共查询到20条相似文献,搜索用时 15 毫秒
1.
针对协同过滤推荐准确性的现状进行了研究,提出一种基于栈式降噪自编码器的协同过滤算法。栈式降噪自编码器是一种典型的深度学习网络模型,具有强大的特征提取能力。用户对项目的评分作为输入,训练网络,学习出项目的隐含特征编码,用PCA对项目属性降维并计算属性相似性,结合隐性编码计算的相似性作为最终结果,根据最终的项目相似性产生TOP-N推荐列表。Movielens数据集的实验表明,新算法能够有效提升推荐结果的召回率,一定程度上解决了评分矩阵稀疏和项目之间没有共同用户评分就不能计算相似性的问题。 相似文献
2.
现有的隐式反馈协同算法直接利用稀疏的二值社交信任信息辅助推荐,存在严重的数据稀疏问题,且没有深层次地融合社交信任信息的影响。针对以上问题,提出利用降噪自编码器深度融合用户隐式反馈数据与社交信息的算法。首先从不同的角度区分用户信任,提出一种信任相似度的新度量方法来改善社交数据的稀疏性,利用降噪自编码器将信任数据与用户隐式交互信息深度融合,通过综合二者的影响,有效提高了推荐质量。实验表明,该算法优于现有主流的的隐式反馈推荐算法。 相似文献
3.
常规毒理学实验方法周期长,耗资高,对现代药物研发和环境化合物安全性评估具有局限性,通过对化合物毒理性研究,提取1047维分子指纹特征,提出去噪自编码神经网络无监督学习机制及对腐败特征的自联想学习特性提取隐含毒性化合物特征,实现化合物毒性预测和毒性化合物的活性预测。该方法在化合物毒性预测和活性预测中的预测精度分别为79.825%,80.85%, 敏感性分别为79.62%,80.25%,特异性分别为80.03%,81.45%。实验结果表明,去噪自编码网络较浅层机器学习更适用于高通量化合物毒性预测, 较传统自编码网络更具优越性。 相似文献
4.
文档表示模型可以将非结构化的文本数据转化为结构化数据,是多种自然语言处理任务的基础,而目前基于词的模型在文档表示任务中有着无法直接表示文档的缺陷。针对此问题,基于生成对抗网络GAN可以使用两个神经网络进行对抗学习,从而很好地学习到原始数据分布的特点,提出了文档表示模型WADM,使用去噪自编码器作为其判别网络,由其隐层直接得到文档的分布表示。实验表明,WADM能够准确抽取文档特征,相比基于词的模型具有更强的文档表示能力。 相似文献
5.
针对采煤机监测参数间关联性强、冗余信息多且受强噪声干扰导致其健康状态识别困难及传统的采煤机状态识别方法在健康状态指标构建中人工参与过多导致识别准确率不高的问题,提出一种基于降噪自编码器(denoising autoencoder,DAE)与改进卷积神经网络(improved convolutional neural network,ICNN)的采煤机健康状态识别方法。首先,对原始监测数据作滑动平均降噪处理并进行归一化;其次,通过无监督训练降噪自编码器实现数据降维、特征提取,进而构建健康状态指标;然后,根据降噪后的监测数据与健康状态指标训练改进卷积神经网络模型,实现采煤机健康状态的自动识别;最后,利用采煤机仿真数据完成模型验证并与其他多种健康状态识别方法进行对比。结果表明:该方法识别准确率达98.38%,明显高于其他方法,可为后期的预知维护提供理论支持。 相似文献
6.
Flash event generates enormous traffic and the cloud service providers use sustaining techniques like scaling and content delivery network to up their services. One of the main bottlenecks that the cloud service providers still find difficult to tackle is flash attacks. Illegitimate users send craftily designed packets to land up inside the server for wreaking havoc. As deep learning autoencoder has the potential to detect malicious traffic it has been used in this research study to develop an ensemble. Convolutional neural network is efficacious in overcoming the issue of overfitting; deep autoencoder is proficient in extracting features through dimensionality reduction. In order to obtain both these advantages it was decided to develop an ensemble keeping denoising autoencoder as the core element. The process of addressing a flash attack requires first detecting the presence of bot in malicious traffic, second studying its nature by observing its behavioral manifestations. Detection of botnet was achieved by three ensembles, namely, DAE_CNN, DAE_MLP, and DAE_XGB. But capturing its external manifested behavior is challenging, because the bot signatures are always in a state of flux. The simulated empirical study yielded an appreciable outcome. Its accuracy rate was 99.9% for all the three models and the false positive rates were 0, 0.006, and 0.001, respectively. 相似文献
7.
8.
