首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The application of acoustic spectroscopy to the characterization of binary C12EO7—water system was studied. It was discovered that the size of micelles in aqueous surfactant solutions could not be determined, but it was possible to determine the size of water nanodomains existing in the surfactant-rich systems. It was suggested that in colloidal systems, the energy of ultrasonic waves is dissipated only by interfaces existing between condensed phases. The characterization of Winsor transitions by acoustic spectroscopy in water/d-limonene system stabilized by a mixture of nonionic surfactant and isopropyl alcohol (cosolvent) was also explored. In one study, systems with a constant d-limonene to water weight ratio obtained in the course of titration of d-limonene-in-water emulsion with increasing amounts of surfactant+alcohol were investigated. In another study, a balanced d-limonene/water microemulsion was sequentially diluted with water and d-limonene. The transition between Winsor I and Winsor IV systems was monitored in both cases. Droplet size distributions were calculated using different models for dispersed and continuous phase composition. It was demonstrated that the magnitude of acoustic scattering played a significant role in the ability to reliably determine droplet size distributions, and in particular to simultaneously observe nanometer-size and micron-size droplets in Winsor I systems. An attempt was made to account for intrinsic attenuation of surfactant and alcohol by associating them with the aqueous phase, but this approach was shown not to be applicable in the case of Winsor IV microemulsions.  相似文献   

2.
Nanosized monoclinic sulfur particles have been successfully prepared via the chemical reaction between sodium polysulfide and hydrochloric acid in a reverse microemulsions system, with theolin, butanol, and a mixture of Span80 and Tween80 (weight ratio 8 : 1) as the oil phase, co-surfactant and surfactant, respectively. Transparent microemulsions were obtained by mixing the oil phase, surfactant, co-surfactant, and the aqueous phase in appropriate proportion using an emulsification machine at the room temperature. The resulting sulfur nanoparticles were characterized by dynamic light scattering (DLS), X-ray diffraction (XRD), infrared spectroscopy (IR) and transmission electron microscopy (TEM).  相似文献   

3.
In this study the effect of an anionic surfactant (sodium dodecyl sulfate SDS) and oils (hydrocarbons: C12–C16) on the formation and phase behavior of the systems of oil/monoacylglycerols (MAG):SDS/propylene glycol/water has been investigated. The effects of the surfactant mixture on the phase behavior and the concentration of water or oil in the systems were studied at three temperatures (50, 55, 60 °C). Electrical conductivity measurement, FT-IR spectroscopy and differential scanning calorimetry methods were applied to determine the structure and type of the microemulsions formed. The dimension of microemulsion droplets was characterized by dynamic light scattering. It has been stated that the concentration of SDS has a strong influence on the shape and extent of the microemulsion areas. Addition of an ionic surfactant to the mixture with MAG promotes an increase in the area of microemulsion formation in the phase diagrams, and these areas of the isotropic region change with the temperature. It was shown that the presence in the systems of a surfactant more hydrophilic than MAG caused an increase in water content in the microemulsions. It was found that, depending on temperature and concentration of the surfactant mixture, it was possible to obtain a W/O type microemulsion with a dispersed particles size distribution ranging from 20 to 50 nm and containing about 17–38% water in the system. Among different alkanes (from C12 to C16), hexadecane embedded microemulsions showed a maximum water solubilization capacity.  相似文献   

4.
Nanoemulsions are small droplet-sized systems that have low surface tension and a small percentage of active material in their composition. In this study, low oil content nanoemulsion systems were developed for the use in enhanced oil recovery (EOR). The experiments were performed on a device capable of simulating petroleum reservoir conditions using sandstone rock cores. Nanoemulsions were obtained from a pre-selected microemulsion system composed of: RNX95 as surfactant, isopropyl alcohol as cosurfactant, kerosene as oil phase, and distilled water as aqueous phase. Different percentages of polyacrylamide were added to the systems obtained to evaluate the influence of viscosity in EOR results. The nanoemulsion droplet sizes ranged from 9.22 to 14.8 nm. Surface tension values were in the range of 33.6–39.7  dyn/cm. A nanoemulsion system with 2.5 wt% surfactant was used in EOR assays. The oil recovery was directly proportional to polymer percentage in the nanoemulsion, ranging from 39.6 to 76.8%. The total oil in the place recovery ranged from 74.5 to 90%.  相似文献   

