首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
马欢  景卉 《润滑与密封》2022,47(9):32-36
针对润滑状态下结合面的接触刚度问题,建立一种混合润滑状态下粗糙表面接触刚度等效薄层模型,将接触界面的总刚度等效为固体接触刚度和润滑剂接触刚度之和,研究不同实际接触面积下的表面形貌和润滑剂类型对法向接触刚度的影响,并讨论固体刚度和润滑剂刚度占总法向刚度的比例。结果表明:粗糙界面的法向接触刚度随法向载荷的增加而增加,且混合润滑状态下的接触刚度大于干接触条件下的接触刚度;在初始接触时,法向接触刚度敏感地依赖于润滑性能;随着实际接触面积的增大,表面形貌对接触刚度的影响变得更加明显。  相似文献   

2.

The development of special grease makes it possible for angular contact ball bearings to operate at high speed and temperature; however, as an important performance parameter, friction torque of bearings lubricated with grease is much greater than that of bearings lubricated with oil-air, and heat generation due to frictional loss is also greater, so it is necessary to predict the friction torque occurring in grease lubricated angular contact ball bearings. Based on grey system theory, a new prediction methodology for bearing friction torque is proposed which capitalizes on the notion that the information about friction torque of angular contact ball bearing is generally poor, incomplete and uncertain. A grey prediction model, GM (1, N) model, is presented to predict the friction torque in grease lubricated angular contact ball bearings. Several experiments on the friction torque of grease lubricated angular contact ball bearings were conducted to model and validate the effectiveness of the GM (1, N) model through on-line and off-line approaches. Experimental results show that about 90% of bearing friction torque under varying speed can be predicted in the on-line prediction; above 85% of bearing friction torque under varying speed and different loads can be predicted in the off-line prediction. Comprehensive analysis shows that, the GM (1, N) model performs very well for both modeling data and model validation data under different loads, varying bearing speed and work cycles, the proposed methodology can be used to predict bearing friction torque with good accuracy and robustness.

  相似文献   

3.
This paper aims to investigate the wear and lubrication behaviors of wet Cu-based friction pairs. A mixed lubrication model in plane contacts is developed, and the tests of pin-on-disk are carried out. Wear losses are measured by the oil spectrum analysis method. The wear loss, the real contact area ratio, and the load sharing ratio are analyzed. Effects of sliding velocity, temperature, and pressure are considered. The results show that the temperature is the most significant influence on the wear loss of lubricated Cu-based friction pairs. As the temperature rises from 30 to 150 °C, wear loss increases from less than 0.4 mg to about 2.3 mg. The wear factor of the lubricated Cu-based friction pair in asperity contact areas is \(K_{c} = 9.4 \times 10^{ - 9}\) (g/Nm). When the lubricated wear is slight, the oil spectrum analysis method is an effective approach to accurately determine the wear loss.  相似文献   

4.
A model is developed to describe dynamic friction effects in lubricated surfaces. The model covers the hydrodynamic, mixed and boundary lubrication regions. The dynamic friction model can predict the friction force for time-varying velocity, and is useful in precise motion control. The model presented is for a short journal bearing, but can be extended to other geometries of sliding surfaces, such as point and line contacts or rolling element bearings. The friction is related to a time variable fluid film thickness, resulting from journal vibrations relative to the sleeve. The proposed model agrees qualitatively with experimental results for lubricated line contact. Both show similar hysteresis-type friction curves under oscillating velocity.  相似文献   

5.
《Wear》2002,252(7-8):546-556
After a short background history on solid third bodies, this paper proposes a tribological approach for understanding how a contact takes place when first bodies are in relative movement and are separated by a solid third body. This approach, based on rheology and third body flows, enables friction and wear in contacts “lubricated” by a solid third body to be identified and progressively modelled.Flows and rheology are the two notions used for analysing and structuring dynamic phenomena created by contacts and their interaction with the environment, in the physico-chemical and mechanical sense, i.e. with the ambient atmosphere and the mechanism concerned with the contact, respectively.Due to in-situ instrumentation difficulties, flows are evaluated in relation to those visualised in real time through one transparent first body. Rheology is also evaluated relatively, but by distinguishing the cohesion and ductility of the elements making up the third body that moves in the contact, over a given observation scale.As an illustration, this presentation relies on the behaviour of a contact containing a third body formed in-situ from a coating of MoS1.6.  相似文献   

