首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Digital damage fingerprints (DDFs) are a set of optimised and digitised characteristics of structural signatures, which are able to exactly and uniquely define a certain kind of structural healthy status. The DDF-based damage recognition technique includes the extraction of DDFs, assembly of damage parameters database (DPD) and subsequently inverse recognition in virtue of artificial intelligence. In this study, DDFs extracted from Lamb wave signals were employed to quantitatively assess delamination in carbon fibre-reinforced laminated beams. Characteristics of Lamb wave signals in the laminated beams were first evaluated, and DPD hosting DDFs for selected damage scenarios was constructed through numerical simulations, which was used to predict delamination in the composite beams with the aid of an artificial neural algorithm. The diagnostic results have demonstrated the excellent performance of DDF technique for quantitative damage identification.  相似文献   

2.
In this study, a damage identification approach was developed for carbon fibre/epoxy composite laminates with localized internal delamination. Propagation of the Lamb wave in laminates and its interaction with the delamination were examined. The fundamental symmetric Lamb wave mode, S0, and the lowest order shear wave mode, S0, were chosen to predict damage location. A real-time active diagnosis system was therefore established. This technique uses distributed piezoelectric transducers to generate and monitor the ultrasonic Lamb wave with narrowband frequency. The two-way switches were employed to minimize the number of transducers. A signal-processing scheme based on the time–frequency spectrographic analysis was utilised to extract useful diagnostic information. Also, an optimal identification method was applied on damage searching procedure to reduce errors and obtain the diagnostic results promptly. Experiments were conducted on [0/−45/45/90]s CF/EP laminates to verify this diagnosis system. The results obtained show that satisfactory detection accuracy could be achieved.  相似文献   

3.
We present an experimental study of the self-healing ability of carbon fibre/epoxy (CF/EP) composite laminates with microencapsulated epoxy and its hardener (mercaptan) as a healing agent. Epoxy- and hardener-loaded microcapsules (average size large: 123 μm; small: 65 μm) were prepared by in situ polymerisation in an oil-in-water emulsion and were dry-dispersed at the ratio 1:1 on the surface of unidirectional carbon fabric layer. The CF/EP laminates were fabricated using a vacuum-assisted resin infusion (VARI) process. Width-tapered double cantilever beam (WTDCB) specimens were used to measure mode-I interlaminar fracture toughness of the CF/EP composites with a pre-crack in the centre plane where the microcapsules were placed. Incorporation of the dual-component healant stored in the fragile microcapsules provided the laminates with healing capability on delamination damage by recovering as much as 80% of its fracture toughness. It was also observed that the recovery of fracture toughness was directly correlated with the amount of healant covering the fracture plane, with the highest healing efficiency obtained for the laminate with large capsules.  相似文献   

4.
提出了一种基于动力有限元分析和神经网络相结合的含分层损伤层合板的诊断方法。采用作者发展的含分层损伤层合板的动力有限元分析模型和方法,计算了具有不同分层长度损伤层合板的频率和模态阻尼值,以此建立样本库。应用反向传播BP神经网络训练和形成网络。典型含层间分层损伤层合板的仿真结果表明,采用对损伤变化较为灵敏的高阶模态阻尼作为网络的输入参数进行分层损伤诊断比常用的模态频率更为合理。本文中提出的是一种用于层合板的分层损伤诊断的有效和经济的方法。   相似文献   

5.
The authors and Hitachi Cable, Ltd. have recently developed small-diameter optical fiber and its fiber Bragg grating (FBG) sensor for embedment inside a lamina of composite laminates without strength reduction. The outside diameters of the cladding and polyimide coating are 40 and 52 μm, respectively. First, a brief summary is presented for applications of small-diameter FBG sensors to damage monitoring in composite structures. Then, we propose a new damage detection system for quantitative evaluation of delamination length in CFRP laminates using Lamb wave sensing. In this system, a piezo-ceramic actuator generates Lamb waves in a CFRP laminate. After the waves propagate in the laminate, transmitted waves are received by an FBG sensor attached on or embedded in the laminate using a newly developed high-speed optical wavelength interrogation system. This system was applied to detect interlaminar delamination in CFRP cross-ply laminates. When the Lamb waves passed through the delamination, the amplitude decreased and a new wave mode appeared. These phenomena could be well simulated using a finite element analysis. From the changes in the amplitude ratio and the arrival time of the new mode depending on the delamination length, it was found that this system could evaluate the delamination length quantitatively. Furthermore, small-diameter FBG sensors were embedded in a double-lap type coupon specimen, and the debonding progress could be evaluated using the wavelet transform.  相似文献   