5.
The effects of the monomer ratio, surfactant, and crosslinker contents on the particle size and phase‐transition behavior of the copolymer poly(N‐isopropylacrylamide‐co‐methacrylic acid) (PNIPAAm–MAA) were investigated with Fourier transform infrared, differential scanning calorimetry, and dynamic laser scattering techniques. In addition to the thermoresponsive property of poly(N‐isopropylacrylamide), ionized methacrylic acid groups brought pH sensitivity to the PNIPAAm–MAA copolymer particles. The polymer particle size varied with the amounts of the monomer ratio, surfactant, and crosslinker. As the monomer ratio and crosslinker content increased and the amount of the surfactants decreased, the particle size increased. The influence of the crosslinker content on the particle size was less significant than the effect of the monomer ratio and surfactants. When the temperature increased, the particles tended to shrink and decreased in size to near or below 100 nm. Particle sizes at 20°C decreased to less than 100 nm with increased surfactant content. The control of the particle size within the 100‐nm range makes PNIPAAm–MAA copolymer particles useful for biomedical and heavy‐metal‐ion adsorption applications. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

6.
When designing surfactant formulations using ionic and nonionic surfactants, the hydrophile lipophile balance (HLB) is a generalized surfactant characterization parameter that has shown to be useful when designing surfactant formulations, in the case of both ionic and nonionic surfactants (Davies' and Griffin's methods). Microemulsion phase behavior studies have been extensively used to optimize surfactant formulations, but these studies can cover a very wide phase space and can often encounter troublesome non-equilibrium issues such as coacervation. Detailed phase behavior studies can be time-consuming and difficult to apply beyond the specific surfactant-oil system studied. The hydrophilic–lipophilic deviation (HLD) provides a method to help expedite surfactant formulation research by reducing the number of phase behavior studies required to optimize a given formulation. Detergency experiments have indicated that there is an optimal range of HLD for a given fabric surface. This appears to apply to other applications, as well, for example, surfactant formulations used in enhanced oil recovery have been optimized using the HLD method. These studies found that the HLD can reflect total oil recovery, even if the surfactants were derived from different alcohol feedstocks (e.g., HLD of 0 would describe optimum conditions regardless the type of surfactant). Also with additional parameterization, the HLD method can also be applied to non-ideal surfactant mixtures, specifically ionic/nonionic blends. Overall, the HLD framework has shown to be an effective screening tool for a wide range of surfactant-related applications when appropriate experiments, assumptions, and understanding of surfactant and oil interactions are used to generate the HLD parameters.  相似文献   

7.
To develop a mild, effective, and clean strategy for recovery and recycling of anionic surfactants in CO2/N2‐switchable emulsions, a CO2/N2‐switchable anionic surfactant, which is a combination of dodecyl seleninic acid (DSA) and N,N,N′,N′‐tetramethyl‐1,2‐ethylenediamine (TMEDA), here referred to as DSA–TMEDA, was used to stabilize an oil‐in‐water (O/W) emulsion. Upon stimulation with CO2, DSA–TMEDA was switched off to form insoluble DSA and the water‐soluble TMEDA bicarbonate. Upon N2 bubbling and heating, the OFF state of DSA–TMEDA was restored to the surfactant of DSA–TMEDA. In this manner, O/W emulsions stabilized by DSA–TMEDA can be switched reversibly between demulsification (phase separation) and re‐emulsification (recovered emulsion) by triggering with CO2/N2 over ten times. After breakage of the emulsion, nearly all of the OFF state surfactant could be separated conveniently away from the oil phase, thus facilitating recovery and recycling of the surfactant afterward in emulsifying oil. No obvious adverse changes in the dispersed oil particles size and the relative stability of the regenerated emulsions were observed over five cycles, and the surfactant loss can be neglected during the recycling.  相似文献   

