首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
改进的粒子滤波算法   总被引:1,自引:0,他引:1  
为了防止经多次重采样后粒子多样性的丧失,保持粒子的统计独立性,以应对强非线性系统或者意外突发情况,在重采样技术的基础上,提出了一种改进的粒子滤波算法。当粒子失去多样性而导致估计误差较大时,采取一种循环算法,使得粒子朝高似然区域移动,以增加粒子的多样性,提高对强非线性系统滤波的稳定性和准确性。仿真实验验证了该算法的有效性。  相似文献   

2.
在强非线性、非高斯系统、高精度测量的环境下,针对粒子滤波(PF)算法的跟踪性能降低问题,提出一种PF的改进算法。由于PF算法的计算量虽然小但精度不高,而无迹粒子滤波(UPF)算法精度虽然很高但计算量过大,结合PF算法计算量小和UPF算法精度高的优势,提出一种PF改进算法。对PF、UPF和PF改进算法三种跟踪算法进行了仿真,结果表明,改进PF算法的跟踪精度和UPF的跟踪精度相当,但所需运算时间仅为UPF算法的35%左右。  相似文献   

3.
针对采用单一特征建立的动态空间模型与实际系统差距较大,从而使估计误差增加的问题,通过将系统的状态参数引入颜色特征模型中,与颜色特征参数一起构成系统状态空间向量,提出了一种联合颜色状态特征的优化目标跟踪算法.应用Rao-Blackwellization算法思想,由Kalman线性滤波方法解析处理线性的颜色特征转移和更新过程;而目标位置参数采用粒子滤波进行估计,提高了视频目标跟踪的精度和实时性.通过与其他相似算法的比较实验结果可以看出,算法在环境亮度发生变化、目标遮挡等情况下,仍能够保持较高的跟踪精度,既提高了跟踪系统的鲁棒性,又保证了算法的实时性,优于传统的单一特征视频跟踪算法.  相似文献   

4.
提出了一种新的室内定位跟踪算法,采用了直方图法和核函数法估计参考点处的接收信号强度的概率分布,并将其作为该参考点的位置指纹,描述了该参考点处无线信道的特性;利用粒子滤波解决了非线性状态空间模型下的在线跟踪问题,仿真结果表明基于概率密度分布和粒子滤波的跟踪算法收敛速度快,且对环境变化不敏感,性能优于卡尔曼滤波算法。  相似文献   

5.
随着人工智能科学的发展,目标跟踪成为中外学者研究的热点,近年来很多目标跟踪算法相继被提出,其中,经典的卡尔曼滤波算法常被用于目标跟踪领域。然而,在实际情况中,目标跟踪过程常涉及到非线性非高斯问题,由于粒子滤波算法在非线性非高斯系统中有较好的性能,因此将其引入目标跟踪研究领域。针对粒子滤波算法存在的跟踪精度差、实时性不高等问题,近年来国内外学者提出很多改进方法。从特征融合、算法融合和自适应粒子滤波三个方面介绍了相关改进方法的基本思想,展望了粒子滤波算法在目标跟踪领域的发展方向。  相似文献   

6.
随着这些年计算机硬件水平的发展,计算速度的提高,源自序列蒙特卡罗方法的蒙特卡罗粒子滤波方法的应用研究又重新活跃起来.本文的这种蒙特卡罗粒子滤波算法是利用序列重要性采样的概念,用一系列离散的带权重随机样本近似相应的概率密度函数.由于粒子滤波方法没有像广义卡尔曼滤波方法那样对非线性系统做线性化的近似,所以在非线性状态估计方面比广义卡尔曼滤波更有优势.在很多方面的应用已经逐渐有替代广义卡尔曼滤波的趋势.  相似文献   