6.
A delamination monitoring method was proposed to characterize Mode I and Mode II delamination onset in carbon fiber/epoxy (CF/EP) composite laminates through interrogation of guided waves activated and captured using piezoelectric actuators and sensors in a pitch–catch configuration. Mode I and Mode II interlaminar fracture tests were conducted using double cantilever beam (DCB) and end notch flexure (ENF) specimens to evaluate the proposed method. The changes in wave propagation velocity and wave magnitude (or attenuation), and the degree of waveform similarity between excitation and response signals, were calculated as delamination-sensitive wave parameters and plotted versus displacement recorded using a materials testing system. The kink points determined from wave parameter–displacement curves agreed well with the deviation from linearity (NL), visual observation (VIS) and maximum load (Max) points, which are often used in conventional methods for determining interlaminar fracture toughness. The propagation characteristics of the A0 wave mode in a low frequency range were demonstrated to have high sensitivity to Mode I and in particular Mode II delamination onset in CF/EP composite laminates. It was concluded that the guided waves propagating in the DCB and ENF specimens were capable of determining Mode I and Mode II interlaminar fracture toughness, complementing current practices based on visual inspection or trivial interrogation using load–displacement curve alone.  相似文献   

7.
The aim of this study is to quantitatively assess debonding in sandwich CF/EP composite structures with a honeycomb core using acoustic waves activated and captured by surface-mounted PZT elements. For experimental investigation, debonding was introduced at different locations in sandwich CF/EP composite beams. The fundamental anti-symmetric A0 Lamb mode was excited at a low frequency. The transmitted and reflected wave signals in both surface panels were captured by PZT elements after interacting with the debonding damage and specimen boundaries. Aided by finite element analysis (FEA), the differences in wave propagation characteristics in sandwich composite beams and composite laminate (e.g. skin panel only) were investigated. The debonding location was assessed using the time-of-flight (ToF) of damage-reflected waves, and the severity of debonding was evaluated using both the magnitude of the reflected wave signal and the delay in the ToF of Lamb wave signals. Good correlation between the experimental and FEA simulation results was observed. The results demonstrate the effectiveness of Lamb waves activated and captured by surface-mounted PZT elements on either surface of sandwich composite structures in assessing debonding.  相似文献   

8.
This study examines the evolution of damage in graphite/epoxy composite laminates due to lightning strikes. To clarify the influence of lightning parameters and specimen size, artificial lightning testing was performed on a series of laminated composite specimens. Damage was assessed using visual inspection, ultrasonic testing, micro X-ray inspection, and sectional observation. The results showed that the damage modes can be categorized into fiber damage, resin deterioration, and internal delamination modes. Damage progression is governed by the strong electrical orthotropic properties of the laminates, and the lightning parameters defining impulse waveform show strong relationship with certain damage modes, though specimen size and thickness variation barely affect damage size.  相似文献   

9.
孔隙对碳纤维增强环氧树脂(CF/EP)复合材料的力学性能和破坏模式有显著的影响,因此需要建立准确的孔隙率无损检测评估方法,并基于所评估的孔隙率提高CF/EP复合材料压缩性能预测的可靠性。本文主要研究了孔隙对CF/EP复合材料的超声衰减系数和压缩性能的影响,通过降低固化压力至0.7~0.2 MPa和延长预浸料室温贮存时间至30~180天的方法,制备了不同孔隙率的CF/EP复合材料层压板,通过金相验证其孔隙率在0%~3.0%之间,孔隙类型主要为层中孔隙和层间孔隙。通过理论和试验的方法,基于超声反射法建立了孔隙率与超声衰减系数的关系曲线,由孔隙引起超声衰减系数为αv=1.08Pv2(Pv为孔隙率),与前人基于超声穿透法所得的超声衰减系数αv=0.61Pv2较好地符合2倍声程的关系。对不同孔隙率的CF/EP复合材料层压板进行压缩测试实验,特别考虑了贴片和加载方向对测试结果的影响。从细观角度研究了含孔隙的CF/EP复合材料层压板的压缩破坏模式。结果表明:CF/EP复合材料层压板的压缩强度随孔隙率增加而下降,孔隙率增加至2.5%时,压缩强度下降13.7%,孔隙细观特征影响压缩破坏的形式,主要原因是孔隙诱发微裂纹的萌生和扩展,削弱了纤维与树脂间的结合力并引发纤维微屈曲。   相似文献   

