首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
We studied mechanical deformations induced when an insulating material was subjected to a gradual increase in a direct‐current electric field. Poly(ethylene terephthalate) film was studied with an optical technique, which was nondestructive and involved no physical contact. The experimental results indicated that the level of the induced mechanical deformation depended on the strength of the applied electric stress, the linear dimensions of the area under study, and the thickness of the film. When the studied area was relatively small, the level of the mechanical deformation seemed to be more important. The relationship between the induced mechanical deformation and the electric conduction phenomenon was also examined. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 2313–2321, 2004  相似文献   

2.
Poly(arylene ether nitrile) (PEN) is a class of high-performance engineering plastics of poly(arylene ether) with cyano groups as side groups, which can get improved thermal, mechanical, and electrical properties through simple molecular structure design. In this work, a series of PEN (BPA/PP based PEN) copolymers were synthesized with varying amounts of phenolphthalein and bisphenol A. The influence of the copolymer molecular structure variations on the thermal, mechanical, and dielectric properties of PEN copolymer films was investigated. The results demonstrated that the BPA/PP based PEN copolymer films have great mechanical properties and low dielectric constant, as well as enhanced thermal properties. The highest 5% weight loss temperature of 494.9°C was obtained by PEN-B7P3, while the highest glass transition temperature of 238.6°C was obtained by PEN-B3P7. Porous BPA/PP based PEN films prepared by non-solvent induced phase separation (NIPS) exhibited satisfactory mechanical properties and the highest tensile strength of 9.4 MPa was achieved. Moreover, the introduction of the phenolphthalein structure into the PEN molecular chain can improve the heat resistance of the PEN copolymers without deteriorating the dielectric properties, which gives the copolymers great potential as candidates for applications in flexible electronics and wireless communication.  相似文献   

3.
《国际聚合物材料杂志》2012,61(3-4):321-333
Abstract

The tensile loading – induced necking in notched specimens of amorphous poly(ethylene naphthalate) (PEN) was studied by conventional (DSC) and alternating differential scanning calorimetry (ADSC) and microhardness measurements. It was shown that in this PEN, similarly to amorphous copolyesters, necking occurred via cold drawing and not via true plastic deformation. The variation of the microhardness along the height and width of the necked region of the specimen reflects the specific orientation of the material during tensile loading. It was observed that the tensile loading provokes a drastic (jump-like) orientation of the macromolecules in draw direction, which even increases in the vicinity of the tip of the necked zone.  相似文献   

4.
Graphene nanoplatelet reinforced semi‐crystal poly(arylene ether nitrile) (PEN/GN) nanocomposites were prepared by an economically and environmentally friendly method of twin‐screw extrusion technique. The feasibility of using PEN/GN nanocomposites was investigated by evaluating their thermal behaviors, mechanical, and morphological properties. Thermal studies revealed that GN could act as nucleating agents but decreased the whole crystallinity in/of PEN/GN nanocomposites. Mechanical investigation manifested that GN had both strengthening effect (increase in flexural modulus and strength) and toughening effect (rise in the elongation and impact strength) on the mechanical performance of semi‐crystal PEN nanocomposites. Heat treatment can further increase their mechanical performances due to the increased crystallinity and release of inner stress. With the small addition of GN (<5 wt%), the morphology of PEN was changed from brittle to ductile, and GN showed good dispersion and adhesion in/to the PEN matrix. This work shows that in the semi‐crystal polymer/filler systems, besides the dispersion states of fillers and interactions between fillers and polymer matrices, the crystallinity of the nanocomposites affected by the existence of filler and the residual stress are also two key factors determining the mechanical properties. POLYM. COMPOS., 35:404–411, 2014. © 2013 Society of Plastics Engineers  相似文献   

5.
Blends of poly(ethylene terephthalate) (PET) and poly(ethylene naphthalate) (PEN) were processed into biaxially drawn films, and samples taken from the bi‐oriented films were then investigated by dynamic rheology experiments in the melt state. Storage modulus G′ and loss modulus G″ were determined in the frequency range of 10?2–102 rad/s at temperatures between 260 and 300°C. Although the time–temperature superposition (TTS) principle was found to hold in the high frequency regime, a breakdown of TTS was observed at low frequencies, and the terminal behavior of the storage modulus G′ of the blends departs drastically from the terminal behavior observed for the blend components. This is caused by interfacial surface tension effects. The results indicate that despite the effect of transesterification reactions, the PET/PEN blend systems investigated consist of a microseparate phase of PEN platelets in a matrix of PET. This morphology is produced when the blends are processed into biaxially oriented PET/PEN films, and droplets of PEN are deformed into a lamellar structure consisting of parallel and extended, separate layers. The large interfacial surface area of the bi‐oriented PET/PEN blends leads to remarkably strong interfacial tension effects in dynamic rheology measurements. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

