首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A saliency back‐EMF estimator with a proportional–integral–derivative neural network (PIDNN) torque observer is proposed in this study to improve the speed estimating performance of a sensorless interior permanent magnet synchronous motor (IPMSM) drive system for an inverter‐fed compressor. The PIDNN torque observer is proposed to replace the conventional proportional–integral–derivative (PID) torque observer in a saliency back‐EMF estimator to improve the estimating performance of the rotor flux angle and speed. The proposed sensorless control scheme use square‐wave type voltage injection method as the start‐up strategy to achieve sinusoidal starting. When the motor speed gradually increases to a preset speed, the sensorless drive will switch to the conventional saliency back‐EMF estimator using the PID observer or the proposed saliency back‐EMF estimator using the PIDNN observer for medium and high speed control. The theories of the proposed saliency back‐EMF rotor flux angle and speed estimation method are introduced in detail. Moreover, the network structure, the online learning algorithms and the convergence analyses of the PIDNN are discussed. Furthermore, a DSP‐based control system is developed to implement the sensorless inverter‐fed compressor drive system. Finally, some experimental results are given to verify the feasibility of the proposed estimator.  相似文献   

2.
This paper proposes an approach for the joint state and fault estimation for a class of uncertain nonlinear systems with simultaneous unknown input and actuator faults. This is achieved by designing an unknown input observer combined with a set-membership estimation in the presence of disturbances and measurement noise. The observer is designed using quadratic boundedness approach that is used to overbound the estimation error. Sufficient conditions for the existence and stability of the proposed state and actuator fault estimator are expressed in the form of linear matrix inequalities (LMIs). Simulation results for a quadruple-tank system show the effectiveness of the proposed approach.  相似文献   

3.
In this paper, an observer‐based control approach is proposed for uncertain stochastic nonlinear discrete‐time systems with input constraints. The widely used extended Kalman filter (EKF) is well known to be inadequate for estimating the states of uncertain nonlinear dynamical systems with strong nonlinearities especially if the time horizon of the estimation process is relatively long. Instead, a modified version of the EKF with improved stability and robustness is proposed for estimating the states of such systems. A constrained observer‐based controller is then developed using the state‐dependent Riccati equation approach. Rigorous analysis of the stability of the developed stochastically controlled system is presented. The developed approach is applied to control the performance of a synchronous generator connected to an infinite bus and chaos in permanent magnet synchronous motor. Simulation results of the synchronous generator show that the estimated states resulting from the proposed estimator are stable, whereas those resulting from the EKF diverge. Moreover, satisfactory performance is achieved by applying the developed observer‐based control strategy on the two practical problems. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
In order to achieve high‐performance speed regulation for sensorless interior permanent magnet synchronous motors (IPMSMS), a robust backstepping sensorless control is presented in this paper. Firstly, instead of a real mechanical sensor, a robust terminal sliding mode observer is used to provide the rotor position. Then, a new super‐twisting algorithm (STA) based observer is designed to obtain estimates of load torque and speed. The proposed observer ensures finite‐time convergence, maintains robust to uncertainties, and eliminates the common assumption of constant or piece‐wise constant load torque. Finally, a sensorless scheme is designed to realize speed control despite parameter uncertainties, by combining the robust backstepping control with sliding mode actions and the presented sliding mode observers. The stability of the observer and controller are verified by using Lyapunov's second method to determine the design gains. Simulation results show the effectiveness of the proposed approach.  相似文献   

5.
无刷直流电机常采用位置传感器来检测转子位置,这会影响系统的可靠性,增加电机体积和成本。采用无位置传感器控制技术:引入终端滑模面,其具有快速收敛性和良好观测精度,可减少相位滞后问题;采用RBF神经网络来设计观测器的控制策略,将滑模变量作为神经网络输入,输出即为控制策略,简化控制结构。RBF终端滑模观测器将RBF控制与终端滑模控制的优点紧密结合,优化了控制信号,削弱了抖振现象。仿真结果表明,该观测器能快速准确地估计电机的线反电势及电机转速,系统具有良好性能,满足无刷直流电机的工作要求。  相似文献   

6.
This paper addresses the problem of controlling wind energy conversion (WEC) systems involving permanent magnet synchronous generator (PMSG) fed by IGBT-based buck-to-buck rectifier–inverter. The prime control objective is to maximize wind energy extraction which cannot be achieved without letting the wind turbine rotor operate in variable-speed mode. Interestingly, the present study features the achievement of the above energetic goal without resorting to sensors of wind velocity, PMSG speed and load torque. To this end, an adaptive output-feedback control strategy devoid of any mechanical sensor is developed (called sensorless), based on the nonlinear model of the whole controlled system and only using electrical variables measurements. This control strategy involves: (i) a sensorless online reference-speed optimizer designed using the turbine power characteristic to meet the maximum power point tracking (MPPT) requirement; (ii) a nonlinear speed regulator designed by using the backstepping technique; (iii) a sensorless interconnected adaptive state observer providing online estimates of the rotor position as well as speed and load/turbine torque. The proposed output-feedback control strategy is backed by a formal analysis showing that all control objectives are actually achieved. Several simulations show that the control strategy enjoys additional robustness properties.  相似文献   