BP神经网络因具有良好的非线性拟合能力,在建立预测模型中得到广泛应用。但化工过程数据不仅存在非线性特征,而且难以避免受噪声影响,造成数据波动从而影响预测模型准确性。为此,提出一种降噪自编码器融合反向传播算法(简称为,DAE-BP)的化工过程质量预测方法。首先,采用无监督学习模型降噪自编码器完成初始数据的噪声消除,其具有噪声鲁棒性的特点,在数据受到损坏的情况下可尽可能地恢复数据的原始状态,有利于进一步的质量预测。在此基础上,将获取的数据特征作为有监督学习模型BP神经网络的输入以获得可靠的预测结果。在脱丁烷塔化工过程实例上验证方法有效性。并与单一BP算法、主成分分析(PCA)及自编码器(AE)改进的BP算法作为对照。结果表明,经过DAE改进后的BP算法预测误差为1.2%,相比单一的BP算法提高了3.2%精度,较PCA-BP及AE-BP预测误差精度分别提高了2.3%、1.9%,表现出最好的预测性能。 相似文献
9.
Yi‐Lei Wang Wen‐Zhe Tang Xian‐Jun Yang Ying‐Jie Wu Fu‐Ji Chen 《Concurrency and Computation》2019,31(23)
Collaborative filtering (CF) is a widely used technique in recommender systems. With rapid development in deep learning, neural network‐based CF models have gained great attention in the recent years, especially autoencoder‐based CF model. Although autoencoder‐based CF model is faster compared with some existing neural network‐based models (eg, Deep Restricted Boltzmann Machine‐based CF), it is still impractical to handle extremely large‐scale data. In this paper, we practically verify that most non‐zero entries of the input matrix are concentrated in a few rows. Considering this sparse characteristic, we propose a new method for training autoencoder‐based CF. We run experiments on two popular datasets MovieLens 1 M and MovieLens 10 M. Experimental results show that our algorithm leads to orders of magnitude speed‐up for training (stacked) autoencoder‐based CF model while achieving comparable performance compared with existing state‐of‐the‐art models. 相似文献
10.
针对现有概率矩阵分解(PMF)技术的个性化推荐系统在采用社交网络中信任信息时常常忽视项目相关描述文档信息的问题,提出一种融合用户信任和通过卷积网络以获取项目描述等信息的PMF模型.首先,利用用户偏好信息和行为轨迹信息构建一种新的信任网络;然后,通过卷积神经网络从项目描述文档中提取项目潜在的特征向量;最后,在概率矩阵分解过程中同时利用评分数据、信任网络中用户的信任信息和项目的描述信息,计算用户和项目的潜在特征向量以预测评分并进行个性化推荐.为验证算法的有效性,选择3种算法在4个数据集上进行对比,实验结果表明所提出的算法在推荐精确度和鲁棒性方面优于其他3种算法. 相似文献
11.
当前网络流量数据规模较大且分布不均衡,传统网络流量异常检测方法检测准确率较低。提出一种结合马氏距离和自编码器的检测方法,使用马氏距离倒数及判别阈值快速检测部分正常数据以减少训练数据量,同时,在自编码器代价函数中添加马氏距离度量项以增强自编码器的特征提取能力。在此基础上,将自编码器与分类器相结合以解决网络参数初始化问题,并通过调整自编码神经网络交叉熵损失函数中各项的权重,提高自编码神经网络对数据分布不均衡数据集的训练效果。实验结果表明,该方法在CICIDS2017数据集、NSL-KDD数据集上的异常检测准确率分别高达97.60%、99.84%,在CICIDS2017数据集上的F1值为0.941 3,高于DNN、LSTM、C-LSTM等方法。 相似文献
12.
为处理推荐行为来源复杂、路径多样、不信任陌生推荐等问题;提出一种在社交网络中信任驱动推荐方法。该方法利用贝叶斯网络;计算用户评分的先验概率分布以及朋友之间的联合条件概率;预测用户在该环境下的评分并将推荐给用户。在信任驱动推荐过程中;预测评分既考虑到用户的偏好;也考虑到用户的社会关系;此外;用户的信息交换只限于朋友之间;能够有效保护用户的隐私。实验结果表明;所提出的推荐方法在预测准确率和推荐覆盖率上具有良好的性能。 相似文献
13.
In the past decade,recommender systems have been widely used to provide users with personalized products and services.However,most traditional recommender systems are still facing a challenge in dealing with the huge volume,complexity,and dynamics of information.To tackle this challenge,many studies have been conducted to improve recommender system by integrating deep learning techniques.As an unsupervised deep learning method,autoencoder has been widely used for its excellent performance in data dimensionality reduction,feature extraction,and data reconstruction.Meanwhile,recent researches have shown the high efficiency of autoencoder in information retrieval and recommendation tasks.Applying autoencoder on recommender systems would improve the quality of recommendations due to its better understanding of users,demands and characteristics of items.This paper reviews the recent researches on autoencoder-based recommender systems.The differences between autoencoder-based recommender systems and traditional recommender systems are presented in this paper.At last,some potential research directions of autoencoder-based recommender systems are discussed. 相似文献
14.