6.
Poly (arylene ether nitrile)/fullerene (PEN/fullerene) nanocomposites were prepared by a facile solution‐cast method and the rheological, dielectric, mechanical, and morphological properties of the resulted nanocomposites were systematically studied and compared. Rheological studies showed PEN/fullerene nanocomposites percolation network formed at fullerene containing of 1.50 wt %, when the shear frequency was fixed at 0.1 Hz, the fitted rheological percolation threshold was about 1.55 wt %, very close to the experimental observations. The dielectric transaction occurs when the fullerene loading reached 1.50 wt %, that is very close to its rheological percolation threshold. At this point, PEN/fullerene nanocomposites also showed the optimal mechanical properties with a tensile strength of 93.6 MPa and modulus of 1951.5 MPa, which is increased by 27% and 15% compared with the pure PEN. SEM and TEM images have manifested the separate fullerene aggregated to fullerene bundles in PEN/fullerene nanocomposites, and the dispersion of fullerene bundles begin to go bad when the containing above 1.50 wt %. The PEN/fullerene nanocomposites can be widely used due to its excellent dielectric and mechanical performance. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40100.  相似文献   

7.
Riveted carbon fibers (CFs) were fabricated via in situ thermopolymerization. Iron phthalocyanine was like rivets distributed on the surface of the acidulated CFs. The rivets were characterized by scanning electron microscopy (SEM) and distributed uniformly on the surface of the CFs with a uniform microsphere size of 120 nm. Next, the pristine and riveted CFs were used to prepare fiber‐reinforced poly(arylene ether)nitrile (PEN)‐based composites with a hot‐press molding technique. The creep behaviors of PEN on the pristine and riveted CFs were investigated by dynamic rheological measurements. Among the samples, the viscosities changed with the frequency, and the stress relaxation and Cole–Cole plots are presented and discussed in detail. These results indicated better interlocking between the PEN chains and the rivets on the surface of the CFs. The dynamic mechanical properties of the composites were examined in three‐point bending mode with a dynamic mechanical analyzer. The results indicate that the reduction of the tan δ peak height may have been due to the improved interfacial adhesion between the CFs and PEN. Additionally, the interfacial morphologies of the CF‐reinforced PEN composites were monitored; this also confirmed the improved adhesion between the PEN chains and the riveted CFs in comparison with that of the pristine CFs. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46466.  相似文献   

8.
Two kinds of polyarylene ether nitriles (PEN) copolymers PEN (HQ/PP) and PEN (HQ/RS) were synthesized using 2,6-dicholorobenzonitrile (DCBN) with equal molar of phenolphthalein (PP) and hydroquinone (HQ), DCBN with equal molar of HQ and resorcin (RS), respectively. The melt-mixed blends of two PENs over the complete composition range were characterized by dynamic mechanical analyses (DMA), tensile testing, scanning electronic microscopy (SEM), and capillary rheometer test for their compatibility, thermal, mechanical, and melt flow properties study. DMA show a considerable compatibility between the two PENs. Morphology examinations reveal good component dispersion and strong interface adhesion. The capillary rheometer test found that the blending of PEN (HQ/RS) enhanced the fluidity of the PEN (HQ/PP)/PEN (HQ/RS) blends by reducing its viscosity, which is beneficial to the processability of PEN (HQ/PP). © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

9.
Liquid crystalline polymer reinforced plastics were prepared by compounding (PHB/PEN/PET) blends. A fibrillar PHB structure was formed in situ in the PEN/PET matrix under a high elongational flow field during melt‐spinning of the composite fibers. The formation of PHB microfibrils in the composite fiber with different PHB contents and winding speeds was observed. The PHB microfibril reinforced PEN/PET composite fibers exhibited an unexpectedly low tensile modulus. We have evaluated the tensile modulus of the fibers using the non‐modified 22 and a modified 23 Halpin–Tsai model. From the analysis of both models, large differences were found between the theoretical and experimental values of the tensile modulus, and the low value of the tensile modulus of the composite fiber could not adequately be explained by either model. Thus, we analyzed the observed modulus values using the Takayanagi model, 24 which describes the concept of mechanical discontinuities in semi‐crystalline polymers. Using the Takayanagi model, the effective fraction of continuous or discontinuous microfibrils was evaluated. Consequently, we could successfully explain the very low modulus of the PHB/PEN/PET composite fiber, having a large number of PHB microfibrils, using the Takayanagi model. Copyright © 2003 Society of Chemical Industry  相似文献   

10.
《国际聚合物材料杂志》2012,61(1-4):231-236
Abstract

The mechanical properties of as-spun poly(ethylene 2,6-naphthalene-dicarboxylate) (PEN) fibres were studied in order to characterize this relatively new material near its glass-rubber transition.

