首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 498 毫秒
1.
镍-磷微米金刚石化学复合镀工艺及镀层性能   总被引:2,自引:0,他引:2  
采用化学复合镀法在低碳钢表面镀覆Ni–P–金刚石复合镀层。化学镀基础镀液含硫酸镍25g/L、次磷酸钠25g/L、结晶乙酸钠15g/L和柠檬酸钠10g/L,pH为4~5,温度80~85°C。金刚石颗粒的平均粒径为5μm。比较了直接复合镀及两步复合镀工艺分别所得镀层的微观形貌。借助材料表面微纳米力学测试仪及磨损试验机研究了复合镀层的性能。先化学镀Ni–P合金30min,然后在机械间歇搅拌下加入金刚石0.4g/L,再复合镀10min,可使金刚石颗粒均匀地镶嵌在镍基镀层中,并有一部分凸出镀层表面,从而增大了镀层的摩擦因数及与GCr15相对面的咬合力。金刚石复合镀层的干摩擦因数可达0.518。动载条件下未出现脱落现象。  相似文献   

2.
将石墨烯(50~250mg/L)加入传统的化学镀Ni–P合金镀液(由30g/LNiSO_4·6H_2O、25g/LNaH_2PO_2·H_2O、15g/L乙酸钠、15g/L柠檬酸钠、25mg/L乳酸和15mg/L醋酸铅组成,pH=4.3~5.1)中,在45钢表面得到Ni–P–石墨烯化学复合镀层。采用扫描电镜(SEM)和X射线衍射仪(XRD)分析了从不同石墨烯质量浓度的镀液中所得Ni–P–石墨烯复合镀层的表面形貌和结构,采用多功能材料表面性能测试仪考察了复合镀层的耐磨性。结果表明,所得Ni–P–石墨烯化学复合镀层为非晶态结构。当镀液中石墨烯的质量浓度为100mg/L时,Ni–P–石墨烯复合镀层的表面平整、均匀、致密,耐磨性最优。  相似文献   

3.
在45钢上制得复合化学镀镍–磷–多壁碳纳米管(MWNTs)镀层,镀液配方及工艺条件为:NiSO_4·6H_2O 30 g/L,NaH_2PO_2·H_2O 25 g/L,乙酸钠15 g/L,柠檬酸钠15 g/L,乳酸25 mg/L,醋酸铅15 mg/L,MWNTs 1 g/L,柠檬酸0.5 g/L,pH 4.5~4.7,温度(85±1)℃,搅拌速率200 r/min,时间2 h。利用扫描电镜、X射线衍射仪分析了复合镀层的表面形貌和结构,并采用多功能材料表面性能测试仪对复合镀层的摩擦磨损行为进行研究。结果表明,Ni–P–MWNTs复合镀层是非晶结构,MWNTs均匀地嵌埋在基质镀层中,使得Ni–P–MWNTs复合镀层的显微硬度和耐摩擦磨损性能得到显著提高。  相似文献   

4.
纳米金刚石爆轰黑粉化学复合镀层的耐磨性能   总被引:1,自引:0,他引:1  
采用在化学镀液中添加纳米金刚石爆轰黑粉的方法,在20#钢基体上共沉积了Ni–P–纳米金刚石复合镀层,重点研究了复合镀层的耐磨特性和金刚石含量、表面活性剂及热处理等工艺因素对复合镀层摩擦磨损性能的影响,并初步探索了复合镀层的耐磨机制。结果表明:纳米金刚石爆轰黑粉化学复合镀层具有优异的耐磨性能,黑粉中的石墨成分可起到自润滑作用。复合镀液中金刚石黑粉含量为8g/L,不添加表面活性剂,镀层热处理温度为360°C时,镀层耐磨性能最佳。  相似文献   

5.
考察了pH对45钢上化学复合镀Ni–P–聚四氟乙烯(PTFE)沉积速率和镀层孔隙率、磷含量、表面形貌、耐蚀性、显微硬度和摩擦因数的影响。镀液组成和工艺条件为:NiSO_4·6H_2O 25 g/L,NaH_2PO_2·H_2O 30 g/L,无水乙酸钠20 g/L,柠檬酸20 g/L,硫脲2 mg/L,氟碳型表面活性剂18 mg/L,PTFE 1.0 g/L,温度85℃,时间1 h。pH为5.0时,沉积速率为15.93μm/h,所得为高磷(质量分数8.34%)复合镀层,其显微硬度为163.3 HV,摩擦因数0.25,能耐中性盐雾腐蚀24.5 h。  相似文献   

