首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Autonomous robot calibration using a trigger probe   总被引:1,自引:0,他引:1  
This paper presents a new robot autonomous calibration method using a trigger probe. The robot grips a simple probe (which was manufactured as a standard end-effector tool) automatically to touch constraint planes in a workspace (the locations of the constraint planes are not necessarily known exactly). The robot internal sensor measurements are recorded for kinematic calibration while the tip-point of the probe is in contact with the constraint plane. The kinematic constraint conditions are obtained from the known shape of the constraint surface, rather than from the measured reference locations in a workspace. The new method eliminates any use of external measuring devices for robot end-effector location measurements for robot calibration; thus it is suitable for a periodic robot re-calibration in a shop-floor environment. Both simulation and experimental results for a six degree-of-freedom (DOF) PUMA robot are given in this paper. The evaluation results using an external precision measuring device — Coordinate Measuring Machine(CMM) — are also presented.  相似文献   

3.
工业机器人的工作空间综合   总被引:2,自引:0,他引:2  
毕诸明  吴瑞珉 《机器人》1994,16(3):181-184,192
根据机器人工作位姿要求确定其自由度数,关节类型及排列,杆件尺寸,关节运动范围,机器人的位置等过程称为机器人的工作空间综合过程,本文侧重对已知的机器人结构提出了进行工作空间综合的优化方法。  相似文献   

4.
In this paper, a new cable-based parallel robot is introduced. In this robot, the cables are used to not only actuate the end-effector but apply the necessary kinematic constrains to provide three pure translational degrees of freedom. In order to maintain tension in the cables, a collapsible element called “spine” is used between the end-effector and the robot’s base. The kinematic analysis of this robot is similar to that of a rigid link parallel manipulator as long as the cables are in tension. The rigidity of this robot which corresponds to having all cables in tension is studied thoroughly and it is proved that a single spine with a finite force is sufficient to guarantee rigidity for any external load at any position of the workspace.  相似文献   

5.
A new method, called Kinetostatic Modelling Method is proposed for analysis of parallel kinematic machines (PKMs) in the paper. First, system modelling includes mobility study, kinematic model and inverse kinematic is conducted. Then, kinetostatic modelling is presented. It includes a complete compliant model developed for the analysis of the PKMs with fixed-length legs, with the model, two global compliance indices are introduced to provide a new mean of measuring the PKM's compliance over the workspace. These two global indices are the mean value and the standard deviation of the trace of the generalized compliance matrix. The mean value represents the average compliance of the PKM over the workspace, while the standard deviation indicates the compliance fluctuation relative to the mean value. The effect of three types of compliance is investigated in order to identify a dominant factor. The proposed method is implemented to analyze the compliance of the Tripod-based PKM prototype built at the Integrated Manufacturing Technologies Institute of the National Research Council of Canada. It is shown that the proposed method is an effective means for evaluating the kinetostatic behaviour of PKMs globally.  相似文献   

6.
The ability of a robot manipulator to move inside its workspace is inhibited by the presence of joint limits and obstacles and by the existence of singular positions in the configuration space of the manipulator. Several kinematic control strategies have been proposed to ameliorate these problems and to control the motion of the manipulator inside its workspace. The common base of these strategies is the manipulability measure which has been used to: (i) avoid singularities at the task-planning level; and (ii) to develop a singularity-robust inverse Jacobian matrix for continuous kinematic control. In this paper, a singularity-robust resolved-rate control strategy is presented for decoupled robot geometries and implemented for the dual-elbow manipulator. The proposed approach exploits the decoupled geometry of the dual-elbow manipulator to control independently the shoulder and the arm subsystems, for any desired end-effector motion, thus incurring a significantly lower computational cost compared to existing schemes.  相似文献   