10.
采用自主研发的碳纤维(CF)宽展设备,将12K CF宽展预浸制备成0.02 mm和0.10 mm厚的CF/环氧树脂(EP)预浸料,利用模压工艺制成1 mm厚的单向层合板。利用万能试验机、声发射装置和高速照相机组成的集成系统测试其抗拉强度、加载过程中试样内部的损伤情况及断裂破坏时样品宏观形貌的变化。用SEM观测其拉伸断口形貌。分别用超景深显微镜、金相显微镜观测记录CF/EP复合材料预浸料和单向层合板中CF的排布状态以表征薄层化过程中CF和EP的分布状态对CF/EP复合材料拉伸性能的影响。结果表明:薄CF/EP复合材料预浸料中CF的排布更加均匀,制成的CF/EP复合材料单向层合板试样中层间树脂富集区的尺度明显小于厚CF/EP复合材料预浸料制成的试样,试样的抗拉强度提高了15%;薄CF/EP复合材料预浸料制成层合板试样的拉伸宏观断口形貌中分层劈裂现象减少,集束性增强,微观断口形貌中未发现横贯横截面的穿透裂纹。   相似文献   

11.
Damage generally refers to the more or less gradual development of micro-voids and micro-cracks. Damage mechanics is the modelling of these phenomena on a structural analysis scale. In this paper we first recall the non-linear behaviour models we have developed to model composite laminates. Then we present two examples of implementations of such models in a structural analysis code in order to simulate the inner-failure of a structure, or to study delamination initiation.  相似文献   

12.
复合材料结构强度的参数影响研究是结构设计的必要内容,然而还缺乏在不同湿热环境条件下结构尺寸对其强度的影响研究。采用数值和试验方法研究了宽径比(W/D)对不同湿度、温度时T800/X850碳纤维增强环氧树脂复合材料(CF/EP)开孔层压板压缩强度的影响。设计了参数影响研究试件,通过试验获得了不同湿热条件下的开孔层压板压缩失效结果;并利用现有的考虑湿热影响的复合材料渐进损伤方法,建立了湿热及几何参数影响的渐进损伤模型,通过将预测结果与试验结果对比验证了模型正确性。进一步结合试验和数值分析,揭示了不同湿热条件下几何参数的影响规律。研究表明:湿热环境对T800/X850 CF/EP开孔板的压缩失效载荷影响显著,相比于室温干态(RTD),室温湿态(RTW)和高温湿态(ETW)压缩失效载荷分别下降了7.75%和14.68%; RTW和RTD失效形式接近,ETW失效形式不同且失效面积更大; RTW和RTD时压缩失效强度随W/D的增大而增大,增大速度相似,ETW增大速度比前两者慢。   相似文献   

13.
An experimental study was conducted to improve the electrical conductivity of continuous carbon fibre/epoxy (CF/EP) composite laminate, with simultaneous improvement in mechanical performance, by incorporating nano-scale carbon black (CB) particles and copper chloride (CC) electrolyte into the epoxy matrix. CF/EP laminates of 65 vol.% of carbon fibres were manufactured using a vacuum-assisted resin infusion (VARI) technique. The effects of CB and the synergy of CB/CC on electrical resistivity, tensile strength and elastic modulus and fracture toughness (KIC) of the epoxy matrix were experimentally characterised, as well as the transverse tensile modulus and strength, Mode I and Mode II interlaminar fracture toughness of the CF/EP laminates. The results showed that the addition of up to 3.0 wt.% CB in the epoxy matrix, with the assistance of CC, noticeably improved the electrical conductivity of the epoxy and the CF/EP laminates, with mechanical performance also enhanced to a certain extent.  相似文献   

14.
With the development of new technology and use of lightweight material such as composite laminates, new methods must be developed for in situ structural health monitoring of these materials. This paper introduces an approach for the detection of delamination present in GLARE aluminium specimens. The approach is based on the change in group velocity of Lamb waves with frequency–thickness product as the determinant parameter for the detection of delamination. Two methods are applied: a surface contact method, which utilises a wedge probe tuned to excite a single Lamb mode, and the embedded PZT method, which involves incorporating lead zirconate titanate (PZT) elements in the glass fibre reinforced resin matrix during the manufacture of the GLARE aluminium specimens. It was found that both methods enabled the detection of delaminations in the GLARE aluminium specimens, within certain limits, which are stated.  相似文献   

15.
GF/EP composite laminates with an epoxy matrix modified by carbon black (CB) of 2.0 wt.% and copper chloride (CC) were manufactured by the vacuum assisted resin infusion (VARI) technique. The effects of CB nanoparticles and CC on improvement in Modes I and II interlaminar fracture toughness and impact damage resistance and on the electrical conductivity of GF/EP laminate composites were investigated. Delamination growth was calibrated by in situ electrical resistance changes during interlaminar fracture tests. The relationship between growth of delamination and change in electrical resistance was characterised. A damage index based on the change in electrical resistance was introduced, and a new method of electrical resistivity tomography was developed to access transverse impact damage in GF/EP laminates based on a matrix of conductive points in both in-plane and through-thickness directions. The damage images from in-plane and through-thickness electrical resistivity tomography were finally estimated with the corresponding C-scan.  相似文献   