Tensile tests were carried out on amorphous (low-speed spun) PEN filaments. The temperature range of 90°C up to 160°C was covered using increments of 10°C. A transition from necking and cold drawing to rubber-like behavior was observed in the stress-strain relationship. Dynamic mechanical experiments were carried out on PEN yarns spun at speeds from 500 to 4000 m min?1. Both temperature and frequency were varied. The maxima in loss modulus depend on spinning speed. Tensile behavior and dynamic mechanical behavior of PEN fibres demonstrate that the glass-rubber transition temperature of PEN is approximately 125°C.  相似文献   

11.
Novel carboxylic poly(arylene ether nitrile)s (CPEN) functionalized carbon nanotubes (CPEN‐f‐CNTs) were successfully prepared by a simple and effective solvent–thermal route. The CPEN‐f‐CNTs were subsequently used as the novel filler for preparation of high performance poly(arylene ether nitrile)s (PEN) nanocomposites. The SEM characterization of the PEN nanocomposites revealed that the CPEN‐f‐CNTs present better dispersion and interfacial compatibility in the PEN matrix, which was confirmed by the linear rheological analysis (Cole–Cole plots) as well. Consequently, the improved thermal stability (increased initial and maximum decomposition temperature) and enhanced mechanical properties (tensile strength and modulus) were obtained from nanocomposites using CPEN‐f‐CNTs. More importantly, the PEN/CPEN‐f‐CNTs nanocomposites not only show a high dielectric constant but also have low dielectric loss. For example, a dielectric constant of 39.7 and a dielectric loss of 0.076 were observed in the PEN composite with 5 wt% CPEN‐f‐CNTs loading at 100 Hz. Therefore, the flexible PEN/CPEN‐f‐CNTs nanocomposites with outstanding mechanical, thermal and dielectric properties will find wide application in the high energy density capacitors. POLYM. COMPOS., 37:2622–2631, 2016. © 2015 Society of Plastics Engineers  相似文献   

12.
This study proposes the new concept of reducing the birefringence of poly(ethylene naphthalate) (PEN) by a novel alloy with fluorene‐based polyester (FBP) involving the “cardo” structure in it. The alloys composed of PEN and FBP were prepared by simple melt blending method (process A) and reactive melt blending (process B). The resulting alloys were characterized by DSC, XRD, DMA, tensile testing, and polarized light microscopy. All PEN‐FBP alloys showed transparency and a single glass transition temperature (Tg), indicating that PEN‐FBP alloys were completely compatible. It was also demonstrated that Tg for PEN was shifted to the high‐temperature side by alloying with FBP. A large amount of the orientation‐induced birefringence was induced in drawn PEN sheets; however, in the cases of PEN‐FBP alloys, it was drastically decreased because of alloying with FBP. We could reveal the new concept for “low‐orientation‐induced birefringence material.” POLYM. ENG. SCI., 2009. © 2009 Society of Plastics Engineers  相似文献   

13.
Depolymerization of poly(ethylene naphthalate) (PEN) in subcritical water was performed in a fused silica capillary reactor (FSCR) and an autoclave reactor. The phase behaviors of PEN in water during the heating‐cooling process in the FSCR were observed under microscope and images were captured by digital camera. Reaction conditions for PEN hydrolysis in the autoclave reactor were chosen based on the experimental results obtained from the FSCR. Under autogenous pressures in the autoclave reactor, the effects of the water/PEN mass ratio (8.0 g/1.0 g to 16.0 g/1.0 g), reaction temperature (240–280°C) and reaction time (5–60 min) on the depolymerization yield and products yields were investigated. The main products of depolymerization were identified and quantified as 2,6‐naphthalene dicarboxylic acid (2,6‐NDA) and ethylene glycol (EG). PEN was completely depolymerized at 260°C in 60 min with an optimal water/PEN mass ratio of 12.0 g/1.0 g (12:1). The yields of 2,6‐NDA and EG were optimized to 83.1% and 79.7%, respectively. Reaction kinetics analysis showed that the PEN depolymerization in subcritical water was first‐order and the activation energy was 95 kJ mol?1. Additionally, a reaction pathway was proposed based on the experimental results. POLYM. ENG. SCI., 57:1382–1388, 2017. © 2017 Society of Plastics Engineers  相似文献   

