首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 188 毫秒
1.
马晨雨  李晓禹  张绘  李建强  赵建玲  贺刚  李江涛  齐涛 《材料导报》2018,32(23):4079-4083, 4099
光热转换是一种有效的太阳能利用技术,其效率主要取决于光热转换材料的光吸收能力。本研究通过低成本球磨法制备亚微米级的Ti4O7,采用扫描电镜、激光粒度仪、X射线衍射仪、差式扫描热分析仪表征其微观形貌、粒径大小、组成和比热容,用紫外-可见-近红外(UV-Vis-NIR)分光光度计和太阳光模拟器分别测试其光吸收能力和光热转换性能。结果表明,通过球磨法成功制备出粒径约0.35 μm的亚微米Ti4O7粉末,其太阳光全光谱吸收能力约89.5%,光热转换效率约73.7%。当亚微米级Ti4O7漂浮在水面时,太阳光水蒸汽产生效率提高至无光热材料条件下的2.15倍。因此,亚微米级的Ti4O7作为光热转换材料具有很大应用潜力。  相似文献   

2.
太阳能光热蒸发是实现水体处理的一种高效绿色技术,近年来受到了研究者们的密切关注。碳材料因具有宽光谱吸收能力和良好的光热性能,被认为是理想的太阳能光热转换材料。首先概述了光热转换碳材料及其光热转换原理,简要阐述了基于碳材料的太阳能蒸发系统的结构设计;重点介绍了应用于水处理领域的碳材料的制备方法;总结了光热转换碳材料在海水淡化、废水处理的应用现状;对水处理用光热转换碳材料的未来研究方向及发展进行了展望。可为光热转换碳材料在水处理领域应用的研究和发展提供一定的策略支撑。  相似文献   

3.
于嫚  李兆  豆蕊 《化工新型材料》2024,(2):151-153+159
利用太阳光的近红外和紫外部分实现全光谱响应无疑已成为提高钙钛矿太阳能电池功率转换效率的重要焦点。通过引入光致发光转换层将近红外或紫外光转换为可见光被钙钛矿光活性层利用,已被认为是一种非常有前景的途径。将两种经典的下转换发光材料(红粉和黄粉)引入钙钛矿本征层,采用一步旋涂法制备钙钛矿薄膜。利用缺陷评定高级显微系统、扫描电镜(SEM)、X射线衍射(XRD)、紫外可见吸收及荧光光谱分别探究了下转换发光材料对钙钛矿薄膜表面粗糙度、形貌、结构及光谱性能的影响。结果表明:下转换发光材料能够优化钙钛矿薄膜表面粗糙度、形貌,并未改变钙钛矿结构。紫外可见分光光度计和荧光光谱仪的结果证实了下转换发光材料确实能够拓宽钙钛矿薄膜的光谱响应范围,使整个吸收光谱范围向短波长方向移动,为有效利用全光谱提供了新思路。  相似文献   

4.
采集太阳光的照明系统研究   总被引:12,自引:0,他引:12  
简要介绍了欧美和日本在采集太阳光用于室内照明技术研究的进展及我国在研究开发全自动跟踪太阳的采光装置,攻克聚光、跟踪和传光等关键技术所取得的成果。指出研究全光谱利用,结合采光技术和光伏发电技术,达到代电和发电功能是进一步研究、发展的目标。  相似文献   

5.
<正>在"纳米科技"重点专项"表面等离激元高效光热转换机理、器件及太阳能热利用"项目支持下,南京大学朱嘉教授团队将氧化铝多孔模板与金属纳米颗粒自组装技术结合,创新性地设计了一种新型吸收体材料,在400nm到10μm波段具有99%的太阳光吸收效率。结合新型界面光热转换设计,将这种材料应用到海水淡化上,光热蒸汽转化效率可达90%,并且水质可以满足WHO的饮用水标准。  相似文献   