6.
在酸性化学镀镍液中分别加入阴离子型、阳离子型和非离子型9种表面活性剂,以分散SiC微粒并在ZL102铝合金表面制备性能良好的Ni–P–SiC复合镀层。通过研究表面活性剂对镀液性能和复合镀层表面形貌、显微硬度、孔隙率及SiC复合量的影响,对表面活性剂进行筛选。结果表明,以60mg/L聚乙二醇作表面活性剂时,SiC微粒的分散效果最好,所得Ni–P–SiC复合镀层的孔隙率仅为0.5714个/cm2,显微硬度为729.76HV,镀层中的SiC颗粒细小、分布均匀,复合量达5.00%,综合性能最好。  相似文献   

7.
针对纳米化学复合镀施镀过程中纳米颗粒分散问题,设计并研制了可控制空气流量的搅拌装置,研究了空气搅拌强度对n-Al2O3/Ni–P化学复合镀层性能的影响。结果表明,空气搅拌强化了纳米颗粒在镀层中的分散。搅拌强度为80L/h时,纳米化学复合镀层最致密,为典型的胞状结构,镀层中纳米Al2O3含量达到1.13%,镀层硬度可达628HV,镀层孔隙率等级为9级。极化曲线显示,纳米化学复合镀层的自腐蚀电流(9.963μA/cm2)远远小于Ni–P镀层,具有更优异的耐蚀性。  相似文献   

8.
在45#钢上化学镀Ni–P–PTFE复合镀层,其工艺流程主要包括化学机械抛光、碱性除油、活化、化学镀和干燥。研究了主盐和还原剂质量浓度、pH、温度以及PTFE体积分数对镀速的影响。观察了Ni–P–PTFE镀层的表面形貌,测试了镀层的摩擦学性能。结果表明:当工艺条件为25 g/L硫酸镍、30 g/L次磷酸钠、10 mL/L PTFE、pH 4.6和温度(92±2)°C时,镀速最佳,镀层的摩擦因数在0.16~0.20之间,具有优良的耐磨性能。  相似文献   

9.
以不锈钢为基体,电沉积制备镍–铝复合镀层。研究了电流密度、pH、搅拌速率、镀液中Al颗粒含量及温度对镍–铝复合镀层外观和Al含量的影响。复合镀的较佳工艺参数为:NiSO4·7H2O(150±2)g/L,NH4Cl(15±1)g/L,H3BO3(15±1)g/L,C12H25SO4Na(0.10±0.01)g/L,明胶0.5g/L,Al颗粒30g/L,消泡剂适量,温度(30±2)°C,pH4.5,电流密度2.5A/dm2,搅拌速率150r/min,时间90min。在较佳工艺下,所得镀层的Al含量为4.4%~5.2%(质量分数),表面较为均匀,但略显粗糙。  相似文献   

10.
采用电刷镀技术在45钢表面制备了镍-石墨烯(GE)复合镀层。镀液配方和工艺条件为:NiSO_4·6H_2O 220 g/L,CH_3COONH_4 40 g/L,(NH_4)_3C_6H_5O_7 45 g/L,GE 0.5 g/L,NH_3·H_2O 100~130 mL/L,十二烷基硫酸钠适量,pH 7.3~7.5,电压+12 V,镀笔速率10~12 m/min,时间5 min。采用扫描电镜(SEM)、能谱仪(EDS)、拉曼光谱仪、X射线衍射仪(XRD)和激光热导仪表征了Ni–GE复合镀层的微观结构、GE分布和导热性。与纯Ni镀层相比,Ni–GE复合镀层更致密,晶粒尺寸更小。复合电刷镀Ni–GE层的沉积速率(8.4μm/min)低于电刷镀Ni层的沉积速率(10.4μm/min)。Ni–GE复合镀层在25℃与100℃下的热导率较Ni镀层分别提高了11.5%和25.8%,导热性更优。  相似文献   

