This information is extremely, useful for developing more fundamental understanding of complex machining problems. This paper presents a critique of finite element approaches used for simulating machining processes. Several applications of the finite element technique for simulating various machining problems are also reviewed. A new application for determining diffusion wear rates in cutting tools is described, and future directions for finite element modeling of machining processes are discussed.  相似文献   

5.
Abstract

Prediction of chip breaking in machining is an important task for automated manufacturing. This paper presents a study on chip breaking limits. Based on the chip breaking curve, the critical feed-rate is modeled through an analysis of up-curl chip formation, and the critical depth-of-cut is formulated through a discussion of side-curl dominant chip formation processes. Factors affecting chip-breaking limits are also discussed.

In order to predict the chip breaking limits, semi-empirical models are established. Although the coefficients that occur in the model are estimated through machining tests, the models are applicable to a broad range of machining conditions. The model parameters include machining conditions, tool geometry, and workpiece material properties.  相似文献   

6.
有限元仿真是研究金属切削过程和切屑形成过程的有效方法.以铝合金7050为例,详细描述两种金属切削加工的有限元模型:正交切削模型和斜角切削模型,以及有限元模型建立过程中的一些关键技术如:刀屑界面间的摩擦,工件的材料本构模型和切屑分离标准.利用这两种有限元模型可以分别得到加工表面的残余应力分布趋势和切屑的几何形状,也可以预测低刚度结构件的让刀误差.分析表明:有限元仿真可以进行切削参数优化和刀具几何形状的优化,以改善加工表面的质量.  相似文献   

7.
A fundamental understanding of the tribology aspects of machining processes is essential for increasing the dimensional accuracy and surface integrity of finished products. To this end, the present investigation simulates an orthogonal metal cutting using an explicit finite element code, LS-DYNA. In the simulations, a rigid cutting tool of variable rake angle was moved at different velocities against an aluminum workpiece. A damage material model was utilized for the workpiece to capture the chip separation behavior and the simultaneous breakage of the chip into multiple fragments. The friction factor at the cutting tool–workpiece interface was varied through a contact model to predict cutting forces and dynamic chip formation. Overall, the results showed that the explicit finite element is a powerful tool for simulating metal cutting and discontinuous chip formation. The separation of the chip from the workpiece was accurately predicted. Numerical results found that rake angle and friction factor have a significantly influence on the discontinuous chip formation process, chip morphology, chip size, and cutting forces when compared to the cutting velocity during metal cutting. The model was validated against the experimental and numerical results obtained in the literature, and a good agreement with the current numerical results was found.  相似文献   

8.
9.
Abstract

An experimental study of machining glass with a geometrically defined cutting tool is presented. Orthogonal cutting conditions are employed to permit a focus on the fundamental modes of chip and surface formation. Analysis of the machined surfaces under an optical microscope identifies four regimes that are distinctly different with respect to either chip formation or surface formation. For a very small target uncut chip thickness, one on the order of the cutting edge radius, pure rubbing of the edge with no chip formation is observed. Edge rubbing imparts light scuffmarks on the machined surface giving it a frosted appearance. At a larger uncut chip thickness, ductile-mode chip formation occurs ahead of the cutting edge and a scuffed surface remains after the subsequent rubbing of the edge across the freshly machined surface. A further increase in uncut chip thickness maintains a ductile-mode of chip formation, but surface damage initiates in the form of surface cracks that grow down into the machined surface and ahead of the tool. The transition to this machining mode is highly dependent on rake angle. Increasing the uncut chip thickness further causes brittle spalling of chips leaving half-clamshell shaped divots on the surface. This experimental identification of the machining modes and their dependence on uncut chip thickness and rake angle supports the use of geometrically defined cutting tools to machine glass in a rough-semi-finish-finish machining strategy as is traditionally employed for machining metals.  相似文献   

