首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three ways to approximate a proximity relation $R$ (i.e., a reflexive and symmetric fuzzy relation) by a $T$ -transitive one where $T$ is a continuous Archimedean $t$-norm are given. The first one aggregates the transitive closure $overline{R}$ of $R$ with a (maximal) $T$-transitive relation $B$ contained in $R$ . The second one computes the closest homotecy of $overline{R}$ or $B$ to better fit their entries with the ones of $R$. The third method uses nonlinear programming techniques to obtain the best approximation with respect to the Euclidean distance for $T$ the $Lstrok$ukasiewicz or the product $t$-norm. The previous methods do not apply for the minimum $t$-norm. An algorithm to approximate a given proximity relation by a ${rm Min}$-transitive relation (a similarity) is given in the last section of the paper.   相似文献   

2.
We investigate the $ {cal L}_{2}$ gain of periodic linear switched systems under fast switching. For systems that possess a suitable notion of a time-average system, we characterize the relationship between the ${cal L}_{2}$ gain of the switched system and the ${cal L}_{2}$ gain of its induced time-average system when the switching rate is sufficiently fast. We show that the switched system ${cal L}_{2}$ gain is in general different from the average system ${cal L}_{2}$ gain if the input or output coefficient matrix switches. If only the state coefficient matrix switches, the input-output energy gain for a fixed ${cal L}_{2}$ input signal is bounded by the ${cal L}_{2}$ gain of the average system as the switching rate grows large. Additionally, for a fixed ${cal L}_{2}$ input, the maximum pointwise in time difference between the switched and average system outputs approaches zero as the switching rate grows.   相似文献   

3.
This paper describes a decentralized $H_{infty }$ filter design for discrete-time interconnected fuzzy systems based on piecewise-quadratic Lyapunov functions. The systems consist of $J$discrete-time interconnected Takagi–Sugeno (T–S) fuzzy subsystems, and a decentralized $H_infty$ filter is designed for each subsystem. It is shown that the stability of the overall filtering-error system with $H_{infty }$ performance can be established if a piecewise-quadratic Lyapunov function can be constructed. Moreover, the parameters of filters can be obtained by solving a set of linear matrix inequalities that are numerically feasible. Two simulation examples are given to show the effectiveness of the proposed approach.   相似文献   

4.
This paper is concerned with the problem of designing switched state feedback $H_{infty}$ controllers for discrete-time Takagi--Sugeno (T--S) fuzzy systems. New types of state feedback controllers, namely, switched parallel distributed compensation (PDC) controllers, are proposed, which are switched based on the values of membership functions. Switched quadratic Lyapunov functions are exploited to derive a new method for designing switched PDC controllers to guarantee the stability and $H_{infty}$ performances of closed-loop nonlinear systems. The design conditions are given in terms of solvability of a set of linear matrix inequalities. It is shown that the new method provides better or at least the same results of the existing design methods via the pure PDC scheme with a quadratic Lyapunov function or switched constant controller gain scheme. Numerical examples are given to illustrate the effectiveness of the proposed method.   相似文献   

5.
This paper proposes a method for designing an ${cal H}_{infty}$ state-feedback fuzzy controller for discrete-time Takagi–Sugeno (T-S) fuzzy systems. To derive less conservative ${cal H}_{infty}$ stabilization conditions, this paper enhances the interactions among the fuzzy subsystems using a multiple Lyapunov function with quadratic dependence on fuzzy weighting functions. Besides, for more allocation of the nonlinearity to the fuzzy control system, this paper introduces a slack variable that is quadratically dependent on the one-step-past fuzzy weighting functions as well as the current ones. In the derivation, the ${cal H}_{infty}$ stabilization conditions are formulated in terms of parameterized linear matrix inequalities (PLMIs), which are reconverted into LMI conditions with the help of an efficient relaxation technique.   相似文献   

