共查询到19条相似文献,搜索用时 78 毫秒
1.
《现代电子技术》2015,(10):73-77
稀疏表示和字典学习在图像去噪、图像重建和模式识别等应用上取得了良好的效果,其利用稀疏系数和重构误差来作为模式分类的判别准则。稀疏表示纹理分割方法是将图像分割问题转换为像素点的分类问题。但通常稀疏表示分类方法是基于图像块特征,难以准确表征图像纹理信息。为了解决上述问题,提出基于Gabor特征的稀疏表示纹理分割方法。因为Gabor特征对图像纹理信息的鲁棒性,算法首先从每类纹理中选择一些像素点作为训练样本,计算其不同尺度和方向下的Gabor特征,将其作为初始化字典,通过判别性的字典学习算法(D-KSVD)更新字典,该字典学习算法在KSVD基础上使得字典更具有类别判别能力,最后以待分割图像的每个像素点作为测试样本,计算其Gabor特征。利用OMP算法得到测试样本在字典下的稀疏系数,根据稀疏系数得到类标签,进而对像素点进行分类,完成分割。通过在Brodatz纹理库上的实验结果表明,该方法有效提高了稀疏表示算法对纹理图像分割的正确率。 相似文献
2.
针对光照、遮挡、伪装情况下,识别率比较低,识别时间长的问题,本文提出了基于Gabor字典及l0范数快速稀疏表示的人脸识别算法。Gabor小波提取的特征能够克服遮挡、光照等干扰对人脸识别的影响,平滑l0算法通过平滑连续函数来近似 l0范数,只需较少测量值并且较快速度便能重构稀疏信号。本算法通过提取人脸的Gabor特征、主成分分析法(PCA)降低维度,l0范数快速稀疏分类完成识别。在伪装人脸情况下,分块计算Gabor人脸特征,提高Gabor字典的形成速度。基于AR人脸数据库的实验结果表明,本算法可在一定程度上提高识别速度和识别时间,即使在小样本情况下,依然具有较高的识别率。 相似文献
3.
4.
L1跟踪对适度的遮挡具有鲁棒性,但是存在速度慢和易产生模型漂移的不足。为了解决上述两个问题,该文首先提出一种基于稀疏稠密结构的鲁棒表示模型。该模型对目标模板系数和小模板系数分别进行L2范数和L1范数正则化增强了对离群模板的鲁棒性。为了提高目标跟踪速度,基于块坐标优化原理,用岭回归和软阈值操作建立了该模型的快速算法。其次,为降低模型漂移的发生,该文提出一种在线鲁棒的字典学习算法用于模板更新。在粒子滤波框架下,用该表示模型和字典学习算法实现了鲁棒快速的跟踪方法。在多个具有挑战性的图像序列上的实验结果表明:与现有跟踪方法相比,所提跟踪方法具有较优的跟踪性能。 相似文献
5.
在基于稀疏表示分类的模式识别中,字典学习(DL) 可以为稀疏表示获得更为精简的数据表示。最近的基于Fisher判别的字典学习(FDDL)可以学 习到更加判别的稀疏字典,使得稀疏表示分类具有很强的识别性能。核空间变换可以学习到 非线性结构信息,这对判别分类非常有用。为了充分利用 核空间特性以学习更加判别的稀疏字典来提升最终的识别性能,在FDDL的基础上,提出了两 种核化的稀疏表示DL方法。首先原始训练数据被投影到高维核空间,进行基于Fisher 判别的核稀 疏表示DLFDKDL;其次在稀疏系数上附加核Fisher约束,进行基于核Fisher判别的核稀疏表 示DL(KFDKDL),使得所学习的字典具有更强的判别能力。在多个公开的图像数据库上的稀疏 表示分类实验结果验证了所提出的FDKDL和KFDKDL方法的有效性。 相似文献
6.