6.
光热转换材料可以将可再生的太阳能高效转换为热能,并在海水淡化、废水净化等领域取得了良好效果,但受限于材料本身的性质缺陷,难以大规模应用。最近的研究表明,超疏水特性可防止污染物附着在材料表面的光热位点,研究者通过超疏水改性,赋予了光热转换材料以优异的自清洁性能。该创新策略极大地提高了光热转换材料的稳定性和持久性,为光热转换材料的实际推广应用提供了可能性。详细介绍了超疏水改性的方法、过程和机理,并重点综述了超疏水光热转换材料的最新研究进展和应用案例。最后,辩证分析了超疏水光热转换材料面临的挑战以及优化策略,进一步展望了超疏水光热转换材料的发展趋势和工程应用前景。  相似文献   

7.
高吸光催化剂对提高光热转换效率具有重要意义,阵列结构光热催化剂的陷光效应有助于增强光吸收并提高光热转换效率.但是,现有阵列基光热催化剂仍存在单位面积上活性金属负载量过低的不足,难以满足实际应用的需求.本研究发展了二氧化硅保护的MOFs热解策略,获得了单位辐照面积上活性金属质量可调、太阳光吸收效率超过90%的粉体钴等离激...  相似文献   

8.
目前,全球性的能源危机和环境污染问题备受关注。太阳能作为一种可再生的能源,实现其清洁、高效和低成本的转换及利用具有十分重要的意义。其中,利用光催化可将太阳能转换为可存储和运输的氢能,而通过光热效应可借助太阳能对海水进行淡化,这将有助于缓解能源短缺、环境污染以及淡水资源紧缺等问题。如何提高光能转换材料的能量转换效率是当今太阳能转换领域的关键课题。材料的性质由多种因素决定,其中构型是最重要的因素之一。因此,优良的材料构型设计成为材料、化学、生物等多学科、多领域的研究热点,以满足光电催化、光热治疗、能量转换与存储等不同领域的应用需求。然而,目前人工制备手段以"自下而上"的化学自组装与"自上而下"的物理加工方法为主,不仅成本和效率难以兼顾,更难以精准构筑具有复杂精细三维分级构型的微纳结构。对此,有学者提出"遗态材料"的概念,借鉴自然界生物体(包括微生物、动物以及植物)的精细构型,并以自然界生物体结构作为模板,制备出具有特殊结构和功能的材料。这为当今许多领域的科学研究提供了丰富的灵感和启发。近年来,基于生物精细构型的光能转换遗态材料发展迅速,在光电催化及光热领域取得了丰硕的成果。受自然界中的光合作用启发,可通过光催化反应将太阳能转换为化学能。具有三维分级结构的材料的各向异性强、反应接触面积大、微纳米孔多,能够有效增强半导体催化剂的电学、光学特性和催化性能。以树叶、蝴蝶等生物为模板的微纳多孔结构材料提高了催化剂对入射光的吸收,同时也为水分解反应提供了更多的反应位点,其产氢性能比普通构型的材料提高了数倍。同时,在光热水蒸发系统中,木材、蝶翅、莲蓬等模板由于快速的吸水能力、高效的光吸收和光增强能力以及良好的隔热性能,其与金属纳米颗粒的复合材料具有优异的光热蒸发速率与光热转换效率。本文从光催化水分解与光热水蒸发两个领域的应用方面,分别介绍了基于树叶、蝴蝶、硅藻等天然生物精细分级结构的高效太阳能转换材料的构筑及应用,对设计、制备具有分级微纳构型的光能转换材料提供一定的理论参考和借鉴意义。  相似文献   

9.
<正>光热转换材料用于产生蒸汽,可用于发电、灭菌,解决水污染、海水淡化、能源短缺等关键问题。其中最核心的环节是选择合适的光热转换材料,将光能高效地转变为蒸汽所需的热能。本文介绍了不同材料的光热转换机理,综述了近年来光热转换材料用于产生蒸汽的研究和设计,阐述了光热转换体系未来的研究发展趋势,对光热转换材料用于蒸汽产生的理解和发展具有重要的总结和指导意义。  相似文献   

