首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Subsolidus phase relationships in the Ga2O3–Al2O3–TiO2 system at 1400°C were studied using X-ray diffraction. Phases present in the pseudoternary system include TiO2 (rutile), Ga2−2 x Al2 x O3 ( x ≤0.78 β-gallia structure), Al2−2 y Ga2 y O3 ( y ≤0.12 corundum structure), Ga2−2 x Al2 x TiO5 (0≤ x ≤1 pseudobrookite structure), and several β-gallia rutile intergrowths that can be expressed as Ga4−4 x Al4 x Ti n −4O2 n −2 ( x ≤0.3, 15≤ n ≤33). This study showed no evidence to confirm that aluminum substitution of gallium stabilizes the n =7 β-gallia–rutile intergrowth as has been mentioned in previous work.  相似文献   

2.
Aqueous solutions of zirconium acetate and aluminum nitrate were spray pyrolyzed at 250°C and upquenched to different temperatures to yield metastable solid solutions of composition Zr(1− x )AlxO(2− x /2). An amorphous oxide forms first during pyrolysis which subsequently crystallizes as a single phase for x ≤ 0.57 (≤40 mol% Al2O3). The crystallization temperature increased with Al2O3 content. Electron diffraction, supported by Raman spectroscopy, indicates that the initial phase is tetragonal. At higher temperatures, the initial solid solation partitions to other metastable phases, viz., t -ZrO2+γ-Al2O3, prior to achieving their equilibrium phase assemblage, m -ZrO2+α-Al2O3. Partitioning yields a nanocomposite microstructure with grain sizes of 20–100 nm, compared to the 3 to 5 nm in the initial, single phase. Compositions containing 45 to 50 mol% Al2O3 concurrently crystallize and partition. The structure selected during crystallization and the partitioning phenomena are discussed in terms of diffusional constraints during crystallization, which are conceptually similar to those operating during rapid solidification.  相似文献   

3.
La1− y Sr y Fe1− x Al x O3−δ perovskites were studied as potential materials for solid-oxide fuel cell (SOFC) cathodes. The phase relations in the LaFeO3–SrFeO3−δ–LaAlO3 system were investigated by X-ray powder diffraction analysis. The defect structure of the La1− y Sr y Fe1− x Al x O3−δ perovskites was investigated by Mössbauer spectroscopy and weight-loss analysis. Relations between the nonstoichiometry and the conductivity of the La1− y Sr y Fe1− x Al x O3−δ perovskites were investigated. The incorporation of aluminum ( x ) into LaFe1− x AlxO3 was found to have no influence on the defect structure but to decrease the conductivity. The incorporation of strontium ( y ) into La1− y Sr y Fe1− x Al x O3−δ promotes the formation of anion vacancies and Fe4+ that lead to higher conductivity.  相似文献   

4.
A series of x Al2O3· (1 − x )NaPO3 glasses (0 ≤ x ≤ 0.275) were prepared and characterized by magic angle spinning nuclear magnetic resonance (MAS NMR) spectroscopy and by X-ray photoelectron spectroscopy (XPS). 27AI MAS NMR spectra reveal that: at low alumina contents ( x < 0.125), Al is in dominantly octahedrally coordinated Al(OP)6 structural environments; in glasses with x > 0.125, Al(OP)4 environments are increasingly favored; and at x = 0.275, most Al is tetrahedrally coordinated. 5-coordinated Al environments also appear to be present. Variations in the 31P MAS NMR spectra are consistent with bonding between neighboring P and Al polyhedra. Quantitative changes in the oxygen bonding, determined from the O 1 s spectra obtained by XPS, also reflect these structural changes. The effects of alumina content on the relative concentration of nonbridging oxygen (PO) are quantitatively described by a simple structural model derived from the MAS NMR data. The thermal expansion coefficients and glass transition temperatures are shown to be sensitive to these structural changes.  相似文献   

5.
Barium (Ba)-substituted CsTiSi2O6.5 materials of two types, Cs x Ba1− x TiSi2O(7− x /2) and Cs x Ba(1− x )/2TiSi2O6.5 were synthesized with the pollucite structure with 1≥ x ≥0.6. When the Ba-substituted precursor materials were heat treated to 850°C for 4 h, a mixture of amorphous and unidentifiable phases formed. However, with the addition of 10 wt% of crystalline CsTiSi2O6.5 to the Ba-containing precursors, nearly single-phase pollucite was obtained after 20 h at 750°C for x ≥0.6. The added crystalline CsTiSi2O6.5 particles act as nuclei that allow the Ba-containing materials to crystallize into the pollucite phase and to avoid the formation of unwanted phases that would otherwise nucleate and grow. These new materials can be used to study the stability of CsTiSi2O6.5 as a durable ceramic waste form, which could accommodate with time both Cs and its decay product, Ba.  相似文献   