6.
N-channel 6H-SiC depletion-mode junction field-effect transistors (JFETs) have been fabricated, and characterized for use in high-temperature differential sensing. Electrical characteristics of the JFETs have been measured and are in good agreement with predictions of an abrupt-junction long-channel JFET model. The electrical characteristics were measured across a 2-in wafer for temperatures from 25 $^{ circ}hbox{C}$ to 450 $^{circ}hbox{C}$, and the extracted pinchoff voltage has a mean of 11.3 V and a standard deviation of about 1.0 V at room temperature, whereas pinchoff current has a mean of 0.41 mA with standard deviation of about 0.1 mA. The change in pinchoff voltage is minimal across the measured temperature range, whereas pinchoff current at 450 $^{circ}hbox{C}$ is about half its value at room temperature, consistent with the expected change in the $nmu_{n}$ product. The characterization of differential pairs and hybrid amplifiers constructed using these differential pairs is also reported. A three-stage amplifier with passive loads has a differential voltage gain of 50 dB, and a unity-gain frequency of 200 kHz at 450 $^{circ}hbox{C}$, limited by test parasitics. A two-stage amplifier with active loads has reduced sensitivity to off-chip parasitics and exhibits a differential voltage gain of 69 dB with a unity-gain frequency of 1.3 MHz at 450 $^{circ}hbox{C}$.$hfill$[2009-0029]   相似文献   

7.
Motivated by questions in robust control and switched linear dynamical systems, we consider the problem checking whether all convex combinations of $k$ matrices in $R^{n times n}$ are stable. In particular, we are interested whether there exist algorithms which can solve this problem in time polynomial in $n$ and $k$. We show that if $k= lceil n^{d} rceil $ for any fixed real $d>0$, then the problem is NP-hard, meaning that no polynomial-time algorithm in $n$ exists provided that $P ne NP$, a widely believed conjecture in computer science. On the other hand, when $k$ is a constant independent of $n$ , then it is known that the problem may be solved in polynomial time in $n$. Using these results and the method of measurable switching rules, we prove our main statement: verifying the absolute asymptotic stability of a continuous-time switched linear system with more than $n^{d}$ matrices $A_{i} in R^{n times n}$ satisfying $0 succeq A_{i} + A_{i}^{T}$ is NP-hard.   相似文献   

8.
Analytical Model of Valveless Micropumps   总被引:2,自引:0,他引:2  
The flow driven by a valveless micropump with a single cylindrical pump chamber and two diffuser/nozzle elements is studied theoretically using a 1-D model. The pump cavity is driven at an angular frequency $omega$ so that its volume oscillates with an amplitude $V_{rm m}$. The presence of diffuser/nozzle elements with pressure-drop coefficients $zeta_{+}$, $zeta_{-}( ≫ zeta_{+})$ and throat cross-sectional area $A_{1}$ creates a rectified mean flow. In the absence of frictional forces the maximum mean volume flux (with zero pressure head) is $Q_{0}$ where $Q_{0}/V_{rm m}omega = (zeta_{-} -break zeta_{+})pi/16(zeta_{-}+zeta_{+})$, while the maximum pressure that can be overcome is $Delta P_{max}$ where $ Delta P_{max}A_{1}^{2}/V_{rm m}^{2} omega^{2} !=! (zeta_{-} -break zeta_{+})/16$. These analytical results agree with numerical calculations for the coupled system of equations and compare well with the experimental results of Stemme and Stemme.$hfill$ [2008-0244]   相似文献   

9.
This paper is concerned with the problem of robust $H_{infty }$ filtering for linear continuous-time systems with polytopic parameter uncertainties and time-varying delay in the state. We utilize the polynomially parameter-dependent idea to solve the robust $H_{infty }$ filtering problem, with new linear matrix inequality conditions obtained for the existence of admissible filters. These conditions are developed based on homogeneous polynomially parameter-dependent matrices of arbitrary degree. The delay-dependence and polynomial parameter-dependence guarantee the proposed approach to be potentially less conservative, which is shown via a numerical example.   相似文献   

10.
This paper considers the robust $H_{infty}$ control of uncertain discrete-time fuzzy systems with time delays based on piecewise Lyapunov--Krasovskii functionals. It is shown that the stability with $H_{infty}$ disturbance attenuation performance can be established for the closed-loop fuzzy control systems if there exists a piecewise Lyapunov--Krasovskii functional, and moreover, the functional and the corresponding controller can be obtained by solving a set of linear matrix inequalities that are numerically feasible. A numerical example is given to demonstrate the efficiency and the advantage of the proposed method.   相似文献   

