首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Multipart emulsion polymerization of methyl methacrylate (MMA) and butyl acrylate (BA) was carried out in this work. The target was to achieve stability during the polymerization and to determine the proper hydrophilic–lipophilic balance (HLB) value for the stable system, using different types of non-ionic emulsifiers, sodium lauryl sulphate and their combinations. After determination of proper value of HLB (36.2), the best emulsifier combination on the basis of minimization of coagulum level was determined. This combination was 20 wt.% of KENON30 to SLS. The effect of monomer feed composition on the dry latex film properties was investigated to approach a monomer feed composition dealt with a proper Tg. The prepared latex showed a bimodal particle size distribution, due to the proper feeding policy in semibatch emulsion copolymerization process. The monomer feed composition of 45 wt.% MMA and 55 wt.% BA with a proper Tg was selected for the final improvement of coating properties such as UV resistance and adhesion. Adding acrylic acid (AA) and N-methylol acrylamide (NMA) to the reaction mixture improved the UV resistance and adhesion property of dry latex film. The flow and leveling, gloss, adhesion, UV resistance and water resistance of the produced bimodal latex showed good quality in comparison with the similar commercial resins used in coating applications.  相似文献   

2.
In this study, the effect of bimodal porous silica (BPS) on particle size and reducibility of cobalt oxide has been investigated. Unimodal porous silica (UPS) was used for comparison purposes. Both silica supports were impregnated with an aqueous solution of cobalt nitrate to obtain cobalt loadings of about 10 wt%. Pore structure, specific surface area, morphology and cobalt oxide crystallite size of the cobalt oxide loaded on porous silicas were systematically characterized by means of N2-sorption, X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The reduction behavior profiles and the activation energy for the reducibility of the cobalt oxide were studied by dynamic thermal gravimetric under flow of H2. The average particle size of cobalt oxide loaded on the BPS sample was revealed to be slightly larger than that loaded on the UPS sample, likely because cobalt oxide particles were distributed both on mesopores and macropores. The reduction temperatures of the cobalt oxide loaded on the BPS sample were found to be evidentially lower than those of the cobalt oxide loaded on the UPS sample.  相似文献   

3.
A series of waterborne polyurethane dispersions were synthesized by one‐pot reaction and step‐wise reaction, respectively. The effects of synthetic methods and DMPA content on the particle size distribution (PSD), solid contents and viscosity were studied by laser particle size analyzer, Brookfield viscometer and TEM analysis. High solid content and low viscosity waterborne polyurethanes (WPUs) with controllable bimodal PSD were prepared by one‐pot reaction using 2,2‐dimethylol propionic acid (DMPA) as the only self‐emulsifier. Meanwhile, 40% solid content WPUs with unimodal PSD were obtained by step‐wise reaction at the same formula. With the increment of DMPA content, the ratio of large particles to small particles decreased and two peaks of the particle size finally became one peak by one‐pot reaction while the PSD remained unimodal by step‐wise reaction. The reason leading to the difference of PSD between one‐pot reaction and step‐wise reaction was analyzed and the relationships among PSD, viscosity and solid content were discussed. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40420.  相似文献   

4.
《Ceramics International》2017,43(2):1895-1903
This paper examined theoretically and experimentally packing behavior, sintering behavior and compressive mechanical properties of sintered bodies of the bimodal particle size system of 80 vol% large particles (351 nm diameter)–20 vol% small particles (156 nm diameter). The increased packing density as compared with the mono size system was explained by the packing of small particles in 6-coordinated pore spaces among large particles owing to the similar size relation between 6-coordinated spherical pore and small particle. The sintering between adjacent large particles dominated the whole shrinkage of the powder compact of the bimodal particle size system. However, the bimodal particle size system has a high grain growth rate because of the different curvatures of adjacent small and large particles. The derived theoretical equations for the compressive strengths of both mono size system and bimodal particle size system suggest that the increase in the grain boundary area and relative density by sintering dominate the compressive strength of a sintered porous alumina. The experimental compressive strengths were well explained by the proposed theoretical models. The strength of the bimodal particle size system was high at low sintering temperatures but was low at high sintering temperatures as compared with that of mono size system of large particles. This was explained by mainly the change of grain boundary area with grain growth. The stress–strain relationship of the bimodal particle size system showed an unique pseudo-ductile property. This was well explained by the curved inside stress distribution along the sample height. The inside stress decreases toward the bottom layer. The fracture of one layer of sintered grains over the top surface proceeds continuously with compressive time along the sample height when an applied stress reaches the critical fracture strength.  相似文献   