16.
Propagation of the anti-symmetric fundamental Lamb mode (A0) in a composite laminate containing a semi-infinite delamination was studied through numerical simulations and experimental studies. Here, the wave was generated on a sub-laminate above the delaminated region, and the reflection and transmission of the Lamb modes at the edge of the discontinuity were quantitatively studied. The wave group (named as ‘turning mode’), which was made to propagate from one side of the delamination to the other side (through delaminations) was captured and its transmission factor was estimated. Reflection and transmission factors of wave groups were estimated for three different laminates – quasi-isotropic, unidirectional and cross-ply, containing delamination at various interfaces across thickness. Propagation of ‘turning modes’ were also captured experimentally, employing air-coupled transducers, in quasi-isotropic laminates containing delaminations at different interfaces. Attenuation compensation was incorporated in the experimental signals to improve the comparison of transmission and reflection factors between numerical simulations and experiments.  相似文献   

17.
This study proposes a non-destructive testing (NDT) technique that visualizes the propagation of ultrasonic waves in solids, including composite laminates. This technique provides a moving diagram of traveling waves through the use of a pulsed laser that scans a test piece. A non-contact scan by the pulsed laser for ultrasound generation with reception at a fixed point enables us to inspect an arbitrarily shaped object and also facilitates easy operation of the measurement system. We applied the proposed technique to the inspection of CFRP laminates and successfully visualized the wave scattering due to impact-induced delamination as well as the propagation of the S0 and A0 Lamb modes. We also addressed disbonding detection in a composite skin-stringer structure and concluded that the reliable detection of damage and the advantages of the proposed technique are applicable to inspections of composite structures.  相似文献   

18.
Impact damage is one of the major concerns in maintenance of aircraft structures built from composite materials. Damage detection in composite materials can be divided into active and passive approaches. The active approach is usually based on various non-destructive techniques utilizing actuators and/or receivers. In contrast passive approaches do not involve any actuators; receivers are used to “sense and/or hear” any perturbations caused by possible hidden damage. Often strain data are used to localize impacts and estimate their energy. The assumption is that damage occurs above well-defined energy of impacts. The paper illustrates one active and one passive method recently developed for impact damage detection. The first method, based on guided ultrasonic waves, utilises 3-D laser vibrometry and does not require any signal processing. Simple laser scans, revealing the change in Lamb wave response amplitudes, have been used to locate delamination and estimate its severity in a composite plate. In contrast, the second method does not require any sophisticated instrumentation but relies on advanced signal processing. An array of piezoceramic sensors has been to detect strain waves transmitted from an impact applied to the composite aircraft structure. The modified multilateration procedure with Genetic Algorithms has been used to locate impact position.  相似文献   

19.
基于热压罐成型复合材料构件的无损检测数据, 利用群子统计理论分析了复合材料构件结构形式与成型质量的关联性, 建立了分层面积的群子模型, 获得了反映分层面积倾向性的群子参数, 对热压罐成型复合材料构件的工艺质量进行了评价。结果表明, 在所统计的航空复合材料构件中, 构件的分层面积分布以小分层为主, 构形复杂(如工形件)、过薄(1~2 mm)或过厚(>5 mm)的复合材料构件产生大分层的倾向性增大, 同时分层面积分布的分散性也增大, 成型质量不易控制。   相似文献   

20.
采用碰撞力分段模型和一阶剪切理论分析了给定初始速度的铁球与四边简支的复合材料叠层板中心发生碰撞的动力学行为,包括碰撞力及接触时间的变化规律、叠层板的振动响应、应力波传、表面沉陷等。并根据忽略厚度的界面模型假设及简化的Tsai Wu张量理论对复合材料叠层板的解层破坏进行了计算和分析,并给出了破坏区大小与铁球初始速度的关系。研究表明:碰撞力与铁球的初始速度成正比;复合材料叠层板中应力波传沿固定方向的相速度在各层内相同,拉伸应力波传速度沿纤维总体占优的方向大于其垂直的方向,而剪切应力波传速度则相反。即使在较低的初始碰撞速度下, 复合材料叠层板的解层破坏也很明显,并且破坏区域随初始碰撞速度的增大而不断扩展,其形状也会发生改变。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号