11.
Ni-P-SiO2/TiO2化学复合镀工艺研究   总被引:10,自引:2,他引:8  
采用正交实验初步确定了Ni—P—SiO2/TiO2纳米化学复合镀工艺的基本配方。研究了搅拌速度、表面活性剂加入量、pH值、温度对沉积速度的影响,以及纳米粒子加入量、搅拌方式、搅拌速度、表面活性剂种类对镀层纳米粒子复合量的影响,得出最佳工艺配方。  相似文献   

12.
用复合电镀方法在低碳钢基体上镀覆(Ni-P)-石墨复合镀层.研究了表面活性剂、石墨微粒的悬浮量及阴极电流密度对镀层中石墨微粒含量的影响.结果表明,当镀液中石墨微粒约为12g/L、搅拌速度120 r/min、温度为45℃、pH为4,镀层中石墨微粒含量最高.对镀层的表面形貌、耐蚀性、硬度、减摩性及耐磨性进行了测定,与Ni-P合金镀层相比,(Ni-P)-石墨复合镀层有良好的综合性能.  相似文献   

13.
采用电刷镀工艺制备了Ni–Y2O3纳米复合镀层,镀液组成和工艺条件为:NiSO4·6H2O 230~255 g/L,柠檬酸三钠90~105 g/L,乙酸铵20~30 g/L,Y2O3 15 g/L,表面活性剂0.01 g/L,pH 7.2~7.5,温度20°C,电压12 V,电笔速率100~120 mm/s,时间15 min。分别利用电子显微镜、X射线衍射仪和电化学工作站表征了镀层的表面形貌、微观结构和耐腐蚀性能。结果表明,与快速镍镀层相比,Ni–Y2O3纳米复合镀层更为平整、致密,晶粒相对细小。Ni–Y2O3复合镀层在3.5%NaCl溶液中的自腐蚀电位和腐蚀速率分别为-184.86 mV和0.0596 mm/a,腐蚀后表面只是局部存在轻微的凹坑,因此Ni–Y2O3复合镀层的耐腐蚀性能明显优于快速镍镀层。  相似文献   

14.
利用X射线光电子能谱仪(XPS)分析了不同纳米Ti O2含量的Ni–P化学镀液所制备的Ni–P–TiO 2复合镀层中纳米TiO 2的含量及其分布状况,在以乳酸为配位剂、聚乙烯吡咯烷酮(PVP)为表面活性剂的Ni–P–Ti O2化学复合镀液中,采用红外–可见–紫外分光光度法研究了不同用量的乳酸和PVP以及镀液p H对纳米Ti O2分散性的影响,获得了最佳的分散条件:纳米Ti O2加入量3.0~4.0 g/L,PVP 0.2 g/L,乳酸4.5 m L/L,p H 5.0~5.5。  相似文献   

15.
应用化学复合镀技术修复磨损的作动筒活塞杆,介绍了化学复合镀Ni–P–PTFE(聚四氟乙烯)镀液配方、修复工艺流程及工艺条件。讨论了温度、pH、搅拌方式对PTFE复合量的影响,获得了化学复合镀较佳的工艺条件:温度85~95°C,pH=4.8,机械搅拌10min、间歇1min。修复层测试结果表明,镀层厚度为20μm的修复件,其显微硬度为390HV,使用3个月后的磨损量为1.2g。修复件的使用寿命达到3年,满足用户要求。  相似文献   

16.
以浸锌–闪镀法和预植法分别对铝合金基体进行前处理,然后再化学镀Ni–Cu–P合金。通过扫描电镜(SEM)、能谱仪(EDS)和电化学测量等技术对其进行表征,探讨了两种前处理工艺对化学镀Ni–Cu–P合金镀层表面形貌、化学组成和阳极极化曲线的影响。结果表明,与浸锌–闪镀法相比,预植法工艺简单,得到的镀层与基体结合良好;两种镀层的Ni含量相近,均为68%,但预植法所得镀层的Cu含量比浸锌–闪镀法增加近7个百分点,P含量则下降6个百分点;预植法所得镀层的腐蚀电流密度为3.8μA/cm2,远小于浸锌–闪镀法所得镀层的13.2μA/cm2。预植法处理后得到的化学镀Ni–Cu–P合金镀层具有更好的耐腐蚀性能。  相似文献   