5.
By using in situ prepolymerization and radiation curing, high‐impact polystyrene (HIPS) with a bimodal distribution of the size of the rubber particles (bimodal HIPS) was synthesized in the presence of ultrafine full‐vulcanized powdered styrene–butadiene rubber (UFPSBR) and polybutadiene rubber (BR). TEM photographs indicated that UFPSBR was dispersed uniformly as a single particle with a diameter of about 100 nm. On the other hand, bimodal HIPS with different rubber particle size distributions could also be obtained by blending HIPS and UFPSBR grafting styrene (UFPSBR‐g‐St) with different grafting yields. The bimodal HIPS with the smallest rubber particle size, at about 100 nm, could be prepared by blending the monomodal HIPS containing big rubber particles with polystyrene/UFPSBR. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

6.
In this article, a novel modeling approach is proposed for bimodal Particle Size Distribution (PSD) control in batch emulsion polymerization. The modeling approach is based on a behavioral model structure that captures the dynamics of PSD. The parameters of the resulting model can be easily identified using a limited number of experiments. The resulting model can then be incorporated in a simple learning scheme to produce a desired bimodal PSD while compensating for model mismatch and/or physical parameters variations using very simple updating rules. © 2010 American Institute of Chemical Engineers AIChE J, 2010  相似文献   

7.
I.B. Celik 《Powder Technology》2009,188(3):272-268
Particle size distribution, uniformity of the distribution and specific surface area (SSA) have a great influence on service properties of cement, particularly on strength. In this paper the effects of these physical parameters on strength development were studied using PC 42.5 R.In order to understand the significance of different particle size ranges in a distribution, samples having size distributions such as − 10 µm, − 20 µm, − 30 µm, − 45 µm, − 32 + 3 µm and − 20 + 5 µm were prepared from PC 42.5 R by using a laboratory scale 3rd generation separator. Additionally − 32 + 3 µm and − 20 + 5 µm fractions were added to the original PC 42.5 R in varying amounts to study SSA and uniformity effects. Same strength values were obtained for samples with a narrower size distribution but smaller SSA. Fineness is very important for strength development, particularly in the early stages of hydration.  相似文献   

8.
王贵生 《水泥》2005,(2):20-21
采用不同的粉磨工艺和设备对水泥强度、凝结、硬化过程等一系列物理性能影响较大。通过调查发现,本地不少立窑水泥企业用52.5MPa强度等级的熟料,掺少量混合材,只生产32.5MPa强度等级的水泥。是什么原因降低水泥强度?单凭检测细度发现不了问题,在2000~2003年送样对水泥颗粒级配进行检测,发现是由于颗粒级配不合理。以下将对比不同粉磨工艺对水泥颗粒级配及水泥物理性能的影响.其中所用熟料的强度等级均为52.5MPa左右。  相似文献   

9.
罗帆  陈珠峰 《水泥》2006,(4):29-32
我国水泥生产一直采用80μm筛余控制成品细度,这种颗粒组成多处于不合理的状态,既浪费资源也影响其使用性能。为此,文献[1]提出“用45μm控制水泥成品细度”的建议,笔者认为十分必要。从测试数据看,无论是生料还是水泥,<80μm的粒度分布在许多厂之间有很大的差异。其原因一是粉  相似文献   

10.
We have studied the relations between particle size distribution at equal specific surface area and compressive strength in Portland cement. Starting from a series of hypotheses, we have demonstrated that the volume of hydrated product, therefore the mechanical strength, increases when the granulometric range decreases. The experimental data have demonstrated that the depth of hydration depends mostly on the particle size, contrary to our hypothesis. Nevertheless, we have proved that when with the actual plants of grinding it is possible to minimize the width of granulometric range, the mechanical strength of Portland cements both in Rilem mortar and in concrete can be maximized.  相似文献   