10.
This paper presents the results of an experimental study on the effects of machining parameters (cutting speed, feed, depth of cut) and tool shape on chip formation, surface topography, resultant cutting force and surface roughness produced in flat and ball end milling of the Ren Shape-Express 2000™ aluminum particulate filled-polymer composite material. This material is shown to exhibit a brittle-to-ductile transition in chip formation with decreasing cutting speed. The transition is explained by the strain-rate sensitivity of the polymer matrix and is found to correlate well with a corresponding change in the surface roughness. The absence of clear feed marks on the milled surface explains why molds made from the composite material require less hand polishing than machined metal molds. The influence of cutting conditions and tool shape (flat end vs. ball-nose) on the cutting force, surface roughness, and workpiece breakout are discussed and relevant comparisons with conventional metal and polymer machining are made.  相似文献   

11.
12.
The machining process observed during orthogonal cutting tests for sintered bronze of 11%, 23% and 33% porosity is analyzed. Each step of the machining process, that is, compaction due to the indentation by a cutting tool, the shear local to the tip of the tool and the fracture near the chip root are simulated by a mechanical model based on classical theories of indentation, machining and fracture. The presented models make it possible to predict the several behaviors of the machining, such as the types of chip formation, maximum cutting pressure and chip wave length. Good agreement between the experimental results and the predictions is found.  相似文献   

13.
Abstract

Tool deflection resulting from cutting forces places a constraint on the achievable precision and productivity in machining. This paper presents an analytical model of machining error, in terms of part form deviation in end milling due to the elastic compliance of cutting tool. Based on the relationship of local cutting forces and chip thickness, the shear loading and bending moment on the tool cross section are presented in terms of cutter angular position. The tool deflection resulting from the bending moment is then established from the principle of virtual work. The resulting deflection of workpiece and machine tool structure is also considered through shear loading analysis. The expression for machining error is derived as a closed-form function of the machining parameters, cutting configuration, material characteristics, and machine receptance. End milling experiments were conducted to verify the analytical model under various cutting conditions. Error maps are presented to illustrate the effects of process conditions on the achievable part accuracy.  相似文献   

14.
ABSTRACT

In this paper, recent research efforts at the University of Illinois at Urbana-Champaign (UIUC) on the development of machining process models are summarized under a unified mechanistic modeling framework. The fundamental elements of the basic cutting force model are described first, which include the computation of chip load and chip flow, force transformation relations, workpiece-cutter intersection algorithm, and the model calibration procedure. Some advanced model enhancements are then presented, such as the modeling of process faults, modeling of chip-control tools, and the incorporation of ploughing and tool wear effects. The integration of the process model with the machining system dynamics is discussed next. Finally, representative results are shown to validate the mechanistic modeling approach.  相似文献   

15.
Abstract

Recycled plastics are increasingly being used to manufacture planks used in large-volume applications, including decks, garden, and cloakroom chairs. These products, although manufactured near-to-net shape, often require drilling for assembly purposes. There are very limited data on the machining of plastic material. Manufacturers often rely on data and models established for metals. The machining of plastics, although limited to assembly purposes, or to the removal of excess materials, requires an understanding of the behavior of these materials during the machining in order to obtain better quality parts. It is even more important for recycled plastics, which are inhomogeneous, contain pores, and most often, are made with more than one type of product. This work analyzes the machining of recycled plastics in order to establish and compare their machining models with those traditionally used for metals, and to better understand the behavior of the plastics during machining. The workpiece is drilled at different process conditions and at different temperatures. The process performance indicators such as cutting forces, chip formation, and chip form are analyzed. The originality of this work resides in its study of chip formation and the effects of the preset workpiece temperature on the drilling mechanisms. It is found that there is a range of critical temperatures of transition for plastics similar to the Charpy impact ductile-brittle temperature separating the domain of low cutting force and long and spiral chip from that of high cutting force corresponding to the accordion-type of chip. A parameter describing this phenomenon is defined. It is also found that for low- to moderate-speed operations, the cutting speed has very little effect on the cutting forces, which depend mainly on the feed rate and the workpiece temperature. The relationship between the drilling forces and the feed rate established for metals remain valid, but the exponent of the feed rate for the thrust force is lower. The thrust force and the tangential force are proportional to the feed rate exponent 0.4 compared to 0.8 for metals when drilling workpiece at room temperature or below.  相似文献   