6.
高速、高精度数控伺服工作台摩擦误差的研究   总被引:13,自引:0,他引:13  
建立了一种考虑摩擦影响的PID控制下的高速、高精度进给伺服工作台的数学模型。伺服机构中的摩擦力是采用一种“两维混合摩擦模型”来描述的。该模型可以根据滑动速度、表面接触物体的油膜厚度等计算摩擦力。通过数值仿真与实际测量 ,在大范围的工况下 ,研究了圆运动过象限时出现凸起的误差现象。通过计算与试验结果的比较 ,证明了提出的考虑摩擦影响的数学模型能够精确地模拟PID控制下的高速、高精度进给伺服工作台的动力学过程 ,能够正确地预测进给运动过程中摩擦误差大小及特征。  相似文献   

7.
A lubrication/friction model can be implemented in FEM codes to predict the contact area ratio, friction coefficient and strain distribution in lubricated deep drawing process. In the lubrication analysis, the surface roughness effect on lubrication flow is included by using Wilson and Marsault's average Reynolds equation that is appropriated for mixed lubrication with severe asperity contact. With regard to the asperity contact theory, the well-known flattening effect is considered. Friction is expressed in terms of variables such as lubricant film thickness, sheet roughness, lubricant viscosity, interface pressure, sliding speed, and strain rate. The proposed lubrication/friction model combined with a finite element code of deep drawing process to predict the contact area ratio, friction coefficient and strain distribution. Numerical results showed that the present analysis provides a good agreement with the measured strain distributions.  相似文献   

8.
A model for mixed lubrication, assuming that the total normal load applied to the plane of the lubricated surfaces is carried partly by the hydrodynamic action of the lubrication film and partly by asperity contacts and that the total friction force between the lubricated surfaces is partly due to viscous friction and partly to asperity contacts, was used to develop a numerical solution for pressure distribution in a bearing experiencing mixed lubrication. The geometry treated and the pressure distribution obtained were for a simple slider bearing, but the method could easily be extended to other shapes. The model is based on measured roughness of a real surface. Real load carrying capacity and drag can therefore be determined since they are related directly to bearing pressure distribution  相似文献   

9.
10.
星载活动部件用轴承的失效仿真分析及试验验证   总被引:1,自引:0,他引:1  
刘庭伟  张宁  梁伟  张亮 《中国机械工程》2014,25(21):2864-2868
为了对长寿命卫星活动机构固体润滑轴承进行寿命评价,首先结合赫兹接触理论研究了轴承失效的物理量化模型;其次,通过计算机仿真手段从轴承动力学的角度模拟其安装于单机载荷上的实际工况,得到轴承内部接触摩擦特性及受力特性变化规律;最后,通过试验及得到的相关数据对仿真结果进行闭环验证。研究结果验证了该类固体润滑轴承动力学建模方法的正确性,为低速固体润滑类轴承内部润滑失效提供了定量的判据,并为最终提高二维扫描机构寿命的方法提供了借鉴。  相似文献   

11.
A paper-based wet friction material lubricated with automatic transmission fluids (ATFs) produces plateau and positive slope regions in the friction–sliding velocity diagram. This feature observed at less than 1 mm/s of sliding velocity is discussed in this paper. The relationship between the friction and contact pressures of less than 5 MPa was determined by a reciprocating friction test rig lubricated with mineral oil including phosphoric acid ester, one of the additives for ATFs. The real contact area for dry condition was also determined by optical interferometry. The consistency of the real contact pressure dependency of the shear strength of the boundary film was indicated at pressures of less than 1 GPa obtained by steel-on-steel boundary friction (oiliness) test. This suggests that the generation of the positive slope region is due to thin film lubrication. To the plateau region, possibility of application of the phase transition model is considered.  相似文献   