11.
激光粒度仪测定PTA粒径分布   总被引:4,自引:0,他引:4  
介绍了激光粒度仪测定PTA粒径分布的分析方法 ,通过试验确定了分析条件 ,并与筛分法分析结果进行了对比。该方法简捷、快速、重现性好 ,适用于PTA产品的粒度分析。  相似文献   

12.
This paper describes a study in which anionically stabilised acrylic latices with a bimodal particle size distribution, produced by blending polymer particles of 50 and 350 nm in different blend ratios, are blended with oligomers. Reversibility, rheology, drying behaviour, film formation and blocking resistance of these systems were studied Reversibility appears to show two regions of linear dependence on the total particle surface area. The lower the surface area, the lower the amount of oligomer needed for good reversibility. The rheological data was fitted by the Krieger–Dougherty equation and it appeared that both in the presence and absence of oligomer an 80/20 large/small blend exhibited the highest maximum packing fraction. Short drying times were obtained with bimodal blends at high solids content and the drying profiles could be explained by the Croll model. The presence of oligomer was shown to exhibit a positive effect on film formation and when the oligomer is hard, the blocking resistance is already very good at low oligomer content, resulting in a very good MFT/blocking resistance balance. The latter can also be obtained when as well the size as the Tg of the polymer particles is varied.  相似文献   

13.
Low dielectric poly[methylsilsesquioxane‐ran‐trifluoropropylsilsesquioxane‐ran‐(2,4,6,8‐tetramethyl‐2,4,6,8‐tetraethylenecyclotetrasiloxane)silsesquioxane]s {P[M‐ran‐TFP‐ran‐(TCS)]SSQs} having various compositions were synthesized using trifluoropropyl trimethoxysilane, methyl trimethoxysilane and 2,4,6,8‐tetramethyl‐2,4,6,8‐tetra(trimethoxysilylethyl)cyclotetrasiloxane. The chemical composition of the polymers and the content of SiOH end‐groups were controlled by adjusting the reaction conditions, and they were characterized by 1H‐NMR. The thermally decomposable trifluoropropyl groups on the P[M‐ran‐TFP‐ran‐(TCS)]SSQ backbone and heptakis(2,3,6‐tri‐O‐methyl)‐β‐cyclodextrin (CD) were employed as pore generators. The dielectric constants of the porous CD/P[M‐ran‐TFP‐ran‐(TCS)]SSQ films were in the range 2.0–2.7 (at 100 kHz) depending on the concentration of the porogens, and showed no change over 4 days under aqueous conditions. The pore size of the films showed a bimodal distribution, with diameters of ca 0.5–1.0 nm for those originating from the trifluoropropyl groups and 1.7 nm from the CD. The elastic modulus and hardness of the 30 vol% CD‐blended film with a dielectric constant of 2.26 were 2.40 and 0.38 GPa, respectively, as determined by a nanoindenter. Copyright © 2005 Society of Chemical Industry  相似文献   

14.
A combination of suspension polymerization and postcrosslinking was used to prepare hypercrosslinked polystyrene (H‐PS) microspheres with controllably bimodal pore size distribution in the presence of toluene and polypropylene (PP) as a coporogen. The proportion of PP in the coporogen was changed to investigate the influence of the coporogen composition on the pore structure of the H‐PS microspheres. The addition of a small amount of PP achieved the aim of a clearly bimodal pore size distribution and the control of the macroporosity of the H‐PS microspheres, which have potential application in the preparation of catalyst supports. The specific surface area of the H‐PS microspheres could be adjusted in the range 380–790 m2/g by changes in the concentration of PP in the coporogen. Moreover, the H‐PS microspheres displayed all the characteristics of Davankov‐type resins by their ability to be swollen in both thermodynamically poor solvents such as water and good solvents such as toluene. Finally, the possible mechanism of porosity formation during polymerization and postcrosslinking was also examined by a combination of pore structure data and the appearance of the microspheres before and after postcrosslinking. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

15.
Glass-infiltrated alumina composites were prepared by infiltrating glass into a pre-sintered alumina. Three different alumina preforms were obtained from various combinations of fine and coarse alumina particles. After infiltration of glass into the porous alumina preforms, their microstructure and strength were studied. The highest bending strength of 510 MPa was observed when the composite was made by mixing coarse and fine alumina powders at a ratio of 6:4. The infiltrated glass corroded the alumina preform, and the dissolved aluminum ions reprecipitated on the alumina grains during the heat-treatment for infiltration.  相似文献   