11.
The minimum-variance fixed-interval smoother is a state-space realization of the Wiener solution generalized for time-varying problems. It involves forward and adjoint Wiener-Hopf factor inverses in which the gains are obtained by solving a Riccati equation. This technical note introduces a continuous-time ${rm H}_{infty}$ smoother having the structure of the minimum-variance version, in which the gains are obtained by solving a Riccati equation that possesses an indefinite quadratic term. It is shown that the smoother exhibits an increase in mean-square-error, the error is bounded, and the upper error bound is greater than that for the ${rm H}_{infty}$ filter.   相似文献   

12.
This technical note addresses the discrete-time Markov jump linear systems ${cal H}_{infty}$ filtering design problem. First, under the assumption that the Markov parameter is measurable, the main contribution is the linear matrix inequality (LMI) characterization of all linear filters such that the estimation error remains bounded by a given ${cal H}_{infty}$ norm level, yielding the complete solution of the mode-dependent filtering design problem. Based on this result, a robust filter design able to deal with polytopic uncertainty is considered. Second, from the same LMI characterization, a design procedure for mode-independent filtering is proposed. Some examples are solved for illustration and comparisons.   相似文献   

13.
A 30-mm-long multimode waveguide, 40 $muhbox{m}$ wide and 40 $muhbox{m}$ high, is fabricated on a silicon wafer using polymer SU-8 as the core and liquid buffer as the cladding. Antibodies are successfully immobilized on the SU-8 surface designated for binding target antigens dispersed in the buffer solution. Evanescent-wave spectroscopy is performed by exciting the fluorescently labeled antigens, bound to the waveguide surface within its evanescence field, and measuring the emission light intensity. This evanescent-wave biosensor detects specific molecular interaction. The optical output as a function of the antigen concentration can be described by Langmuir equation. Antigen concentration as low as 1.5 $muhbox{g}/hbox{mL}$ is detected; concentrations higher than 100 $muhbox{g}/hbox{mL}$ lead to sensor saturation. $hfill$[2008-0058]   相似文献   

14.
This paper investigates delay-dependent $hbox{H}_{bminfty }$ filter design problems for discrete-time fuzzy systems with time-varying delays. First, a novel delay-dependent piecewise Lyapunov–Krasovskii functional (DDPLKF) is proposed in which both the upper bound of delays and the delay interval are considered. Based on this DDPLKF, the delay-dependent stability criteria for discrete-time systems with constant or time-varying delays are obtained, respectively. Then, delay-dependent full-order and reduced-order $hbox{H}_{bminfty }$ filter design approaches are proposed. The filter parameters can be obtained by solving a set of linear matrix inequalities (LMIs). Simulation examples are also given to illustrate the performance of the proposed approaches. It is shown that our approaches are less conservative and that the corresponding $hbox{H}_{bminfty }$ filters can achieve better performance than the existing approaches.   相似文献   

15.
This paper presents a contactless droplet manipulation system that relies on thermally generated Marangoni flows. Programmable 2-D control of aqueous microdroplets suspended in an oil film on a plain featureless glass substrate is achieved using a 128-pixel heater array suspended 100–500 $mu hbox{m}$ above the oil layer. The heaters generate surface temperature perturbations $(≪ 25 ^{circ}hbox{C})$, resulting in local Marangoni flows that can move droplets in either a push or a pull mode. Programmed movement is achieved by the sequential activation of the heaters, with digital control circuitry and a graphical interface providing addressable control of each heater. Droplets with diameters of 300–1000 $muhbox{m}$ are manipulated and merged at speeds up to 140 $muhbox{m/s}$. Evaporation rates can be reduced by almost two orders of magnitude by using a two-layer-oil medium, and the choice of an optimum carrier fluid can achieve fluid velocities over 17 000 $mu hbox{m/s}$. The system provides a contactless platform for parallel droplet-based assays. As such, it circumvents the challenges of sample contamination and loss that occur when a droplet interacts with a solid surface.$hfill$[2008-0272]   相似文献   