7.
张琪  王鑫  胡昌华  蔡!曦 《控制与决策》2008,23(3):293-296
退化现象是应用粒子滤波算法的一个主要障碍,常规的再采样方法虽然可解决退化问题,但容易产生粒子耗尽现象.针对上述问题,将人工免疫算法引入粒子滤波,提出了人工免疫粒子滤波算法.通过人工免疫算法寻找较好的粒子用于估计,以增加粒子集的多样性,从而缓解了粒子滤波的退化现象并解决了粒子耗尽问题.仿真结果表明该算法是可行的.  相似文献   

8.
传统的非线性约束优化算法的精度较低,为了克服这一问题,提出了一种基于粒子滤波的新型优化算法。该算法用于解决非线性约束优化问题,并结合粒子滤波器的模型和机制。首先,利用粒子滤波算法的基本原理建立这种优化算法,并给出算法的操作步骤;然后将非线性约束优化问题转换为函数优化问题函数优化问题,并针对非线性约束优化问题,建立粒子滤波优化算法的数学模型。仿真实验结果证明了这种新型算法的正确性,并且表明了相对于传统的优化算法,基于粒子滤波器的优化方法在解决非线性优化问题方面具有更高的效率和速率,并对今后的非线性约束优化问题具有适应性。  相似文献   

9.
萤火虫算法智能优化粒子滤波   总被引:17,自引:1,他引:17       下载免费PDF全文
针对粒子滤波(Particle filter, PF)重采样导致的粒子贫化以及需要大量粒子才能进行状态估计的问题,本文结合粒子滤波的运行机制,对萤火虫算法的寻优方式进行修正,设计了新的萤火虫位置更新公式和荧光亮度计算公式,并在此基础上提出了萤火虫算法智能优化粒子滤波.该方法引入了萤火虫群体的优胜劣汰机制以及萤火虫个体的吸引和移动的行为,使粒子群智能地向高似然区域移动,提高了粒子群的整体质量.实验表明该方法提高了粒子滤波的预测精度,同时大大降低了状态值预测所需的粒子数量.  相似文献   

10.
粒子滤波算法及其应用研究   总被引:6,自引:0,他引:6  
粒子滤波是基于序贯Monte Carlo仿真方法的非线性滤波算法,对基本粒子滤波算法的原理实现步骤进行了详细的介绍,进行了仿真试验.试验结果表明,粒子滤波能够很好地对非线性系统进行仿真,其估计精度要优于扩展卡尔曼滤波.由于粒子滤波算法摆脱了解决非线性滤波问题时随机量必须满足高斯分布的制约条件,并在一定程度上解决了粒子匮乏问题,近年来该算法在许多领域得到成功应用.  相似文献   

11.
针对低信噪比条件下多弱小目标检测前跟踪算法跟踪效率低、计算复杂度高等问题,提出一种基于箱粒子概率假设密度滤波的弱目标检测与跟踪算法.首先,针对由目标的贡献强度和噪声获得的目标强度量测图像,利用均值滤波抑制强度量测图像中的噪声;其次,以不交叉原则挑选出强度值较大区域作为区间量测;最后,利用箱粒子概率假设密度(BOX-PHD)滤波对上述所得的区间量测进行目标跟踪.仿真结果表明,所提出的方法可以提高跟踪性能,且计算效率高.  相似文献   

12.
A simple yet effective state-estimation algorithm is presented and demonstrated to have advantages over previous standard clustering techniques used for the particle probability hypothesis density filter.The idea behind the proposed algorithm is that it uses the latest available information(i.e.,the measurements) to direct particle clustering.The particle likelihood and target number estimation,computed during probability hypothesis density recursion,are both used to partition particles into clusters,and the center of each cluster gives the state estimation of an individual target.Simulation results indicate that the proposed algorithm outperforms the standard clustering approach using the k-means algorithm,achieving higher accuracy and shorter computational time.  相似文献   