16.
姜兵 《水泥工程》2017,30(5):12-14
将石灰石和水泥熟料按不同比例混合共同粉磨,运用灰色关联分析方法,研究了石灰石水泥颗粒分布对强度的影响,并建立了28d抗压强度与0~40μm颗粒含量的GM(1,2)灰色模型。研究结果表明:石灰石水泥粉体中10~20μm的颗粒含量与3d强度的关联度最大,20~30μm对28d强度影响最大。  相似文献   

17.
Porous Al2O3 ceramics with bimodal pore size distribution were fabricated by partial sintering with monodispersed PMMA micro balls as pore agent. The porosity of the fabricated porous Al2O3 is increased with content of the pore agent increase, the bulk density and bending strength are decreased, accordingly. Relations between pressure drop and flow velocity of the air through the porous Al2O3 fit the Forchheimer's equation well for compressible fluid. Due to pores introduced by the pore agent, the Darcy permeability and inertial permeability of the porous Al2O3 are increased obviously. For given flow velocity, with increase of the PMMA content, the Forchheimer's number of the fluid through the porous Al2O3 is decreased, which results in decrease of the inertial resistance ratio to the total pressure drop. The porous Al2O3 ceramics with pores introduced by the monodispersed PMMA micro balls show higher permeability while the filtration selectivity is not deteriorated.  相似文献   

18.
Blends of polypropylene homopolymer (PP) and metallocene produced ethylene‐octene copolymer (EOR) with a bimodal particle size distribution were investigated. The aim of the work was to study the influences of EOR characteristics and its concentration on the tensile and impact properties of the blends. The matrix ligament thickness between rubber particles was measured and compared to those predicted using the theoretical models. The relationships between blend morphology and impact property were reported. It was found that the content of comonomer and molecular weight of the EOR as well as its concentration in the blends were the major factors controlling the tensile and impact properties of the blends. These factors became ineffective to impact property when the ligament thickness of the matrix was larger than the critical value (T ~0.3–0.4 μm). To achieve blends of high impact strength, the ligament thickness between rubber particles should be smaller than the critical value, and for a certain ligament thickness, EOR with high octene content and high molecular weight was preferred. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 2412–2418, 2002  相似文献   

19.
Mesoporous nickel oxide with a porous structure exhibiting a bimodal pore size distribution (2.6 and 30.3 nm diameter pores) has been synthesized in this paper. Firstly, a mesoporous precursor of coordination complex Ni3(btc)2·12H2O (btc = 1,3,5-benzenrtricarboxylic acid) is synthesized based on the metal-organic coordination mechanism by a hydrothermal method. Then mesoporous NiO with a bimodal size distribution is obtained by calcining the precursor in the air, and characterized by transmission electron microscopy and N2 adsorption measurements. Such unique multiple porous structure indicates a promising application of the obtained NiO as electrode materials for supercapacitors. The electrochemical behavior has been investigated by cyclic voltammogram, electrochemical impedance spectra and chronopotentiometry in 3 wt.% KOH aqueous electrolyte. The results reveal that the prepared NiO has high-capacitance retention at high scan rate and exhibits excellent cycle-life stability due to its special mesoporous character with bimodal size distribution.  相似文献   

20.
In this paper a particle packing algorithm is proposed which is to be used to predict the behaviour of pellets in the blast furnace on a first principal basis. Pellets consist of particles of various mineralogical composition and the structure in which they pack together to form a pellet is dependant on the size distribution of the particles and the pellet porosity. This packing structure can result in isolated volumes within the pellet where the local composition deviates from the overall average composition. This can result in, for example, melt formation at lower temperatures than expected, which will have a detrimental effect on the pellet strength. These local compositions result from the contacts between particles of different minerals and can thus be quantified by the coordination number of the particles. By using a validated coordination number model, which is unique for a particle packing algorithm, virtual pellets were created for a range of particle size distributions and porosities. The algorithm used the Monte Carlo method combined with the simulated annealing minimisation algorithm to solve the pellet simulations. The objective function is a combination of two functions, one describing the deviation from the target coordination number of the particles and the other the average fraction of overlapping volume of the particles per contact. In this way a realistic pellet structure was maintained while at the same time controlling the coordination number of the particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号