6.
Powder X-ray diffractometry (XRD) and 151Eu Mössbauer spectroscopy were performed for samples prepared in the temperature range 1500–1500°C for the hafnia–europia (HfO2–Eu2O3) system Eu x Hf1− x O2− x /2(0 ≤ x ≤ 1.0). The XRD results showed that two types of solid solution phases formed in the composition range 0.25 ≤ x ≤ 0.725: an ordered pyrochlore-type phase in the middle-composition range (0.45 < x < 0.575) and a disordered fluorite-type phase, enveloping the pyrochlore-type phase on both sides, in the composition ranges 0.25 ≤ x ≤ 0.40 and 0.60 ≤ x ≤ 0.725. 151Eu Mössbauer spectroscopy sensitively probes local environmental changes around trivalent europium (Eu3+) caused by the formation of these solid solution phases. In addition to the broad, single Mössbauer spectra observed in this study for the Eu3+, the values of isomer shift (IS) exhibited a pronounced minimum in the neighborhood of the stoichiometric pyrochlore phase ( x ≈ 0.5). Such IS behavior of Eu3+ was interpreted based on the XRD crystallographic information that the ordered pyrochlore phase has a longer (in fact, the longest) average Eu–O bond length than those of the disordered fluorite phases on both sides or the monoclinic (and C-type) Eu2O3at x = 1.0.  相似文献   

7.
Porous glass-ceramics with a skeleton of the fast-lithium-conducting crystal Li1+ x Ti2− x Al x (PO4)3 (where x = 0.3–0.5) were prepared by crystallization of glasses in the Li2O─CaO─TiO2─Al2O3–P2O5 system and subsequent acid leaching of the resulting dense glass-ceramics composed of the interlocking of Li1+ x Ti2− x Al x (PO4)3 and β-Ca3(PO4)2 phases. The median pore diameter and surface area of the resulting porous Li1+ x Ti2− x Al x (PO4)3 glass-ceramics were approximately 0.2 μm and 50 m2/g, respectively. The electrical conductivity of the porous glass-ceramics after heating in LiNO3 aqueous solution was 8 × 10−5 S/cm at 300 K or 2 × 10−2 S/cm at 600 K.  相似文献   

8.
Compounds in a CaO–Y2O3–SnO2 system were prepared by a solid-state reaction at 1673 K. The phase relation in this system was investigated by powder X-ray diffraction. Besides the previously reported ternary compounds, CaSnO3, Ca2SnO4, Y2Sn2O7, and a quaternary compound Ca0.4Y1.2Sn0.4O3, solid-solution series of Ca2− x Y2 x Sn1− x O4 with 0≤ x ≤0.5, and Ca1− y Y2 y Sn1− y O3 with 0≤ y ≤0.2 and 0.95≤ y ≤1.0 were found. The cell parameters of these solid-solution series were refined. The changes of rhombohedral cell parameters in the samples prepared in the range 0.565< y <0.714 of Ca1− y Y2 y Sn1− y O3 suggested the existence of solid solutions of Ca0.4Y1.2Sn0.4O3, although their single phases could not be prepared, except at y =0.6.  相似文献   

9.
The glass formation region, crystalline phases, second harmonic (SH) generation, and Nd:yttrium aluminum garnet (YAG) laser-induced crystallization in the Sm2O3–Bi2O3–B2O3 system were clarified. The crystalline phases of Bi4B2O9, Bi3B5O12, BiBO3, Sm x Bi1− x BO3, and SmB3O6 were formed through the usual crystallization in an electric furnace. The crystallized glasses consisting of BiBO3 and Sm x Bi1− x BO3 showed SH generations. The formation of the nonlinear optical BiB3O6 phase was not confirmed. The formation (writing) region of crystal lines consisting of Sm x Bi1− x BO3 by YAG laser irradiation was determined, in which Sm2O3 contents were∼10 mol%. The present study demonstrates that Sm2O3–Bi2O3–B2O3 glasses are promising materials for optical functional applications.  相似文献   