8.
In this study the effect of temperature, NaCl and oils (hydrocarbons: C(8)-C(16)) on the formation and solubilization capacity of the systems of oil/monoacylglycerols (MAG):ethoxylated fatty alcohols (CEO(20))/propylene glycol (PG)/water was investigated. The effects of the surfactant mixture on the phase behavior and the concentration of water or oil in the systems were studied at three temperatures (50, 55, 60?°C) and with varied NaCl solutions (0.5; 2; 11%). Electrical conductivity measurement, FTIR spectroscopy and the DSC method were applied to determine the structure and type of the microemulsions formed. The dimension of the microemulsion droplets was characterized by dynamic light scattering. It has been stated that the concentration of CEO(20) has a strong influence on the shape and extent of the microemulsion areas. Addition of a nonionic surfactant to the mixture with MAG promotes an increase in the area of microemulsion formation in the phase diagrams, and these areas of isotropic region did not change considerably depending on the temperature, NaCl solution and oil type. It was found that, depending on the concentration of the surfactant mixture, it was possible to obtain U-type microemulsions with dispersed particles size distribution ranging from 25 to 50?nm and consisting of about 30-32% of the water phase in the systems. The conditions under which the microemulsion region was found (electrolyte and temperature-insensitive, comparatively low oil and surfactant concentration) could be highly useful in detergency.  相似文献   

9.
A primary concern of surfactant-assisted foams in enhanced oil recovery (EOR) is the stability of the foams. In recent studies, foam stability has been successfully improved by the use of nanoparticles (NP). The adhesion energy of the NP is larger than the adsorbed surfactant molecules at the air–water interface, leading to a steric barrier to mitigate foam-film ruptures and liquid-foam coalescence. In this study, the partially hydrophobic SiO2 nanoparticles (SiO2-NP) were introduced to anionic mixed-surfactant systems to investigate their potential for improving the foamability and stability. An appropriate ratio of internal olefin sulfonate (C15-18 IOS) and sodium polyethylene glycol monohexadecyl ether sulfate (C32H66Na2O5S) was selected to avoid the formation of undesirable effects such as precipitation and phase separation under high-salt conditions. The effects of the NP-stabilized foams were investigated through a static foam column experiment. The surface tension, zeta potential, bubble size, and bubble size distribution were observed. The stability of the static foam in a column test was evaluated by co-injecting the NP-surfactant mixture with air gas. The results indicate that the foam stability depends on the dispersion of NP in the bulk phase and at the water–air interface. A correlation was observed in the NP-stabilized foam that stability increased with increasing negative zeta potential values (−54.2 mv). This result also corresponds to the smallest bubble size (214 μm in diameter) and uniform size distribution pattern. The findings from this study provide insights into the viability of creating NP-surfactant interactions in surfactant-stabilized foams for oil field applications.  相似文献   

10.
This article reports on the influence of synthesis characteristics such as seed cross linking, particle‐size distribution (PSD), and surfactant in the seeded emulsion polymerization of n‐butyl acrylate–butyl methacrylate core‐shell systems. These systems were studied using a combination of techniques such as light scattering (static and dynamic), asymmetric field flow fractionation coupled with multiangle laser light scattering and transmission electron microscopy. Complimentary data, obtained from static light scattering and electron microscopy studies, on the effect of seed crosslinking on morphology development reveals that the presence of a crosslinked seed favors the formation of nonequilibrium core‐shell morphology. For uncrosslinked seeds occluded structures were present with a diffuse boundary between the core and the shell. In both cases, i.e., with or without surfactant, a monomodal PSD was observed for the core‐shell systems and the relative size polydispersity and the shape of the seed PSD were retained. Use of surfactant was found to broaden the PSD but did not seem to affect the formation core‐shell morphology. The study also shows the influence of crosslinked seeds on the film properties. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