16.
Dry machining is being recognized as ecological machining due to its less environmental impact and manufacturing cost. However, the choice of dry machining is mainly influenced by the workpiece material properties, machining operation and cutting conditions. The recent emergence of austempered ductile iron (ADI) can be considered a significant economic advantage to the increasing industrial demand for cost- and weight-efficient materials. However, due to its microstructure-induced inherent properties, ADI is considered hard-to-machine material. Thus, the dry drilling of ADI is investigated in this paper. The ADI material used in the present study is produced using an innovative process route for near net shape casting production. Drilling experiments are conducted on a DMU80P Deckel Maho five-axis machining centre using PVD-coated carbide tools under dry cutting environment. The dry drilling of ADI under different cutting conditions is evaluated in terms of specific cutting force and tool wear analysis. The influence of cutting conditions on chip morphology and surface roughness is also investigated. The experimental results revealed that the combination of the low feed rate and higher cutting speed leads to the higher mechanical and thermal loads on the tool's cutting edge, resulting in higher specific cutting force values. This behaviour is further supported by the chip morphology analysis, which revealed the formation of segmented chips at higher cutting speed with segment spacing increase with an increase in feed rate. Depending upon the cutting parameters, different modes of tool failures including crater wear, flank wear, chipping, breakage and built-up edge were observed. Surface roughness analysis revealed the influence of tool wear and chip morphology on the machined surface finish.  相似文献   

17.
Rigid-visco-plastic finite element models are used to simulate the chip formation and cracking in the turning processes with grooved tools. The Johnson-Cook constitutive equation and Johnson-Cook damage model, which are appropriate for high-speed machining, are assumed for the workpiece material properties. Thermal effects in cutting are considered. The tool material is considered as rigid, but heat-conducting, with the properties of tool material H11. The calculated chip back-flow angle, curling radius and thickness are analyzed as three typical chip shape parameters. The effects of land length and second rake angle of the grooved tool on chip formation, cracking and temperature are discussed. Some simulation results are compared with other published analytical and experimental results.  相似文献   

18.
根据材料变形的弹塑性理论,建立了材料的应变硬化模型,采用有限元仿真技术,利用有限元软件ABAQUS对中碳合金钢40CrNiMo切削过程中剪切层及切屑的形成进行仿真,分析切削加工区域的应力、应变的分布。该方法比一般的试验法更省时省力,在研究金属切削理论、材料切削性能及开发刀具产品方面有着工程应用价值。  相似文献   

19.
Abstract

This article investigates the application of the Oxley modeling approach to high speed machining (HSM) process for gaining a fundamental understanding and performance prediction of this process which is gaining increased popularity due to its many economic and technological advantages such as faster metal removal rates, efficient use of machine tools and, improved surface finish and lower cutting forces. Oxley's theory has so far mainly been applied for making machining predictions for plain carbon steels in the conventional speed range. In the present work, this theory has been applied for two plain carbon steels and a low alloy steel under HSM conditions. The predicted cutting forces, chip thicknesses, and secondary deformation zone thicknesses are then compared with the experimental results obtained under identical conditions. Good agreement has been shown between measured and predicted results. In addition, the possibility of applying the theory to predict the tool life and tool deformation conditions is also explored. An ability to predict these process parameters is of paramount importance since catastrophic tool failure under HSM conditions can be extremely costly and dangerous.  相似文献   

20.
Rigid-visco-plastic finite element models are used to simulate the chip formation and cracking in the turning processes with grooved tools. The Johnson-Cook constitutive equation and Johnson-Cook damage model, which are appropriate for high-speed machining, are assumed for the workpiece material properties. Thermal effects in cutting are considered. The tool material is considered as rigid, but heat-conducting, with the properties of tool material H11. The calculated chip back-flow angle, curling radius and thickness are analyzed as three typical chip shape parameters. The effects of land length and second rake angle of the grooved tool on chip formation, cracking and temperature are discussed. Some simulation results are compared with other published analytical and experimental results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号