10.
光热驱动的海水淡化技术被认为是最具潜力的解决全球淡水资源短缺难题的方法之一。其中,太阳能界面水蒸发(SVG)是海水淡化效率的核心过程,是保证光热海水淡化技术具有能量转换效率高、设备简单、成本效益高的关键。在所有高效SVG候选材料中,三维整体式碳基光热转换材料具有成本低、吸光效率高、结构可调性好、水蒸发速率高、无二次污染等优点。本综述首先简述了SVG的基本原理,以此为依据介绍了高效SVG材料的工作机制和设计原则,最后系统归纳和概述了4种不同类型的三维整体式碳基光热转换材料的研究进展。本综述为未来三维整体式碳基光热转换材料的构建及其在SVG领域的应用研究提供理论基础和研究指导。  相似文献   

11.
Converting solar energy into concentrated heat is very appealing for various applications. Polypyrrole (PPy) is known to possess excellent photothermal property with low thermal conductivity, and thus is an ideal candidate for solar–thermal energy conversion. However, solar–thermal materials based on PPy or other conducting polymers still exhibit limited energy conversion efficiency due to the lack of effective light‐trapping schemes. Here, it is demonstrated that multilayer PPy nanosheets with spontaneously formed surface structures such as wrinkles and ridges via sequential polymerization on paper substrates can dramatically enhance broadband and wide‐angle light absorption across the full solar spectrum, leading to an impressive solar–thermal conversion efficiency of 95.33%. The intriguing solar–thermal properties and structural features of multilayer PPy nanosheets can be used for solar heating and photoactuators. Meanwhile, when used for solar steam generation, the measured efficiency could achieve ≈92% under one sun irradiation. The hierarchically multilayer structure is mechanically flexible and robust, holding great potential for practical solar energy utilization. This study provides a simple and straightforward approach toward engineering light‐weight and thermally insulating polymers into efficient solar–thermal materials for emerging solar energy‐related applications.  相似文献   

12.
The use of abundant solar energy for regeneration and desalination of water is a promising strategy to address the challenge of a global shortage of clean water. Progress has been made to develop photothermal materials to improve the solar steam generation performance. However, the mass production rate of water is still low. Herein, by a rational combination of photo‐electro‐thermal effect on an all‐graphene hybrid architecture, solar energy can not only be absorbed fully and transferred into heat, but also converted into electric power to further heat up the graphene skeleton frame for a much enhanced generation of water vapor. As a result, the unique graphene evaporator reaches a record high water production rate of 2.01–2.61 kg m?2 h?1 under solar illumination of 1 kW m?2 even without system optimization. Several square meters of the graphene evaporators will provide a daily water supply that is enough for tens of people. The combination of photo‐electro‐thermal effect on graphene materials offers a new strategy to build a fast and scalable solar steam generation system, which makes an important step towards a solution for the scarcity of clean water.  相似文献   

13.
Solar steam generation is emerging as a promising technology, for its potential in harvesting solar energy for various applications such as desalination and sterilization. Recent studies have reported a variety of artificial structures that are designed and fabricated to improve energy conversion efficiencies by enhancing solar absorption, heat localization, water supply, and vapor transportation. Mushrooms, as a kind of living organism, are surprisingly found to be efficient solar steam‐generation devices for the first time. Natural and carbonized mushrooms can achieve ≈62% and ≈78% conversion efficiencies under 1 sun illumination, respectively. It is found that this capability of high solar steam generation is attributed to the unique natural structure of mushroom, umbrella‐shaped black pileus, porous context, and fibrous stipe with a small cross section. These features not only provide efficient light absorption, water supply, and vapor escape, but also suppress three components of heat losses at the same time. These findings not only reveal the hidden talent of mushrooms as low‐cost materials for solar steam generation, but also provide inspiration for the future development of high‐performance solar thermal conversion devices.  相似文献   