12.
It is generally known that the contact between tube and die, in the case of tube hydroforming process, leads to the appearance of friction effects. In this context, there are many different models for representing friction and many different tests to evaluate it. In the present paper, the pin-on-disk test has been used and the theoretical model of Orban-2007 has been chosen and developed to evaluate friction coefficient. The main goal is to prove the capacity of theoretical model to present the friction conditions in comparison with the pin-on-disk test. From the Orban model, values of 0.05 and 0.25 of friction coefficient have been found under lubricated and dry tests, respectively. On the other hand, by the classical pin-on-disk test, other values were experimentally obtained as friction coefficient at the copper/steel interface. In the case of pure expansion hydroforming, based on an internal pressure loading only, a “corner filling” test has been run for tube hydroforming. Both dry and lubricated contacts have been considered. Various configurations and shapes have been studied such as the rectangular, trapezoidal, and trapezoid-sectional dies. Finite element simulations with 3D shell and 3D solid models have been performed with different values of friction coefficients. From the main results, it was found that the critical thinning occurs in the transition zone for the square and rectangular section die and in the sharp angle for the trapezoidal and trapezoid-sectional die. The comparison between numerical data and experimental results shows a good agreement. Moreover, the thickness distribution along the cross section is relatively consistent with those measured for the 3D shell model; however, the 3D solid models do not provide a realistic representation of the thickness distribution in the shaped tube. Finally, the results obtained from the theoretical model were more efficient than the results obtained from the pin-on-disk test.  相似文献   

13.
Thin lubricant films and cavitation to ring–bore contact have a directly correlation between wear and emissions output of internal combustion engines. Thus, there is a need to develop innovate engineering solutions such as surface texturing. In particular, micro textures are manufactured in order to keep more lubricant in weakly lubricated contact. An isothermal mixed‐hydrodynamic analysis was developed for textured compression rings, which utilised the effects of two‐phase flow using Navier–Stokes equations, vapour transport and asperity interaction. Realistic boundary conditions are used from a real motorbike engine. This paper employs a computational model including multiphase flow of the ring–bore conjunction in order to predict the effects of surface texturing of the barrel face ring around the dead centres. The model is validated using numerical and experimental results from the literature. Additionally, flow simulations have been performed, on how micro‐dimples shape and depth on the ring liner affect on the total friction and minimum lubricant film. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
In the present study, a novel windscreen wiper-on-cylinder machine has been used to investigate the influence of sliding speed and normal force on the coefficient of friction. Using this machine it is possible to measure the friction force not only on specimen level, as in former studies to be available in the literature, but also on structural level by considering the whole windscreen wiper. As measurement results are strongly influenced by both the real, non-circular cross-section, and the eccentricity of the rotating glass cylinder an analytical model has been developed to explain the measurement results. The good agreement to be found between theory and experiment confirms the validity of the model. Majority of the results belongs to partial contact where the wiper blade is not in contact with the glass countersurface along its total length. After the discussion of experimental results, as a last step, authors made an attempt to compare quantitatively the predictive capability of two different contact models widely used in mixed friction model of sliding rubber components. The results show that the difference in film thickness due to solid–solid contact can be larger than three orders of magnitude in case of a typical windscreen wiper.  相似文献   

15.
In highly loaded gears, lubricated rolling/sliding contact conditions change greatly along the line of action. This leads to variation in gear frictional properties and to failures such as pitting and scuffing that take place in different positions along the tooth flank. Information on instant contact behavior is therefore very useful, but this kind of measurement in real gears is extremely complicated. Single spur gear geometry has been simulated at 38 steady-state measuring points along the line of action using a twin-disc test device focusing on the friction coefficient and on temperature and lubrication conditions. Twin-disc simulations were adjusted to match real gear experiments by using similar maximum Hertzian pressure and surface velocities. The results show that the curve shapes for the mean friction coefficient as a function of pitch line velocity are similar to the corresponding experimental results with real gears. Further, the calculated thermal Λ-values of real gears and the measured mean contact resistance correspond well. This approach shows potential for simulating gear friction and failure mechanisms along the line of action.  相似文献   