针对推荐算法中辅助信息和用户评论输入的高维度和样本不足的问题,基于变分自动编码器的非线性建模能力,与注意力机制的关联数据增强的特质,提出了注意力协同辅助变分自编码器推荐模型(s VAE-a)。该模型采用协同辅助变分自动编码来对辅助信息进行建模;同时通过注意力机制将辅助信息结合到协同变分自动编码器架构中,对隐变量进行加强,为解码器提供更干净的特征;最后通过变分推断来对辅助信息和用户评论近似分布,通过训练参数得到推荐模型。在MovieLens-20M数据集上的实验结果表明,该方法无论在基本的召回率,还是进一步的覆盖率和归一化折损累计增益度(NDCG)指标上都有相应的提升。该模型易于实现,可结合不同类型的输入与辅助信息,提升推荐效能。 相似文献
15.
Kun Zhu;Nana Zhang;Changjun Jiang;Dandan Zhu; 《Software》2024,54(2):308-333
Software defect prediction (SDP) aims to build an effective prediction model for historical defect data from software repositories by some specialized techniques or algorithms, and predict the defect proneness of new software modules. Nevertheless, the complex internal intrinsic structure hidden behind the defect data makes it challenging for the built prediction model to capture the most expressive defect feature representations, and largely limits the SDP performance. Fortunately, artificial intelligence is interacting closely with humans and provides powerful intelligent technical support for addressing these SDP issues. In this article, we propose a robust intelligent SDP model called IMDAC based on deep learning and soft computing techniques. This model has three main advantages: (1) an effective deep generative network—InfoGAN (information maximizing GANs) is employed to conduct data augmentation, namely generating sufficient defect instances and achieving defect class balance simultaneously. (2) Select the fewest representative feature subset for the minimum error via an advanced multi-objective optimization approach—MSEA (multi-stage evolutionary algorithm). (3) Build a powerful end-to-end deep defect predictor by hybrid deep learning techniques—DAE (Denoising AutoEncoder) and CNN (convolutional neural network), which can not only reconstruct a clean “repaired” input with strong robustness and generalization capabilities via DAE, but also learn the abstract deep semantic features with strong discriminating capability via CNN. Experimental results verify the superiority and robustness of the IMDAC model across 15 software projects. 相似文献
17.
Nowadays,more and more users share real-time news and information in micro-blogging communities such as Twitter,Tumblr or Plurk.In these sites,information is shared via a followers/followees social network structure in which a follower will receive all the micro-blogs from the users he/she follows,named followees.With the increasing number of registered users in this kind of sites,finding relevant and reliable sources of information becomes essential.The reduced number of characters present in micro-posts along with the informal language commonly used in these sites make it difficult to apply standard content-based approaches to the problem of user recommendation.To address this problem,we propose an algorithm for recommending relevant users that explores the topology of the network considering different factors that allow us to identify users that can be considered good information sources.Experimental evaluation conducted with a group of users is reported,demonstrating the potential of the approach. 相似文献
18.
19.
全局光照渲染技术在虚拟现实应用中日益普及,但其图像高分辨率采样带来的高时间成本严重影响用户感受.为解决上述问题,提出分段式卷积神经网络模型,对低分辨率采样渲染结果进行实时降噪并获得更高质量的渲染图像结果.该模型分为2段,针对已有降噪模型处理时序渲染结果序列时出现的不稳定性瓶颈,前段使用多层跳跃连接的循环卷积神经网络将渲染结果以序列为单位进行处理,保障降噪结果的时序稳定性;针对降噪模型在时序降噪中的效果瑕疵,后段串联多层渲染图像降噪卷积神经网络对处理结果进行优化;为加快模型训练速度并进一步提升降噪效果,使用低分辨率采样的场景反射率图、法线向量图、场景深度图、阴影图等渲染辅助图像信息作为辅助输入.所提模型综合了已有图像和视频降噪模型的优点,在5种自定义场景上的降噪实验结果表明,该模型具有良好的时序稳定性和降噪效果,镜面处噪点数量明显少于当前主流的OptiX降噪器;在降噪结果与目标图像的结构相似性(SSIM)指标上,与OptiX降噪器相比,该模型在5个场景中分别有5.8%,12.2%,1.5%,4.7%和1.8%的提升. 相似文献
20.
目的 在自动化、智能化的现代生产制造过程中,行为识别技术扮演着越来越重要的角色,但实际生产制造环境的复杂性,使其成为一项具有挑战性的任务。目前,基于3D卷积网络结合光流的方法在行为识别方面表现出良好的性能,但还是不能很好地解决人体被遮挡的问题,而且光流的计算成本很高,无法在实时场景中应用。针对实际工业装箱场景中存在的人体被遮挡问题和光流计算成本问题,本文提出一种结合双视图3D卷积网络的装箱行为识别方法。方法 首先,通过使用堆叠的差分图像(residual frames, RF)作为模型的输入来更好地提取运动特征,替代实时场景中无法使用的光流。原始RGB图像和差分图像分别输入到两个并行的3D ResNeXt101中。其次,采用双视图结构来解决人体被遮挡的问题,将3D ResNeXt101优化为双视图模型,使用一个可学习权重的双视图池化层对不同角度的视图做特征融合,然后使用该双视图3D ResNeXt101模型进行行为识别。最后,为进一步提高检测结果的真负率(true negative rate, TNR),本文在模型中加入降噪自编码器和two-class支持向量机(support vec... 相似文献