14.
Photothermal steam generation promises decentralized water purification, but current methods suffer from slow water evaporation even at high photothermal efficiency of ≈98%. This drawback arises from the high latent heat of vaporization that is required to overcome the strong and extensive hydrogen bonding network in water for steam generation. Here, light-to-vapor conversion is boosted by incorporating chaotropic/kosmotropic chemistries onto plasmonic nanoheater to manipulate water intermolecular network at the point-of-heating. The chaotropic-plasmonic nanoheater affords rapid light-to-vapor conversion (2.79 kg m−2 h−1 kW−1) at ≈83% efficiency, with the steam generation rate up to 6-fold better than kosmotropic platforms or emerging photothermal designs. Notably, the chaotropic-plasmonic nanoheater also lowers the enthalpy of water vaporization by 1.6-fold when compared to bulk water, signifying that a correspondingly higher amount of steam can be generated with the same energy input. Simulation studies unveil chaotropic surface chemistry is crucial to disrupt water hydrogen bonding network and suppress the energy barrier for water evaporation. Using the chaotropic-plasmonic nanoheater, organic-polluted water is purified at ≈100% efficiency, a feat otherwise challenging in conventional treatments. This study offers a unique chemistry approach to boost light-driven steam generation beyond a material photothermal property.  相似文献   

15.
With recent progress in photothermal materials, organic small molecules featured with flexibility, diverse structures, and tunable properties exhibit unique advantages but have been rarely applied in solar-driven water evaporation owing to limited sunlight absorption resulting in low solar–thermal conversion. Herein, a stable croconium derivative, named CR-TPE-T, is designed to exhibit the unique biradical property and strong π–π stacking in the solid state, which facilitate not only a broad absorption spectrum from 300 to 1600 nm for effective sunlight harvesting, but also highly efficient photothermal conversion by boosting nonradiative decay. The photothermal efficiency is evaluated to be 72.7% under 808 nm laser irradiation. Based on this, an interfacial-heating evaporation system based on CR-TPE-T is established successfully, using which a high solar-energy-to-vapor efficiency of 87.2% and water evaporation rate of 1.272 kg m−2 h−1 under 1 sun irradiation are obtained, thus making an important step toward the application of organic-small-molecule photothermal materials in solar energy utilization.  相似文献   

16.
Zhao  Xing  Zha  Xiang-Jun  Tang  Li-Sheng  Pu  Jun-Hong  Ke  Kai  Bao  Rui-Ying  Liu  Zheng-ying  Yang  Ming-Bo  Yang  Wei 《Nano Research》2020,13(1):255-264

As a renewable and environment-friendly technology for seawater desalination and wastewater purification, solar energy triggered steam generation is attractive to address the long-standing global water scarcity issues. However, practical utilization of solar energy for steam generation is severely restricted by the complex synthesis, low energy conversion efficiency, insufficient solar spectrum absorption and water extraction capability of state-of-the-art technologies. Here, for the first time, we report a facile strategy to realize hydrogen bond induced self-assembly of a polydopamine (PDA)@MXene microsphere photothermal layer for synergistically achieving wide-spectrum and highly efficient solar absorption capability (≈ 96% in a wide solar spectrum range of 250–1,500 nm wavelength). Moreover, such a system renders fast water transport and vapor escaping due to the intrinsically hydrophilic nature of both MXene and PDA, as well as the interspacing between core-shell microspheres. The solar-to-vapor conversion efficiencies under the solar illumination of 1 sun and 4 sun are as high as 85.2% and 93.6%, respectively. Besides, the PDA@MXene photothermal layer renders the system durable mechanical properties, allowing producing clean water from seawater with the salt rejection rate beyond 99%. Furthermore, stable light absorption performance can be achieved and well maintained due to the formation of ternary TiO2/C/MXene complex caused by oxidative degradation of MXene. Therefore, this work proposes an attractive MXene-assisted strategy for fabricating high performance photothermal composites for advanced solar-driven seawater desalination applications.