7.
8.
《Robotics and Computer》1993,10(4):287-299
Selection of a proper robot kinematic model is a critical step in error-model-based robot calibration. The Denavit-Hartenberg (DH) model exhibits singularities in calibration of robots having consecutive parallel joint axes. The complete and parametrically continuous (CPC) modeling technique is one of the more versatile alternative modeling conventions designated to fit the needs of manipulator calibration. No modeling convention is, however, perfect. One “user-unfriendly” aspect of the CPC model is a condition handling technique needed, when constructing the error model, to avoid model singularities due to the adoption of the direction vectors of the joint axes as link parameters.This paper presents a modification to the CPC model which brings the model closer to the DH model. Rather than using the direction vectors of joint axes, the modified CPC (MCPC) model employs angular parameters to acommodate the required rotations for each link transformation. This modification results in a much simplified error model. The model, like the CPC model, is capable of completely describing the geometry and motion of the manipulator in a reference coordinate frame. Its error model possesses a minimum number of parameters to span the entire geometric error space and it can be made singularity-free by proper selection of the tool axis. This paper presents a calibration study of the PUMA robot using the MCPC model. A moving stereo camera system was employed for end-effector pose measurements. The MCPC error model was then used for kinematic identification. Results on the PUMA arm show that the MCPC performs well for robot calibration. The well-defined structure and user friendliness of the MCPC model may facilitate the implementation of robot calibration techniques on the factory floor.  相似文献   

9.
Z.M. Bi 《Advanced Robotics》2013,27(2):121-132
Existing ankle rehabilitation robots have the limitations of insufficient motion ranges and coupled translations. An improved spherical robot has been proposed to overcome these limitations. The forward and inverse kinematic problems of this new machine are formulated and solved; the dexterity of the workspace is evaluated and the workspace has been optimized with the consideration of the motion ranges of passive joints. The operation of machine has been simulated; it will be further expanded as a control program to run the rehabilitation robot.  相似文献   

10.
A parallel robotic attachment and its remote manipulation   总被引:3,自引:0,他引:3  
This paper discusses a 3-dof (degree of freedom) parallel robotic attachment and its remote manipulation. This attachment is designed as a tripod that provides two rotary motions and one linear motion. The attachment can be mounted onto a variety of machines for different applications, including CNC milling machines, industrial robots, and CMM. Java technologies are used to develop a remote manipulation system for the parallel robotic attachment, including remote monitoring and control. The main difference of this system from the existing web-based or internet-based remote systems is the way to control the motion of the machine from a remote site. Instead of using a camera for monitoring, the tripod is modeled using 3D computer graphics with behavioral control nodes embedded. Compared with camera-based solutions, network traffic is largely reduced, thereby making real-time remote device manipulation practical on the web. Our parallel robotic attachment is one type of parallel kinematic mechanisms (PKM). With PKM emerging as a new way of building flexible systems or agile machines, its advantage over serial mechanism is also presented.  相似文献   

11.
A 3-degree-of-freedom (3-DOF) parallel machine tool based on a tripod mechanism is developed and studied. The kinematics analysis is performed, the workspace is derived, and an analysis on the number of conditions of the Jacobian matrix and manipulability is carried out. A method for error analysis and manipulability is introduced. Hence, the manipulability analysis of the parallel machine tool is accomplished.  相似文献   

12.
Amar  Luc  Marek   《Robotics and Computer》2009,25(4-5):756-769
This paper presents a new approach to multi-objective dynamic trajectory planning of parallel kinematic machines (PKM) under task, workspace and manipulator constraints. The robot kinematic and dynamic model, (including actuators) is first developed. Then the proposed trajectory planning system is introduced. It minimizes electrical and kinetic energy, robot traveling time separating two sampling periods, and maximizes a measure of manipulability allowing singularity avoidance. Several technological constraints such as actuator, link length and workspace limitations, and some task requirements, such as passing through imposed poses are simultaneously satisfied. The discrete augmented Lagrangean technique is used to solve the resulting strong nonlinear constrained optimal control problem. A decoupled formulation is proposed in order to cope with some difficulties arising from dynamic parameters computation. A systematic implementation procedure is provided along with some numerical issues. Simulation results proving the effectiveness of the proposed approach are given and discussed.  相似文献   