16.
This paper presents the design, fabrication, and characterization of a new serial digital actuator, achieving an improvement in range-to-precision and range-to-voltage performance. We propose a weight-balanced design for the serial actuators with serpentine springs with a serial arrangement of unit digital actuators. We have measured the displacement range, precision, and drive voltage of unit and serial actuation at 1 Hz. The serial digital actuators produce a full-range displacement of $28.44 pm 0.02 muhbox{m}$ , accumulating unit displacements of $2.8 pm 0.5 muhbox{m}$ at an operating voltage of 4.47 $pm$ 0.07 V. In addition, the serial digital actuators that have a displacement precision of 37.94 $pm$ 6.26 nm do not accumulate the displacement errors of the unit actuators, i.e., 36.0 $pm$ 17.7 nm. We experimentally verify that the serial digital actuators achieve a range-to-squared-voltage ratio of 1.423 $muhbox{m/V}^{2}$ and a range-to-precision ratio of 749.6.$hfill$ [2009-0020]   相似文献   

17.
This paper describes the design, microfabrication, and testing of a novel polycrystalline-diamond (poly-C)-based microprobe for possible applications in neural prosthesis. The probe utilizes undoped poly-C with a resistivity on the order of $10^{5} Omegacdothbox{cm}$ as a supporting material, which has a Young's modulus in the range of 400–1000 GPa and is biocompatible. Boron-doped poly-C with a resistivity on the order of $10^{-3} Omegacdot hbox{cm}$ is used as an electrode material, which provides a chemically stable surface for both chemical and electrical detections in neural studies. The probe has eight poly-C electrode sites with diameters ranging from 2 to 150 $muhbox{m}$; the electrode capacitance is approximately 87 $muhbox{F/cm}^{2}$. The measured water potential window of the poly-C electrode spans across negative and positive electrode potentials and typically has a total value of 2.2 V in 1 M KCl. The smallest detectable concentration of norepinephrine (a neurotransmitter) was on the order of 10 nM. The poly-C probe has also been successfully implanted in the auditory cortex area of a guinea pig brain for in vivo neural studies. The recorded signal amplitude was 30–40 $muhbox{V}$ and had a duration of 1 ms. $hfill$[2008-0195]   相似文献   

18.
To derive less-conservative delay- and range-dependent ${cal H}_{infty }$ stabilization conditions for discrete-time Takagi–Sugeno (T–S) fuzzy systems with interval time-varying delays, the use of a fuzzy-weighting-dependent Lyapunov–Krasovskii functional (FWLKF), in which all variables are set to be affinely or quadratically dependent on fuzzy weighting functions, is proposed. Subsequently, parameterized linear matrix inequality (PLMI)-based ${cal H}_infty$ stabilization conditions are derived by following the free-weighting matrix approach. To fully exploit the convexity of fuzzy weighting functions, the derived PLMIs are sequentially replaced by a finite set of LMIs by considering all possible conditions associated with fuzzy weighting functions.   相似文献   

19.
We present a new temperature compensation system for microresonator-based frequency references. It consists of a phase-locked loop (PLL) whose inputs are derived from two microresonators with different temperature coefficients of frequency. The resonators are suspended within an encapsulated cavity and are heated to a constant temperature by the PLL controller, thereby achieving active temperature compensation. We show repeated real-time measurements of three 1.2-MHz prototypes that achieve a frequency stability of $pm$ 1 ppm from $-20 ^{circ}hbox{C}$ to $+80 ^{circ}hbox{C}$, as well as a technique to reduce steady-state frequency errors to $pm$0.05 ppm using multipoint calibration.$hfill$[2009-0074]   相似文献   

20.
In this paper, we use Zadeh's extension principle to extend Kosko's definition of the fuzzy subsethood measure $S(G,H)$ to type-2 fuzzy sets defined on any set $X$ equipped with a measure. Subsethood is itself a fuzzy set that is a crisp interval when $G$ and $H$ are interval type-2 sets. We show how to compute this interval and then use the result to compute subsethood for general type-2 fuzzy sets. A definition of subsethood for arbitrary fuzzy sets of type- $n ≫ 2$ is then developed. This subsethood is a type-( $n-1$) fuzzy set, and we provide a procedure to compute subsethood of interval type-3 fuzzy sets.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号