11.
Micelles composed of mixed surfactants with different structures (mixed micelles) are of great theoretical and industrial interest. This work pertains tomaximizing interfacial tension (IFT) reduction via surfactant pairs. In this respect, four types of fatty acid amides based on lauric, myristic, palmitic, and stearic acids were blended with dodecyl benzene sulfonic acid at a molar ratio of 4∶1 and designated as A1, A2, A3, and A4, respectively. The IFT was measured for each blend at different concentrations using Badri crude oil. The most potent formula (A4) was evaluated for using in enhanced oil recovery (EOR). The IFT was tested in the presence of different electrolyte concentrations with different crude oils at different temperatures. Finally several runs were devoted to study the displacement of Badri crude oil by A4 surfactant solution using different slug sizes of 10, 20, and 40% of pore volume (PV). The study reveled that Badri crude oil gave ultra-low IFT at lowest surfactant concentration and 0.5% of NaCl. The recovery factor at a slug size of 20% PV was 83% of original oil in place compared with 59% in case of conventional water flood.  相似文献   

12.
In foam flooding, foams stabilized by conventional surfactants are usually unstable in contacting with crude oil, which behaves as a strong defoaming agent. In this article, synergistic effects between different surfactants were utilized to improve foam stability against crude oil. Targeted to reservoir conditions of Daqing crude oil field, China (45 °C, salinity of 6778 mg L−1, pH = 8–9), foams stabilized by typical anionic surfactants fatty alcohol polyoxyethylene ether sulfate (AES) and sodium dodecyl sulfate (SDS) show low composite foam index (200–500 L s) and low oil tolerance index (0.1–0.2). However, the foam stability can be significantly improved by mixing the anionic surfactant with a sulfobetaine surfactant, which behaves as a foam stabilizer increasing the half-life of foams, and those with longer alkyl chain behave better. As an example, by mixing AES and SDS with hexadecyl dimethyl hydroxypropyl sulfobetaine (C16HSB) at a molar fraction of 0.2 (referring to total surfactant, not including water), the maximum composite foaming index and oil tolerance index can be increased to 3000/5000 L s and 1.0/4.0, respectively, at a total concentration between 3 and 5 mM. The attractive interaction between the different surfactants in a mixed monolayer as reflected by the negative βs parameter is responsible for the enhancement of the foam stabilization, which resulted in lower interfacial tensions and therefore negative enter (E), spreading (S), and bridging (B) coefficients of the oil. The oil is then emulsified as tiny droplets dispersed in lamellae, giving very stable pseudoemulsion films inhibiting rupture of the bubble films. This made it possible to utilize typical conventional anionic surfactants as foaming agents in foam flooding.  相似文献   

13.
Triglycerides and vegetable oils are amongst the most difficult oils to remove from fabrics due to their highly hydrophobic nature; this is all the more challenging as cold water detergency is pursued in the interest of energy efficiency. Recently, extended surfactants have produced very encouraging detergency performance at ambient temperature, especially at low surfactant concentration. However, the salinity requirement for extended surfactants was excessive (4–14%) and there is limited research on extended‐surfactant‐based microemulsions for cold water detergency (below 25 °C). Therefore, extended‐surfactant‐based microemulsions are introduced in this study for cold temperature detergency of vegetable oils with promising salinity and surfactant concentration. The overall goal of this study is to explore the optimized microemulsion formulations with low surfactant and salt concentration using extended surfactant for canola oil detergency at both 25 and 10 °C. It was found that microemulsion systems achieved good performances (higher than those of commercial detergents) corresponding to IFT value 0.1–1 mN/m with the surfactant concentration as low as 10 ppm and 4% NaCl at 25 °C, and as low as 250 ppm and 0.1% (1000 ppm) NaCl at 10 °C. In addition, microemulsion systems were investigated with a different salt (CaCl2, or water hardness, versus NaCl) at 10 °C, demonstrating that 0.025% CaCl2 (250 ppm) can produce good detergency; this is in the hardness range of natural water. These results provide qualitative guidance for microemulsion formulations of vegetable oil detergency and for future design of energy‐efficient microemulsion systems.  相似文献   