16.
A numerical contact model is used to study the influence of surface roughness and the pressure distribution on the frictional behaviour in rolling/sliding contacts. Double-crowned roller surfaces are measured and used as input for the contact analysis. The contact pressure distribution is calculated for dry static contacts and the results are compared with friction measurements in a lubricated rolling/sliding contact made with a rough friction test rig. The mean pressure is suggested as a parameter that can be used to predict the influence of surface roughness on the friction coefficient in such contacts. The results show two important properties of the friction coefficient for the friction regime studied in this paper: (1) there is a linear decrease in friction coefficient as a function of the slide-to-roll ratio, and (2) the friction coefficient increases linearly with increasing mean contact pressure up to a maximum limit above which the friction coefficient is constant. The absolute deviation of experimental results from the derived theory is for most cases within 0.005.  相似文献   

17.
Multi-valued friction is often observed in lubricated contact systems operating under unsteady sliding conditions. In the past, this behaviour has been modelled using a measured time delay between changes in sliding velocity and resulting changes in friction. More recent work has revealed that fluctuations in normal separation are the principal cause of this deviation from steady friction behaviour. This paper demonstrates that tangential contact dynamics can result in apparent deviations from steady friction that can resemble true deviations found from fluctuations in normal separation. Two different dynamic models are considered. One model accommodates the tangential rider dynamics of a friction test apparatus. The other model considers the possibility of tangential dynamics associated with asperity contacts.  相似文献   

18.
Surface roughness and thermal action are of remarkable importance in the lubrication performance of mechanical components, especially in extreme conditions. However, available studies mainly focus on the full-film lubrication conditions without considering temperature rise and real 3D surface roughness due to the complexity of surface topography and temperature characteristics. Moreover, studies on the interfacial thermal behaviors of 3D rough surface lubricated contact in an extended range of working conditions remain limited. In this paper, a deterministic mixed thermal elastohydrodynamic lubrication model considering real 3D surface roughness and thermal effects is proposed. In this model, pressure and temperature are coupled with each other, the computation of elastic deformation is accelerated through the discrete convolution and fast Fourier transform method, the temperature field is calculated with the column sweeping technique, and the semi-system method is introduced to improve convergence and numerical stability under severe conditions. The model is validated by comparing its results with available published numerical and experimental results. The thermal behaviors of the contact interface are studied in a wide range of working conditions. The influences of surface roughness and thermal effect on lubrication performance are revealed. The results show that the proposed model can be used as a powerful analysis tool for lubrication performance and temperature prediction in various heavy-load, high-speed lubricated components over a wide range of lubrication conditions.  相似文献   

19.
Friction and wear of ceramics   总被引:8,自引:0,他引:8  
The adhesion, friction, wear and lubricated behaviors of both oxide and non-oxide ceramics are reviewed. Ceramics are examined in contact with themselves, other harder materials and metals. Elastic, plastic and fracture behavior of ceramics in solid state contact is discussed. The contact load necessary to initiate fracture in ceramics is shown to be appreciably reduced with tangential motion. Both friction and wear of ceramics are anisotropic and relate to crystal structure as with metals. Grit size effects in two- and three-body abrasive wear are observed for ceramics. Both free energy of oxide formation and the d valence bond character of metals are related to the friction and wear characteristics for metals in contact with ceramics. Surface contaminants affect friction and adhesive wear. For example, carbon on silicon carbide and chlorine on aluminum oxide reduce friction while oxygen on metal surfaces in contact with ceramics increases friction. Lubrication increases the critical load necessary to initiate fracture of ceramics both in indentation and with sliding or rubbing.  相似文献   

20.
表面织构对水润滑轴承混合润滑性能的影响   总被引:3,自引:0,他引:3  
为分析表面织构对水润滑轴承混合润滑性能的影响,基于平均Reynolds方程及JFO空化边界条件建立带有表面织构的水润滑轴承混合润滑模型并数值求解,获得不同织构参数下水润滑轴承的Stribeck曲线。研究结果表明:表面织构是否能改善润滑性能与其深径比及面密度参数密切相关,织构的引入并不一定能降低水润滑轴承的摩擦因数;表面织构的面密度和深径比存在最优值,能使水润滑轴承获得最大的膜厚比与最小的摩擦因数,并在较低的转速下由混合润滑状态进入流体动压润滑状态。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号