14.
In this study, novel nitrile functionalized graphene (GN‐nitrile)/poly(arylene ether nitrile) (PEN) nanocomposites were prepared by an easy solution‐casting method and investigated for the effect of surface modification on the dielectric, mechanical and thermal properties. Graphene (GN) was first functionalized by introduction of nitrile groups onto the GN plane, which was confirmed by scanning electron microscopy, differential scanning calorimetry, Fourier transform infrared spectroscopy, thermogravimetric analysis and dispersibility research. Compared with pure GN, the grafted nitrile groups on the GN‐nitrile can interact with nitrile groups in PEN and lead to flat but better dispersion and stronger adhesion in/to the PEN matrix. Consequently, GN‐nitrile had a more significant enhancement effect on the properties of PEN. The dielectric constant of the PEN/GN‐nitrile nanocomposite with 5 wt% GN‐nitrile reaches 11.5 at 100 Hz, which is much larger than that of the pure PEN matrix (3.1). Meanwhile, dielectric loss is quite small and stable and the dielectric properties showed little frequency dependence. For 5 wt% GN‐nitrile reinforced PEN composites, increases of 17.6% in tensile strength, 26.4% in tensile modulus and 21 °C in Td5% were obtained. All PEN/GN‐nitrile nanocomposite films can stand high temperature, up to 480 °C. Hence, novel dielectric PEN/GN‐nitrile nanocomposite films with excellent mechanical and thermal properties can be used as dielectric materials under some critical circumstances such as high wear and temperature. Copyright © 2012 Society of Chemical Industry  相似文献   

15.
The production and properties of blends of poly(ethylene terephthalate) (PET) and poly(ethylene naphthalene 2,6‐dicarboxylate) (PEN) with three modified clays are reported. Octadecylammonium chloride and maleic anhydride (MAH) are used to modify the surface of the montmorillonite–Na+ clay particles (clay–Na+) to produce clay–C18 and clay–MAH, respectively, before they are mixed with the PET/PEN system. The transesterification degree, hydrophobicity and the effect of the clays on the mechanical, rheological and thermal properties are analysed. The PET–PEN/clay–C18 system does not show any improvements in the mechanical properties, which is attributed to poor exfoliation. On the other hand, in the PET–PEN/clay–MAH blends, the modified clay restricts crystallization of the matrix, as evidenced in the low value of the crystallization enthalpy. The process‐induced PET–PEN transesterification reaction is affected by the clay particles. Clay–C18 induces the largest proportion of naphthalate–ethylene–terephthalate (NET) blocks, as opposed to clay–Na+ which renders the lowest proportion. The clay readily incorporates in the bulk polymer, but receding contact‐angle measurements reveal a small influence of the particles on the surface properties of the sample. The clay–Na+ blend shows a predominant solid‐like behaviour, as evidenced by the magnitude of the storage modulus in the low‐frequency range, which reflects a high entanglement density and a substantial degree of polymer–particle interactions. Copyright © 2005 Society of Chemical Industry  相似文献   

16.
The hydroquinone (HQ) and bisphenol A (BPA) type poly(arylene ether nitrile) (PEN) (HQ/BPA‐PEN) were synthesized through nucleophilic aromatic substitution polymerization from HQ, BPA, and 2,6‐dichlorobenzonitrile (DCBN). The prepared copolymers were characterized by intrinsic viscosity, Fourier transform infrared (FTIR), and dynamic rheological analysis. The properties of resultant copolymers were studied by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and mechanical testing. The results showed that the PEN copolymers exhibited crystallization performance with excellent thermal and mechanical properties. HQ/BPA‐PEN10 was made into films by solution‐casting process and then were treated at different temperatures (200, 260, 280, 300, 310, and 320 °C) for different times (1, 2, 3, 4, and 5 h) to investigate the crystallinity. Results showed that when isothermal treatment temperature is 310 °C and isothermal treating time is 4 h, HQ/BPA‐PEN10 showed best properties. At this condition, the melting enthalpy, crystallinity, tensile strength, and elongation at break of the sample is 17.7 J/g, 14.11%, 132.9 MPa, and 6.1%, respectively. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46412.  相似文献   