  相似文献   

17.
Li  Wei  Li  Xiaofeng  Chang  Wei  Wu  Jing  Liu  Pengfei  Wang  Jianjun  Yao  Xi  Yu  Zhong-Zhen 《Nano Research》2020,13(11):3048-3056

Effective utilization of abundant solar energy for desalination of seawater and purification of wastewater is one of sustainable techniques for production of clean water, helping relieve global water resource shortage. Herein, we fabricate a vertically aligned reduced graphene oxide/Ti3C2Tx MXene (A-RGO/MX) hybrid hydrogel with aligned channels as an independent solar steam generation device for highly efficient solar steam generation. The vertically aligned channels, generated by a liquid nitrogen-assisted directional-freezing process, not only rapidly transport water upward to the evaporation surface for efficient solar steam generation, but also facilitate multiple reflections of solar light inside the channels for efficient solar light absorption. The deliberate slight reduction endows the RGO with plenty of polar groups, decreasing the water vaporization enthalpy effectively and hence accelerating water evaporation efficiently. The MXene sheets, infiltrated inside the A-RGO hydrogel on the basis of Marangoni effect, enhance light absorption capacity and photothermal conversion performance. As a result, the A-RGO/MX hybrid hydrogel achieves a water evaporation rate of 2.09 kg·m−2·h−1 with a high conversion efficiency of 93.5% under 1-sun irradiation. Additionally, this photothermal conversion hydrogel rapidly desalinates seawater and purifies wastewater to generate clean water with outstanding ion rejection rates of above 99% for most ions.

  相似文献   

18.
利用太阳能实现光蒸气转化是一项极具前景的技术,可应用于海水脱盐和淡水制备等领域.然而,从工业的角度来看,制备低成本、高效率的光热材料仍具有挑战性.本文利用聚离子液体(PIL)和氧化镍(Ni O)作为复合催化剂,实现了聚丙烯(PP)的可控碳化,并制备了镍/碳纳米材料(Ni/CNM).研究结果表明,加入微量的PIL可实现对Ni/CNM形貌和织态结构的调控.Ni/CNM由杯状碳纳米管(CS-CNT)和梨形镍纳米颗粒组成,二者在太阳光吸收上的协同作用使得Ni/CNM具有优异的光热转换性能.此外,Ni/CNM具有较高的比表面积和丰富的微/介/大孔,其构建的三维多孔网络可为水和蒸气的高效传输提供通道.光吸收高、水传输快和热导率低等优势,使Ni/CNM的水蒸发速率高达1.67 kg m^-2h^-1,光-蒸气转换效率高达94.9%,且重复使用10次后性能依然保持稳定.该材料同时适用于染料废水、海水和油/水乳化液等水质的纯化.其中,海水中金属离子的去除效率高达99.99%,染料去除率>99.9%.更重要的是,材料的光蒸气转换性能优于最新报道的碳基光热材料.此工作不仅提出了一种可将废弃聚合物转化为先进的金属/碳杂化物的可持续方法,同时也有助于太阳能利用和海水淡化领域的进一步研究.  相似文献   

19.
Photothermal hydrogels featuring broadband light absorption abilities and highly hydrated networks provide an appealing mass-energy transfer platform for water evaporation by using solar energy. However, the targeted delivery of solar heat energy to power the water evaporation process remains challenging. Herein, enlightened by metal-phenolic coordination chemistry and camouflaged architecture, photothermal hydrogels with dual-mechanism vaporization structure are tactfully designed via a rational interfacial engineering and integration strategy to enable near-µm heat confinement and highly efficient light-to-heat conversion ability. The spectrum-tailored liquid metal droplet (LMGAs-FeIII) and optimized carbon-wrapped silver nanowire sponge (Ag@C750) are integrally built as photothermal promotors/channels and jointly embedded into a highly hydratable poly(vinyl alcohol) hydrogel, denoted as PALGH, to synergistically boost water molecule activation and interfacial vaporization behavior by triggering robust photothermal performance. As a result, under one sun irradiation, the all-embracing PALGH hydrogel evaporation system achieves a brine evaporation rate to a high level of 3.47 kg m−2 h−1, and >19 L m−2 clean water of PALGH is ideally delivered daily when purifying natural seawater. This work offers not only a rational design principle to create sophisticated photothermal materials but also replenishes insight into solar heat generation and water transportation in a cross-media system.  相似文献   

20.
Recent advances in five key areas of materials technology are discussed. Structural and non-structural composites, electrically-conducting polymers, materials obtained by rapid quenching, new developments in hydraulic cements and photothermal solar energy conversion are reviewed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号