14.
Silicone oil nanoemulsion softeners with different particle sizes can be prepared using different surfactants with various ratios aminosilicone oil, surfactants concentration and time of mixing. The silicone oil nanoemulsion softeners could penetrate well into the polyester fibers; therefore, they can induce desirable physicochemical properties in the fabric. In current study, we first prepared silicone oil nanoemulsion softeners by designing via DOE software and with different particle sizes using nonyl phenol, octyl phenyl ether and fatty alcohol surfactants, and we investigated them using dynamic light scattering (DLS) and transmission electron microscope (TEM) techniques. In DOE software, the effect of various independent variables of emulsification process such as surfactant type, oil weight fraction, surfactant concentration and time of mixing on dependent variables were studied including particle size, z-average and width. Then, we examined the physical characteristics of polyester fabric by applying silicone oil macro, micro and nanoemulsion softeners. The treated fabrics with these softeners were compared with each other through the physical properties. The scanning electron microscopy (SEM) analysis showed the polyester fabric treated with silicone nanoemulsion softeners appeared to have smoother fiber surface. To prove the penetration of silicone particles into the fabric fibers, a cross section was taken from the cross section of polyester fabric by microtome in liquid nitrogen. The TEM images from cross section of fabrics treated with the silicone oil nanoemulsion softeners confirmed that the nanoparticles had penetrated well into the polyester fibers; therefore, they could induce desirable physicochemical properties in the fabric.  相似文献   

15.
Anionic–cationic surfactant mixtures are known to exhibit synergistic effects (e.g., low critical micelle concentration, ultralow interfacial tension, middle phase microemulsion formulation, and increased solubilization and adsolubilization). However, the anionic–cationic surfactant mixtures are also prone to form other unique phases such as precipitates, gels, and coacervates in place of middle-phase microemulsions. Research summarized in this article demonstrates that asymmetric anionic–cationic surfactant mixtures have been shown to promote middle-phase microemulsions instead of these other phases, albeit with a slight decrease in synergism when using these asymmetric mixtures. The use of anionic–cationic surfactant mixtures also is shown to enhance or decrease surfactant adsorption depending on anionic–cationic surfactant ratios. Middle-phase microemulsion formation is demonstrated using anionic-rich or cationic-rich alcohol-free microemulsions by anionic–cationic ratio scans while also reducing or eliminating electrolyte requirement. Solubilization and adsolubilization are shown to increase for mixed anionic–cationic surfactant systems, especially for hydrophobic solutes. Thus, by exploiting these synergisms while avoiding phase separation, properly designed anionic–cationic surfactant mixtures can be advantageous for a wide range of applications.  相似文献   

16.
The surfactant structure–performance relationship and application properties in enhanced oil recovery (EOR) for binary mixtures of anionic and cationic surfactants are presented and discussed. A polyoxyethylene ether carboxylate anionic surfactant was blended with a quaternary ammonium chloride cationic surfactant and tested for a high-temperature, low-salinity, and high-hardness condition as found in an oil reservoir. These mixtures were tailored by phase behavior tests to form optimal microemulsions with normal octane (n-C8) and crude oil having an API gravity of 48.05°. The ethoxy number of the polyoxyethylene carboxylate anionic surfactant and the chain length of the cationic surfactant were tuned to find an optimal surfactant blend. Interfacial tensions with n-C8 and with crude oil were measured. Synergism between anionic and cationic surfactants was indicated by surface tension measurement, CMC determination, calculation of surface excess concentrations and area per molecule of individual surfactants and their mixtures. Molecular interactions of anionic and cationic surfactants in mixed monolayers and aggregates were calculated by using regular solution theory to find molecular interaction parameters β σ and β M . Morphologies of surfactant solutions were studied by cryogenic TEM. The use of binary mixtures of anionic/cationic surfactants significantly broadens the scope of application for conventional chemical EOR methods.  相似文献   