17.
Blends of poly(ethylene 2,6-naphthalate) (PEN) and a liquid crystalline copolyester (LCP), poly(benzoate-naphthoate), were prepared in a twin-screw extruder. Specimens for mechanical testing were prepared by injection molding. The morphology and mechanical properties were investigated by scanning electron microscopy (SEM) and an Instron tensile tester. SEM studies revealed that finely dispersed spherical domains of the liquid crystalline polymer (LCP) were formed in the PEN matrix, and the inclusions were deformed into fibrils from the spherical droplets with increasing LCP content. The morphology of the blends was found to be affected by their composition and a distinct skin-core morphology was found to develop in the injection molded samples of these blends. Mechanical properties were improved with increasing LCP content, and synergistic effects have been observed at 70 wt% LCP content whereas the elongation at break was found to be reduced drastically above 10 wt% of LCP content. This is a characteristic typical of chopped-fiber-filled composites. The improvement in mechanical properties is likely due to the reinforcement of the PEN matrix by the fibrous LCP phase as observed by scanning electron microscopy. The tensile and modulus mechanical behavior of the LCP/PEN blends was very similar to those of the polymeric composite, and the tensile strength and flexural modulus of the LCP/PEN 70/30 blend were two times the value of PEN homopolymer and exceeded those of pure LCP, suggesting LCP acts as a reinforcing agent in the blends.  相似文献   

18.
A series of poly(ethylene 2,6‐naphthalate) (PEN) copolyesters was synthesized using three monomers (newly prepared 1,4‐bis[(methoxycarbonylethoxy)methyl]benzene, dimethyl 2,6‐naphthalenedicarboxylate, and ethylene glycol) with various molar ratios to investigate the effects of these compositions on thermal properties of the copolyesters. Copolyesters having weight average molecular weights of 11,000–22,000 were obtained by melt polycondensation in the presence of metallic catalysts. The structures and thermal properties of the resulting random PEN copolyesters were characterized by nuclear magnetic resonance, differential scanning calorimetry, thermal‐mechanical analyzer, and X‐ray diffraction analysis. The results of thermal measurements revealed that thermal properties depended on the corresponding new diacid comonomer content of the PEN copolyesters. Nonetheless, the crystal structures of PEN copolyesters and PEN homopolymer are identical. POLYM. ENG. SCI., 54:2641–2644, 2014. © 2013 Society of Plastics Engineers  相似文献   

19.
Poly(arylene ether nitriles) (PEN) with pendant phthalonitrile groups (PEN? CN) were obtained via the Yamazaki‐Higashi phosphorylation route of 4‐(4‐aminophenoxy)phthalonitrile (APN) with acid‐contained PEN (PEN? COOH) in the presence of CaCl2. The chemical structure and molecular weight of PEN? CN were characterized by 1H‐NMR, Fourier transform infrared spectroscopy, and Gel permeation chromatography. The synthesized PEN? CN had superior solubility in polar organic solvent and can be easily processed into thin films from the solutions of N‐methylpyrrolidone, dimethylsulfoxide, N,N′‐dimethylformamide, dimethylacetamide, and tetrahydrofuran. Compared with PEN? COOH, PEN? CN showed higher thermal stability with 5% weight loss temperatures (T5%) up to 430°C. The glass transition temperature of PEN? CN was improved from 211 to 235°C measured by differential scanning calorimetry (DSC). In addition, it also exhibited excellent mechanical properties that Young's modulus reached to 3.5 GPa. Meanwhile, the effects of different aromatic amines and Lewis acid on the crosslinking behavior of PEN? CN were investigated by DSC. The results indicated that anhydrous Zinc chloride (ZnCl2) was the best catalyst to lower the curing temperature among 2,6‐bis(4‐diaminobenzoxy) benzonitrile, 4,4‐diaminediphenyl sulfone, APN and ZnCl2. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

20.
The crystallization kinetics of poly(ethylene terephthalate)/poly(ethylene 2,6‐naphthalate) (PET/PEN) blends were investigated by DSC as functions of crystallization temperature, blend composition, and PET and PEN source. Isothermal crystallization kinetics were evaluated in terms of the Avrami equation. The Avrami exponent (n) is different for PET, PEN, and the blends, indicating different crystallization mechanisms occurring in blends than those in pure PET and PEN. Activation energies of crystallization were calculated from the rate constants, using an Arrhenius‐type expression. Regime theory was used to elucidate the crystallization course of PET/PEN blends as well as that of unblended PET and PEN. The transition from regime II to regime III was clearly observed for each blend sample as the crystallization temperature was decreased. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 23–37, 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号