7.
Sensorless control of a permanent magnetsynchronous motor (PMSM) at low speed remains a challenging task. In this paper, a sensorless vector control of PMSM using a new structure of a sliding mode observer (SMO) is proposed. To remove the mechanical sensors, a full‐order (FO‐SMO) is built to estimate the rotor position and speed of PMSM drives. The FO‐SMO, which replaces a sign function by a sigmoid function, can reduce the chattering phenomenon. In order to overcome time delay, we cancel the low pass filter. This sensorless speed control shows great sensitivity to stator resistance and system noise. To improve the robustness of sensorless vector control, a full‐order SMO technique has been used for stator resistance estimation. A novel stator resistance estimator is incorporated into the sensorless drive to compensate for the effects of stator resistance variation. The validity of the proposed FO‐SMO with a 1.1 kw low‐speed PMSM sensorless vector control is demonstrated by experiments. In this paper, experimental results for FO‐SMO, back‐EMF SMO and MRAS techniques were obtained with fixed point DSP‐based (TMS320F240).  相似文献   

8.
This article investigates the robust adaptive control system design for the longitudinal dynamics of a flexible air‐breathing hypersonic vehicle (FAHV) subject to parametric uncertainties and control input constraints. A combination of back‐stepping and nonlinear disturbance observer (NDO) is utilized for exploiting an adaptive output‐feedback controller to provide robust tracking of velocity and altitude reference trajectories in the presence of flexible effects and system uncertainties. The dynamic surface control is introduced to solve the problem of “explosion of terms.” A new NDO is developed to guarantee the proposed controller's disturbance attenuation ability and to performance robustness against uncertain aerodynamic coefficients. To deal with the problem of actuator saturation, a novel auxiliary system is exploited to compensate the desired control laws. The stability of the presented NDO and controller is analyzed. Simulation results are given to demonstrate the effectiveness of the presented control strategy.  相似文献   

9.
In this paper, we propose a new robust output feedback control approach for flexible-joint electrically driven (FJED) robots via the observer dynamic surface design technique. The proposed method only requires position measurements of the FJED robots. To estimate the link and actuator velocity information of the FJED robots with model uncertainties, we develop an adaptive observer using self-recurrent wavelet neural networks (SRWNNs). The SRWNNs are used to approximate model uncertainties in both robot (link) dynamics and actuator dynamics, and all their weights are trained online. Based on the designed observer, the link position tracking controller using the estimated states is induced from the dynamic surface design procedure. Therefore, the proposed controller can be designed more simply than the observer backstepping controller. From the Lyapunov stability analysis, it is shown that all signals in a closed-loop adaptive system are uniformly ultimately bounded. Finally, the simulation results on a three-link FJED robot are presented to validate the good position tracking performance and robustness of the proposed control system against payload uncertainties and external disturbances.  相似文献   

10.
In this paper, a first strategy to reconstruct the piston position of a pneumatic cylinder supplied by two servovalves is proposed using only the chambers pressure measurements. This work focuses on the position observation at standstill. Starting from a classical model of this actuator, a transformation of the inputs is used. This way, for the first time, a link is established between electro-pneumatic actuators and Permanent Magnet Synchronous Motors (PMSM). This allows to apply PMSM zero speed observation strategies to electro-pneumatic actuators. Thus, following an observability analysis, a signal injection based methodology is used to ensure the observability of the electro-pneumatic system. A non-linear position observer is synthesized and a Lyapunov function is provided to ensure the global stability. Experimental results confirm the proposed strategy efficiency. The proposed technique constitutes a first step toward sensorless position control of electro-pneumatic actuators.  相似文献   

11.
This paper deals with actuator fault diagnosis of neutral delayed systems with multiple time delays using an unknown input observer. The main purpose is to design an observer that guarantees the asymptotic stability of the estimate error dynamics and the actuator fault detection. The existence conditions for such an observer are established. The main problem studied in this paper aims at designing observer‐based fault detection and isolation. The designed observer enhances the robust diagnosis performance, including rapidity and accuracy, and generates residuals that enjoy perfect decoupling properties among faults. Based on Lyapunov stability theory, the design of the observer is formulated in terms of linear matrix inequalities, and the diagnosis scheme is based on a bank of unknown input observers for residual generation that guarantees fault detection and isolation in the presence of external disturbances. A numerical example is presented to illustrate the efficiency of the proposed approach.  相似文献   

12.
In this paper, an adaptive nonlinear control scheme with a friction observer for position control of an electrohydraulic actuator is proposed. The observer based on the LuGre friction model is employed to compensate for the friction. Adaptation laws are used to handle parameter uncertainties in the actuator and friction model. The control law including dynamics of the observer is developed through a backstepping‐like dynamic surface control (DSC) technique. Experimental results have illustrated the success of the control scheme. The results also show that the adaptive DSC controller has better tracking performance than an adaptive backstepping and conventional PI controllers.  相似文献   