17.
针对Cu–Ni–Sn合金自润滑性能差的问题,向Cu–Ni–Sn合金镀液中加入聚四氟乙烯(PTFE)乳液,采用电沉积法在45钢表面制备了Cu–Ni–Sn–PTFE复合镀层。镀液组成和工艺条件为:氰化亚铜35 g/L,游离氰化钠10 g/L,锡酸钠10 g/L,氯化镍15 g/L,蛋氨酸20 g/L,甲基磺酸18 g/L,60%PTFE乳液5~15 m L/L,电流密度1 A/dm~2,温度50~60°C,pH 10,时间2 h。考察了镀液PTFE含量对镀层的耐磨性、显微硬度、结合力、PTFE含量以及外观的影响,表征了Cu–Ni–Sn–PTFE复合镀层的形貌、结构和成分。随着镀液PTFE含量的升高,镀层的耐磨性改善,但显微硬度和结合力下降,厚度和PTFE含量则先升后降。镀液中PTFE的最佳添加量为10 m L/L,此添加量下所得Cu–Ni–Sn–PTFE复合镀层的综合性能最佳。  相似文献   

18.
采用高频脉冲电沉积法在不锈钢板上制备Ni–Co/SiC复合镀层。研究了镀液中SiC含量、脉冲频率、占空比以及平均电流密度对复合镀层中Si含量的影响,得到的较佳工艺参数为:纳米SiC 8 g/L,脉冲频率60 kHz,平均电流密度3~4 A/dm2,占空比0.32,温度40°C,pH 4.0~5.0,时间60 min。对比研究了较佳工艺下制备的Ni–Co/SiC和Ni–Co镀层的表面形貌和相结构。结果表明,Ni–Co/SiC复合镀层的表面比Ni–Co合金镀层更细致均匀,SiC具有细化镀层晶粒的作用。  相似文献   

19.
为了提高Ni–P合金镀层的耐蚀性和表观质量,在化学镀Ni–P二元合金镀液的基础上加入钨酸钠,在钢铁上制备了Ni–W–P三元合金镀层。探讨了镀液主要成分和工艺条件对镀层外观质量及耐蚀性的影响,获得了较佳的工艺规范:硫酸镍25~35 g/L,钨酸钠55~65 g/L,次磷酸钠30~40 g/L,复合配位剂80~100 g/L,组合光亮剂5~10 mg/L,p H 8.5~9.0,温度80~90°C。检测了镀层的相关性能。结果表明,所制备的Ni–W–P合金镀层结晶细致,光亮度和结合力好,具有良好的装饰效果,耐蚀性优于化学镀Ni–P合金镀层。  相似文献   

20.
在超声场中采用脉冲沉积法制备了Ni–ZrO2–CeO2二元纳米复合镀层。镀液组成和基础工艺条件为:氨基磺酸镍300 g/L,H3BO3 30 g/L,NH4Cl 5 g/L,润湿剂0.15 g/L,ZrO2 20 g/L,CeO235 g/L,温度(45±2)°C,pH 3.8±0.1,时间2 h。研究了平均电流密度、占空比和脉冲频率等对Ni–ZrO2–CeO2复合镀层中纳米颗粒含量的影响。采用静态浸泡法研究了不同脉冲参数下制备的纳米复合镀层在10%H2SO4溶液中的耐腐蚀性。结果表明,在平均电流密度4 A/dm2、占空比0.4、频率1 000 Hz条件下脉冲电沉积时,Ni–ZrO2–CeO2复合镀层中纳米颗粒的含量最高,表面最细致。超声波的引入使复合镀层中纳米颗粒的含量有少许降低,但能细化晶粒,提高复合镀层的耐腐蚀性能。Ni–ZrO2–CeO2复合镀层的耐腐蚀性优于相同工艺条件下制备的纯Ni、Ni–ZrO2以及Ni–CeO2镀层。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号