13.
Kinematic modeling of Exechon parallel kinematic machine   总被引:1,自引:0,他引:1  
The studies on PKMs have attracted a great attention to robotics community. By deploying a parallel kinematic structure, a parallel kinematic machine (PKM) is expected to possess the advantages of heavier working load, higher speed, and higher precision. Hundreds of new PKMs have been proposed. However, due to the considerable gaps between the desired and actual performances, the majorities of the developed PKMs were the prototypes in research laboratories and only a few of them have been practically applied for various applications; among the successful PKMs, the Exechon machine tool is recently developed. The Exechon adopts unique over-constrained structure, and it has been improved based on the success of the Tricept parallel kinematic machine. Note that the quantifiable theoretical studies have yet been conducted to validate its superior performances, and its kinematic model is not publically available. In this paper, the kinematic characteristics of this new machine tool is investigated, the concise models of forward and inverse kinematics have been developed. These models can be used to evaluate the performances of an existing Exechon machine tool and to optimize new structures of an Exechon machine to accomplish some specific tasks.  相似文献   

14.
A new control method for kinematically redundant manipulators having the properties of torque-optimality and singularity-robustness is developed. A dynamic control equation, an equation of joint torques that should be satisfied to get the desired dynamic behavior of the end-effector, is formulated using the feedback linearization theory. The optimal control law is determined by locally optimizing an appropriate norm of joint torques using the weighted generalized inverses of the manipulator Jacobian-inertia product. In addition, the optimal control law is augmented with fictitious joint damping forces to stabilize the uncontrolled dynamics acting in the null-space of the Jacobian-inertia product. This paper also presents a new method for the robust handling of robot kinematic singularities in the context of joint torque optimization. Control of the end-effector motions in the neighborhood of a singular configuration is based on the use of the damped least-squares inverse of the Jacobian-inertia product. A damping factor as a function of the generalized dynamic manipulability measure is introduced to reduce the end-effector acceleration error caused by the damping. The proposed control method is applied to the numerical model of SNU-ERC 3-DOF planar direct-drive manipulator.  相似文献   

15.
Singularities and uncertainties in arm configurations are the main problems in kinematics robot control resulting from applying robot model, a solution based on using Artificial Neural Network (ANN) is proposed here. The main idea of this approach is the use of an ANN to learn the robot system characteristics rather than having to specify an explicit robot system model.Despite the fact that this is very difficult in practice, training data were recorded experimentally from sensors fixed on each joint for a six Degrees of Freedom (DOF) industrial robot. The network was designed to have one hidden layer, where the input were the Cartesian positions along the X, Y and Z coordinates, the orientation according to the RPY representation and the linear velocity of the end-effector while the output were the angular position and velocities for each joint, In a free-of-obstacles workspace, off-line smooth geometric paths in the joint space of the manipulator are obtained.The resulting network was tested for a new set of data that has never been introduced to the network before these data were recorded in the singular configurations, in order to show the generality and efficiency of the proposed approach, and then testing results were verified experimentally.  相似文献   

16.
Visual motor control of a 7 DOF robot manipulator using a fuzzy SOM network   总被引:1,自引:0,他引:1  
A fuzzy self-organizing map (SOM) network is proposed in this paper for visual motor control of a 7 degrees of freedom (DOF) robot manipulator. The inverse kinematic map from the image plane to joint angle space of a redundant manipulator is highly nonlinear and ill-posed in the sense that a typical end-effector position is associated with several joint angle vectors. In the proposed approach, the robot workspace in image plane is discretized into a number of fuzzy regions whose center locations and fuzzy membership values are determined using a Fuzzy C-Mean (FCM) clustering algorithm. SOM network then learns the inverse kinematics by on-line by associating a local linear map for each cluster. A novel learning algorithm has been proposed to make the robot manipulator to reach a target position. Any arbitrary level of accuracy can be achieved with a number of fine movements of the manipulator tip. These fine movements depend on the error between the target position and the current manipulator position. In particular, the fuzzy model is found to be better as compared to Kohonen self-organizing map (KSOM) based learning scheme proposed for visual motor control. Like existing KSOM learning schemes, the proposed scheme leads to a unique inverse kinematic solution even for a redundant manipulator. The proposed algorithms have been successfully implemented in real-time on a 7 DOF PowerCube robot manipulator, and results are found to concur with the theoretical findings.  相似文献   