13.
14.
徐琼燕  吴印华 《测控技术》2015,34(5):153-156
针对异步采样下多红外传感器多目标跟踪问题,提出了一种基于概率假设密度粒子滤波的跟踪算法.该算法首先将一个融合周期内所有采样点在融合中心的坐标系中和时钟下进行统一映射,然后按照实际测量值到来的时间先后顺序,根据融合周期内相邻两个时刻之间状态的动态关系,建立相应采样时刻间的状态方程和量测方程,最后根据当前时刻测量对应的传感器的个数选择不同的滤波算法,对顺序到来的观测值依次进行状态估计和更新,从而得到目标数目和相应的状态估计值.仿真实验表明,所提的算法能较好地解决异步采样下多红外传感器多目标跟踪问题,具有较高的跟踪精度和较强的鲁棒性.  相似文献   

15.
滕飞  薛磊  李修和 《控制与决策》2019,34(3):561-566
针对粒子滤波存在计算效率低和因粒子贫化导致的计算精度下降问题,基于KLD(Kullback Leibler distance)采样和蝙蝠算法,提出一种可动态调整粒子规模的自适应粒子滤波算法.首先,在重要性采样中利用KLD采样动态调整粒子规模;然后,使用蝙蝠算法定向优化粒子集,并在迭代更新中使蝙蝠算法和KLD采样相互作用,从而达到同时提升计算精度和计算效率的目的.实验结果验证了所提出算法的可行性和有效性.  相似文献   

16.
针对现有的多机动目标追踪问题,将交互式多模型(interacting multiple model,IMM)思想与箱粒子概率假设密度滤波器(box probability hypothesis density filter,Box-PHD)相结合,并针对箱粒子在区间密集杂波等复杂环境下箱体偏大,所导致的箱粒子冗余和目标...  相似文献   

17.
This paper describes a novel method for tracking complex non-rigid motions by learning the intrinsic object structure. The approach builds on and extends the studies on non-linear dimensionality reduction for object representation, object dynamics modeling and particle filter style tracking. First, the dimensionality reduction and density estimation algorithm is derived for unsupervised learning of object intrinsic representation, and the obtained non-rigid part of object state reduces even to 2-3 dimensions. Secondly the dynamical model is derived and trained based on this intrinsic representation. Thirdly the learned intrinsic object structure is integrated into a particle filter style tracker. It is shown that this intrinsic object representation has some interesting properties and based on which the newly derived dynamical model makes particle filter style tracker more robust and reliable.Extensive experiments are done on the tracking of challenging non-rigid motions such as fish twisting with selfocclusion, large inter-frame lip motion and facial expressions with global head rotation. Quantitative results are given to make comparisons between the newly proposed tracker and the existing tracker. The proposed method also has the potential to solve other type of tracking problems.  相似文献   

18.
提出了一种基于多特征聚类的粒子滤波目标跟踪算法.针对目标描述特征的多样性、特征分布描述方法的差异性及特征空间结构的任意性,提出将目标模型多特征表示统一在聚类计算框架下.算法利用基于均值移动的特征空间分析方法来自适应地计算任意结构特征空间中的聚类,在聚类的基础上提出了一种高效准确的目标概率密度估计方法来表示目标模型.利用核密度估计相似度量方法计算参考目标与候选目标的距离,作为粒子滤波系统观测的重要信息.提出了改进的粒子传播模型,有效提高粒子利用率.在大量真实序列图像上,使用LUV颜色特征与LBP纹理特征进行了目标跟踪实验.实验结果表明,提出的算法能获得较高的跟踪精度、鲁棒性强且满足实时性要求,与一些其它典型的算法相比,整体跟踪性能更好.  相似文献   

19.
针对非线性系统的状态估计问题,提出一种改进的高斯粒子滤波算法。该算法是基于正则化粒子滤波(RPF),将重采样中离散的概率分布函数近似为连续分布,进而在高斯粒子滤波(GPF)中引入正则化粒子滤波算法得到的最新预测值,并利用这一观测值进行状态估计的更新。最后,对RGPF和GPF两种算法进行综合分析和实验仿真,结果表明,与标准GPF算法相比,RGPF具有较高的滤波精度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号