基于Gabor低秩恢复稀疏表示分类的人脸图像识别方法 总被引:1,自引:0,他引:1
针对含光照、表情、姿态、遮挡等误差或被噪声污染的人脸图像的识别问题,本文提出一种基于Gabor低秩恢复稀疏表示分类的人脸图像识别方法。该方法首先用低秩矩阵恢复算法求得训练样本图像对应的误差图像;然后,对每一个训练样本图像及其对应的误差图像进行Gabor变换,得到相应的Gabor特征向量,并将这些Gabor特征向量组成一个Gabor特征字典;进而,计算测试样本图像Gabor特征向量在该Gabor特征字典下的稀疏表示系数,并用该稀疏表示系数和Gabor特征字典,对测试样本图像的Gabor特征向量进行类关联重构,同时计算相应的类关联重构误差。最后,根据测试样本图像Gabor特征向量的类关联重构误差,实现对测试样本图像的分类识别。在CMU PIE、Extend-ed Yale B和AR数据库上的实验结果表明,本文提出的人脸图像识别方法具有较高的识别率和较强的抗干扰能力。 相似文献
7.
基于学习的超分辨率算法通过一组训练样例来学习一个字典,并从该字典中合成低分辨率图像中丢失的高频信息,最终得到相应的高分辨率图像。介绍了几种常用的基于学习的超分辨率算法,并提出了一种新的算法:基于自适应字典稀疏表示的超分辨率算法。实验结果表明,该方法在主观与客观上均具有较好的重建效果。 相似文献
8.
9.
10.
鉴于稀疏ISAR成像方法的成像质量受到待成像场景的稀疏表示不准确的限制,该文将字典学习(DL)技术引入到ISAR稀疏成像中,以提升目标成像质量。该文给出基于离线DL和在线DL两种ISAR稀疏成像方法。前者通过已有同类目标ISAR图像进行学习,获得更优稀疏表示,后者在成像过程中从现有数据中通过优化获得稀疏表示。仿真和实测ISAR数据成像结果表明,结合离线DL和在线DL的成像方法均可获得比现有方法更优的成像结果,离线DL成像优于在线DL成像,而且前者计算效率优于后者。 相似文献
11.
自适应字典学习利用图像结构自相似性,将图像自身作为训练样本,通过字典学习使图像中的相似块在字典下具有稀疏表示形式.本文将全局字典学习中利用图像库获取附加信息的思想融入到自适应字典学习的过程中,提出了一种基于自适应多字典学习的单幅图像超分辨率算法,从低分辨率图像自身与图像库同时获取附加信息.该算法对低分辨率图像金字塔结构中的图像块进行聚类,在聚类结果的引导下将图像库中的图像块进行分类,利用各类中的样本分别构建针对各类的多个字典,从而确定表达重建图像块的最优字典.实验表明,与ScSR、SISR、NLIBP、CSSS以及mSSIM等算法相比,本文算法具有更好的超分重建效果. 相似文献
12.
The incoherent dictionary learning and sparse representation algorithm was present and it was applied to single-image rain removal.The incoherence of the dictionary was introduced to design a new objective function in the dictionary learning,which addressed the problem of reducing the similarity between rain atoms and non-rain atoms.The divisibility of rain dictionary and non-rain dictionary could be ensured.Furthermore,the learned dictionary had similar properties to the tight frame and approximates the equiangular tight frame.The high frequency in the rain image could be decomposed into a rain component and a non-rain component by performing sparse coding based learned incoherent dictionary,then the non-rain component in the high frequency and the low frequency were fused to remove rain.Experimental results demonstrate that the learned incoherent dictionary has better performance of sparse representation.The recovered rain-free image has less residual rain,and preserves effectively the edges and details.So the visual effect of recovered image is more sharpness and natural. 相似文献
13.