10.
The crystal structures for a suite of substituted pollucites with the compositions CsTi x Al1– x Si2O6+0.5 x , 0 ≤ x ≤ 1, have been determined from Rietveld analysis of powder synchrotron XRD data. Our results indicate that the pollucite end member (CsAlSi2O6) has a tetragonal structure (space group I 41/ a ), whereas all other compositions are cubic (space group Ia 3 d ). The increased symmetry for the titanium-substituted structures is presumably due to the incorporation of additional O2− anions (needed for compensating the charge imbalance between Ti4+ and Al3+), which effectively holds open the expanded cubic framework. In situ cooling experiments of the substituted phase CsTi0.1Al0.9Si2O6.05 reveal a displacive transformation to the tetragonal structure at ∼230 K. This transformation is tricritical in nature and is analogous to the tetragonal-to-cubic transition in pollucite on heating.  相似文献   

11.
A series of oxide ion conductors Ce6− x Gd x MoO15−δ (0.0≤ x ≤1.8) have been prepared by the sol–gel method. Their properties were characterized by differential thermal analysis/thermogravimetry (DTA/TG), X-ray diffraction (XRD), Raman, IR, X-ray photoelectron spectroscopy (XPS), and AC impedance spectroscopy. The XRD patterns showed that the materials were single phase with a cubic fluorite structure. The conductivity of Ce6− x Gd x MoO15−δ increases as x increases and reaches the maximum at x =0.15. The conductivity of Ce4.5Gd1.5MoO15−δ is σt=3.6 × 10−3 S/cm at 700°C, which is higher than that of Ce4.5/6Gd1.5/6O2−δt=2.6 × 10−3 S/cm), and the corresponding activation energy of Ce4.5Gd1.5MoO15−δ (0.92 eV) is lower than that of Ce4.5/6Gd1.5/6O2−δ (1.18 eV).  相似文献   

12.
The nonisothermal crystallization kinetic of Bi x Y3− x Fe5O12 (0.25≤ x ≤1.00) powders prepared by coprecipitation process has been investigated. The activation energy of crystallization was calculated by differential scanning calorimetry at different heating rates. The activation energies of crystallization of Bi x Y3− x Fe5O12 system are 492, 447, 377, and 353 kJ/mol and the Avrami constant n are 3.49, 2.25, 2.48, and 2.33 for x =0.25, 0.50, 0.75, and 1.00, respectively. The Avrami exponent values (1< n <3) were consistent with surface and internal crystallizations occurring simultaneously for 0.50≤ x ≤1.00, the value ( n >3) for the Avrami exponent was consistent with bulk crystallization domination in Bi x Y3− x Fe5O12 system. The results reveal that increasing the substitution amount of bismuth for yttrium would significantly decrease activation energy in Bi x Y3− x Fe5O12 system.  相似文献   

13.
(Ni1− x Zn x )Nb2O6, 0≤ x ≤1.0, ceramics with >97% density were prepared by a conventional solid-state reaction, followed by sintering at 1200°–1300°C (depending on the value of x ). The XRD patterns of the sintered samples (0≤ x ≤1.0) revealed single-phase formation with a columbite ( Pbcn ) structure. The unit cell volume slightly increased with increasing Zn content ( x ). All the compositions showed high electrical resistivity (ρdc=1.6±0.3 × 1011Ω·cm). The microwave (4–5 GHz) dielectric properties of (Ni1− x Zn x )Nb2O6 ceramics exhibited a significant dependence on the Zn content and to some extent on the morphology of the grains. As x was increased from 0 to 1, the average grain size monotonically increased from 7.6 to 21.2 μm and the microwave dielectric constant (ɛ'r) increased from 23.6 to 26.1, while the quality factors ( Q u× f ) increased from 18 900 to 103 730 GHz and the temperature coefficient of resonant frequency (τf) increased from −62 to −73 ppm/°C. In the present work, we report the highest observed values of Q u× f =103 730 GHz, and ɛ'r=26.1 for the ZnNb2O6-sintered ceramics.  相似文献   

14.
Hydration occurring in the system Ca3Al2O6–CaSO4· 2H2O–Ca(OH)2–H2O has been studied at different temperatures and it was found that the reactions are diffusion controlled. The kinetic data obeyed Jander's equation and the rate of reaction increased with increasing temperature. X-ray diffraction studies and calorimetric measurements show that when gypsum is consumed, ettringite is converted into monosulfate. The rate of this conversion also increased with the increasing temperature and decreased in the presence of citric acid. Spectroscopic studies showed that there was some interaction between citric acid and the cement and that the product of hydration is of colloidal nature. Zeta potential measurements show that retardation of Ca3Al2O6 hydration in the presence of gypsum and Ca(OH)2 is not due to SO2−4 adsorption. Electrical conductivity and thermoelectric potential measurements of solid Ca3Al2O6 show that Ca3Al2O6 is an n -type semiconductor and contains defects. The retardation of Ca3Al2O6 may be due to poisoning of reaction sites by gypsum and Ca(OH)2.  相似文献   