17.
Every commercial formulation that contains surfactant contains a mixture of surfactants. This chapter is a short review on surfactant mixtures in water focusing on important concepts that differ from single-component systems. The chapter assumes a basic understanding of surfactants. Topics include micelles; adsorption at the air–water, oil–water, and water–solid interfaces; and phase behavior/precipitation. Mixtures of surfactant types that are important in applications are emphasized. In addition, those molecular aspects that affect macroscopic behavior, especially macroscopic behavior that is important for applications of surfactants, are emphasized.  相似文献   

18.
The objective of this work was to apply a microemulsion-based formulation for the removal of motor oil in laundry detergency at low salinity. To produce the desired phase behavior, three surfactants were used: alkyl diphenyl oxide disulfonate (ADPODS), sodium dioctyl sulfosuccinate (AOT) and sorbitan monooleate (Span 80). The mixed surfactant system of 1.5% ADPODS, 5% AOT and 5% Span 80 (13 parts ADPODS, 43.5 parts AOT, and 43.5 parts Span 80 of the total actives) was found to form a middle phase microemulsion (Type III) at a relatively low salinity of 2.83% NaCl. When this formulation was diluted, detergency performance increased with increasing total surfactant concentration and leveled off above about 0.1% total actives on the three types of fabrics studied (pure cotton, 65/35 polyester/cotton blend, and pure polyester). Detergency was found to improve with increasing hydrophilicity of the fabric with cotton being cleanest after washing and polyester the most difficult to clean. To achieve a specified oil removal, less rinse water can be used if a higher number of lower-volume rinses are employed. An interesting characteristic of microemulsion-based formulations is that a substantial fraction of oil removal occurs during the rinse cycle. In this work, this removal is shown to be due to the low oil/water interfacial tension during initial rinsing and is therefore strongly correlated to residual surfactant concentration in the rinse steps. As a result, the number of rinses and the volume of water per rinse can profoundly affect detergency in these systems.
Sumaeth ChavadejEmail:
  相似文献   

19.
In part I of this series (J. Surfact. Deterg. 6, 191–203, 2003), the mixed surfactant system of sodium dioctyl sulfosuccinate (AOT), alkyl diphenyl oxide disulfonate (ADPODS) and sorbitan monooleate (Span 80) was shown to form Winsor type I and type III microemulsions with hexadecane and motor oil. In addition, high solubilization and low interfacial tension were obtained between the oils and surfactant solutions both in the supersolubilization region (Winsor type I system close to type III system) and at optimal conditions in a type III system. In the present study, this mixed surfactant system was applied to remove oily soil from fabric (a polyester/cotton blend), and detergency results were correlated to phase behavior. Dynamic interfacial tensions were also measured between the oils and washing solutions. In the supersolubilization and in the middle-phase regions (type III), much better detergency performance was found for both hexadecane and motor oil removal than that with a commercial liquid detergent product. In addition, the detergency performance of our system at low temperature (25°C) was close to that obtained at high temperature (55°C), consistent with the temperature robustness of the microemulsion phase behavior of this system.  相似文献   

20.
The stability of isopropylmyristate-in-water nano-emulsions stabilized by PEG-60 hydrogenated caster oil varied ethanol concentrations using phase composition inversion method at room temperature was investigated. Nano-emulsions with droplet sizes below 200 nm were formed above the critical micelle concentration of surfactant. In order to investigate the effect of ethanol on nano-emulsions, time dependence of the droplet distribution was monitored at room temperature using light scattering. The main destabilization mechanism of the systems was found to be Ostwald ripening. To consider the size effect, we prepared the nano-emulsions by adding ethanol either before or after homogenization. Regardless of when we added the ethanol, the Ostwald ripening rate increased as did the concentration of ethanol of the systems. Pertaining to the long-term conditions, there was no flocculation of the nano-emulsions which showed negative zeta potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号