17.
Humanoid robots needs to have human-like motions and appearance in order to be well-accepted by humans. Mimicking is a fast and user-friendly way to teach them human-like motions. However, direct assignment of observed human motions to robot’s joints is not possible due to their physical differences. This paper presents a real-time inverse kinematics based human mimicking system to map human upper limbs motions to robot’s joints safely and smoothly. It considers both main definitions of motion similarity, between end-effector motions and between angular configurations. Microsoft Kinect sensor is used for natural perceiving of human motions. Additional constraints are proposed and solved in the projected null space of the Jacobian matrix. They consider not only the workspace and the valid motion ranges of the robot’s joints to avoid self-collisions, but also the similarity between the end-effector motions and the angular configurations to bring highly human-like motions to the robot. Performance of the proposed human mimicking system is quantitatively and qualitatively assessed and compared with the state-of-the-art methods in a human-robot interaction task using Nao humanoid robot. The results confirm applicability and ability of the proposed human mimicking system to properly mimic various human motions.  相似文献   

18.
The present paper addresses the modelling and the experimental identification of the static behaviour of the Tricept robot, a hybrid parallel kinematic machine. Mass properties of robot links are initially hypothesized from solid modelling and then incorporated in the identification procedure. Coulomb friction and gravity contributions to motor torques are taken into account: their identification is carried out by means of ordinary least-squares algorithms based on motor currents measurements during several slow motion tests. Moreover, the effect of external forces applied at the end-effector is introduced in the model and analysed by driving the robot end-effector against a calibrated compliant cell. Eventually, the static model is profitably used in an industrial operation of Friction Stir Welding to estimate the external forces applied at the tool mechanical interface providing some benefits: a deeper understanding of the technological process parameters and the possibility to realize model-based controls.  相似文献   

19.
This paper describes a novel method for robotic gear chamfering called dual-edge chamfering which can facilitate simultaneous chamfering of the two edges of adjacent gear teeth and overcome typical registration errors arising due to the placement of the workpiece in the robot workspace. Deviations of the robot end-effector trajectory when compared to the nominal trajectory due to registration errors are discussed first; such trajectory deviations caused by typical registration errors due to gear center translation and rotation are quantified. Dual-edge chamfering process is described and an efficient trajectory design strategy is developed by considering the kinematic constraints imposed by the profiles of the gear edge and the abrasive tool. The dual-edge chamfering robot trajectory is facilitated by a simple procedure for identifying the gear and gear root centers by employing the robot. To execute the dual-edge chamfering trajectory, an efficient motion/force control strategy that includes active compliance from the tool mounted on the robot is proposed. A number of real-time experiments are conducted to evaluate the proposed method by employing a commercial six degree-of-freedom robot. Two types of large cylindrical metal gears are utilized for testing, an external gear with teeth on the outside and an internal gear with teeth on the inside. In addition to these, two different robotic compliant tools with axial and radial compliance are tested. A representative sample of the experimental results are presented and discussed.  相似文献   

20.
五轴并联机床的尺度综合   总被引:1,自引:0,他引:1  
彭斌彬  高峰 《机器人》2006,28(1):76-80
基于逆向思维提出了一种满足工作空间要求的五轴并联机床的尺度综合方法.首先用极坐标来描述并联机床的姿态空间;然后基于工作空间的要求得到运动平台上铰链点与固定平台上铰链点的距离极值表达式;最后考虑到杆件的力传递性能,得到一组性能较优的参数.该方法对类似的并联机构的尺度综合具有较高的参考价值.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号