15.
Ca(1+ x )/2Sr(1+ x )/2Zr4P6−2 x Si2 x O24( x ≤ 0.37) compositions, which belong to the [NZP] family of low-thermal-expansion materials, were synthesized using the solid-state reaction method. The lattice thermal expansion of members of this system was determined up to 1000°C by high-temperature X-ray diffractometry. The bulk thermal expansion and the microcracking during cooling also were investigated. These properties depended on the composition, on the synthesis method, and on the sintering conditions.  相似文献   

16.
The effect of the addition of V2O5 on the structure, sintering and dielectric properties of M -phase (Li1+ x − y Nb1− x −3 y Ti x +4 y )O3 ceramics has been investigated. Homogeneous substitution of V5+ for Nb5+ was obtained in LiNb0.6(1− x )V0.6 x Ti0.5O3 for x ≤ 0.02. The addition of V2O5 led to a large reduction in the sintering temperature and samples with x = 0.02 could be fully densified at 900°C. The substitution of vanadia had a relatively minor adverse effect on the microwave dielectric properties of the M -phase system and the x = 0.02 ceramics had [alt epsilon]r= 66, Q × f = 3800 at 5.6 GHz, and τf= 11 ppm/°C. Preliminary investigations suggest that silver metallization does not diffuse into the V2O5-doped M -phase ceramics at 900°C, making these materials potential candidates for low-temperature cofired ceramic (LTCC) applications.  相似文献   

17.
In the course of searching environmental friendly lead-free relaxor ferroelectrics a complete phase diagram of barium zirconate titanate, Ba(Zr x Ti1− x )O3 system with compositions 0.00≤ x ≤1.00 has been developed based on their dielectric behavior. It has been shown that BaZr x Ti1− x O3 system depending on the composition, successively depicts the properties extending from simple dielectric (pure BaZrO3) to polar cluster dielectric, relaxor ferroelectric, second order like diffuse phase transition, ferroelectric with pinched phase transitions and then to a proper ferroelectric (pure BaTiO3). A comprehensive structure–property correlation of BaZr x Ti1− x O3 ceramics has been studied to understand the various ferroelectric phenomena in the whole phase diagram.  相似文献   

18.
Aqueous mixtures of zirconium acetate and aluminum nitrate were pyrolyzed and crystallized to form a metastable solid solution, Zr1- x Al x O2− x /2 ( x < 0.57). The initial, metastable phase partitions at higher temperatures to form two metastable phases, viz., t −ZrO2+γ-Al2O3 with a nano-scale microstructure. The microstructural observations associated with the γ- →α-Al2O3 phase transformation in the t -ZrO2 matrix are reported for compositions containing 10, 20, and 40 mol% A12O3. During this phase transformation, the α-Al2O3 grains take the form of a colony of irregular, platelike grains, all with a common crystallographic orientation. The plates contain ZrO2 inclusions and are separated by ZrO2 grains. The volume fraction of A12O3 and the heat treatment conditions influence the final microstructure. At lower volume fractions of A12O3, the colonies coarsen to single, irregular plates, surrounded by polycrystalline ZrO2. Interpenetrating microstructures produced at high volume fractions of A12O3 exhibit very little grain growth for periods up to 24 h at 1400°C.  相似文献   

19.
20.
The synthesis and characterization of yttrium hydroxyl carbonate (Y(OH)CO32−) and yttrium nitrate hydroxide hydrate (Y(OH)NO3H2O) precursor materials as well as Y2O3 nanoparticles are reported. The resultant precursor particle size is about 10–12 nm with a narrow size distribution by the enzymatic decomposition method, whereas the particle size was smaller than those acquired by the homogeneous and alkali precipitation methods. The formation of Y(OH)CO32− and Y(OH)NO3H2O species was also evident from the fourier-transform infrared spectrometry (FT-IR) analysis. Precipitated Y(OH)CO32− precursors have an amorphous nature whereas Y(OH)NO3H2O precursors have a crystalline nature, which was manifested from the XRD analysis. Moreover, precipitated Y(OH)NO3H2O precursors were found in the agglomerated form and Y(OH)CO32− was established in the monodispersed form, as determined from the FE-SEM, TEM and DLS measurements. It was demonstrated that calcination of precursor materials at 900°C eventually removed the inorganic anions from the precursors and consequently produced crystalline Y2O3 nanoparticles, which was evident from the XRD and FT-IR analysis. The EDS analysis confirms Er3+ doping in the Y2O3 nanoparticles. The morphology and the size of the Y2O3 nanoparticles are almost unchanged before and after the calcination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号