摘 要稀疏编码(SRC)是一种用于人脸识别的方法。该方法把检测图像表示为一组训练样本的稀疏线性组合,表示的准确性通过L2或L1残余项来衡量。此模型假定编码残余项服从高斯分布或拉普拉斯分布,实际上却不能很准确的描述编码错误率。本文提出一种新的稀疏编码方法,建立一种有约束的回归问题模型。最大似然稀疏编码(MSC)寻找此模型的最大似然估计参数,对异常情况具有很强的鲁棒性。在Yale及ORL人脸数据库的实验结果表明了该方法对于人脸模糊、光照及表情变化等的有效性及鲁棒性。 相似文献
14.
现有的基于稀疏表示的人脸识别算法在识别前需要将彩色人脸图像转换成灰度人脸图像,这样虽然提高了运算速度,但忽视了不同色彩通道数据本身所包含的信息及它们之间的相关性。为了利用不同通道间相关性,基于标签一致的K奇异值分解( LC-KSVD)字典学习算法,提出了一种适用于彩色图像人脸识别的字典学习算法。该算法将RGB通道数据顺序排列成列向量,并在稀疏编码的环节中,对正交匹配追踪( OMP)算法的内积计算准则进行修正,以此提高字典原子的色彩表达能力。在彩色人脸数据库上进行实验,结果表明:所提出的字典学习算法能够有效地提高识别率。 相似文献
15.
为了有效描述图像的多角度视觉内容,提出一种将图像异质局部特征集通过稀疏学习映射为图像全局稀疏表示的新方法.该方法从不同的训练特征集中学习超完备视觉词典,经过局部稀疏编码、最大值合并、加权联接及归一化等一系列处理步骤融合多种局部特征的互补信息,最终形成一个高维稀疏向量来描述图像的多角度视觉内容.将其应用于基于内容的图像检索(CBIR)任务中,实验结果表明,这种基于异质局部特征学习而来的图像全局稀疏表示解决了单一局部特征集描述图像的局限性和高维局部特征集相似性度量时空复杂度高的问题. 相似文献
16.
为实现图像超分辨力重建,提出了一个自适应半耦合稀疏字典学习算法。由于耦合字典学习算法中存在稀疏编码约束条件太过严苛的缺点,本文采用半耦合的字典学习算法。根据在半耦合的字典学习算法中全局字典表达的局限性,分析和采用了多字典训练算法及相应的重建方法。提出了基于自适应图像块聚类算法的半耦合稀疏字典学习算法。仿真实验结果显示,新算法重建得到的Butterfly,Cameraman,Foreman,Plants,Hat和Lena等图像的峰值信噪比(PSNR)分别比用基于K-means聚类算法的半耦合稀疏字典学习算法得到的重建图像高出0.18 dB,0.16 dB,0.52 dB,0.21 dB,0.23 dB和0.14 dB。该算法可以得到更好的图像重建效果。 相似文献
17.
18.
针对常规二元麦克风小阵列话音增强算法通常需要话音活动检测技术支持,并且难以有效抑制第一帧含目标信号的噪声。提出了一种基于多任务稀疏表达的二元麦克风小阵列话音增强算法,首先利用字典学习方法分别获得目标信号和噪声信号的过完备字典,然后利用 混合范数对信号在其字典上的表示系数进行正则化稀疏约束,使得2个阵元接收到信号中的噪声信号被抑制,而话音信号尽量保持不变,从而达到话音增强的目标。仿真和实验数据表明,无论开始位置是否含有目标话音信号,所提出的非话音活动检测支持的二元麦克风小阵列话音增强算法均能有效实现话音增强的目标。 相似文献
19.
本文提出了一种基于超分辨率图像重建的质心细分定位的新方法。在图像识别与匹配中,往往需要用到物理、数字等的特征提取方法,当给定的图像分辨率低时,就会使得所提取出的特征产生不可忽略的误差。为了解决这一问题,本文以实拍星图分辨率低的局限性为例,并结合传统的质心提取方法得到观测星图中任意两颗星的角距,验证新方法降低误差的有效性。实验结果表明,在同等系统误差条件下,相对于原始星图求得的星角距,基于超分辨率重建后的星图所得到的观测星的角距值更接近于真实角距,精度提高了29.56%,即新方法提取到的特征更加精确。 相似文献