13.
陈志芳 《自动化信息》2012,(6):34-36,52
本文提出了一种基于滑模变结构控制原理的无位置传感器控制方法。通过分析永磁同步电机的模型,应用滑模变结构控制原理,提出了一种针对永磁同步电机的无位置传感器控制策略。它利用电机中容易测得的定子电流、直流母线电压,通过滑模变结构控制原理来估算转子位置。利用Matlab/Simulink对系统进行了仿真,仿真结果表明,转子位置估算结果基本与实际位置一致。  相似文献   

14.
When a voltage source drives an electrostatic parallel plate actuator, the well-known pull-in instability limits the range of displacement to 1/3 of the gap. Different strategies have been reported to overcome this limitation. More recently, experimental results have been presented using a capacitor in series with the actuator. Nevertheless, this strategy requires higher voltage than the pull-in voltage value to achieve full range of travel. In order to reduce the operating voltage, a switched-capacitor configuration has been also proposed. In this paper, two different approaches are introduced to control charge in the actuator by means of current driving. Theoretical equations derived for each method show that full range of travel can be achieved without voltage penalty. Both approaches are based on the use of current pulses injecting the required amount of charge to fix the position of the movable plate. Experimental measurements, showing that displacement beyond the pull-in point can be achieved, are in good agreement with the theoretical and the predicted simulated behavior  相似文献   

15.
This paper proposes a control strategy to achieve high accurate path tracking in off-road conditions. The approach is based on adaptive and predictive techniques to account for sliding effects and actuator properties. An extended kinematic model is designed using sideslip angles definition. An observer is proposed to estimate online these variables, independently from the reference path and robot velocity. Thanks to the proposed approach, high accurate path tracking can then be achieved whatever the shape of the reference path and the task to be achieved (practical stabilization or moving object tracking).  相似文献   

16.
This study is devoted to sensorless adaptive force/position control of robot manipulators using a position-based adaptive force estimator (AFE) and a force-based adaptive environment compliance estimator. Unlike the other sensorless method in force control that uses disturbance observer and needs an accurate model of the manipulator, in this method, the unknown parameters of the robot can be estimated along with the force control. Even more, the environment compliance can be estimated simultaneously to achieve tracking force control. In fact, this study deals with three challenging problems: No force sensor is used, environment stiffness is unknown, and some parametric uncertainties exist in the robot model. A theorem offers control laws and updating laws for two control loops. In the inner loop, AFE estimates the exerted force, and then, the force control law in the outer loop modifies the desired trajectory of the manipulator for the adaptive tracking loop. Besides, an updating law updates the estimated compliance to provide an accurate tracking force control. Some experimental results of a PHANToM Premium robot are provided to validate the proposed scheme. In addition, some simulations are presented that verify the performance of the controller for different situations in interaction.  相似文献   

17.
In this paper, an adaptive neural network sensorless control scheme is introduced for permanent magnet synchronous machines (PMSMs). The control strategy consists of an adaptive speed controller that capitalizes on the machine’s inverse model to achieve accurate tracking, two artificial neural networks (ANNs) for currents control, and an ANN-based observer for speed estimation to overcome the drawback associated with the use of mechanical sensors while the rotor position is obtained by the estimated rotor speed direct integration to reduce the effect of the system noise. A Lyapunov stability-based ANN learning technique is also proposed to insure the ANNs’ convergence and stability. Unlike other sensorless control strategies, no a priori offline training, weights initialization, voltage transducer, or mechanical parameters knowledge is required. Results for different situations highlight the performance of the proposed controller in transient, steady-state, and standstill conditions.  相似文献   

18.
针对一种新型无内定子动磁式直线振荡执行器,在建立其机电系统数学模型的基础上,提出一种基于全维状态观测器的动子位移自传感算法。通过对执行器输入电压和输出电流信号的处理和计算来估算动子位移。仿真和实验结果均表明:在变压变频控制方式下,该算法能实现不同电气驱动频率下的动子位移自传感;采用该算法进行行程估算的绝对误差最大值为0.32 mm,相对误差最大值为2.6%。此算法可以满足直线压缩机和直线泵类负载的变行程控制要求。  相似文献   

19.
In this paper, we are concerned with a cascade of ODE‐wave systems with the control actuator‐matched disturbance at the boundary of the wave equation. We use the sliding mode control (SMC) technique and the active disturbance rejection control method to overcome the disturbance, respectively. By the SMC approach, the disturbance is supposed to be bounded only. The existence and uniqueness of solution for the closed‐loop via SMC are proved, and the monotonicity of the ‘reaching condition’ is presented without the differentiation of the sliding mode function, for which it may not always exist for the weak solution of the closed‐loop system. Considering that the SMC usually requires the large control gain and may exhibit chattering behavior, we then develop an active disturbance rejection control to attenuate the disturbance. The disturbance is canceled in the feedback loop. The closed‐loop systems with constant high gain and time‐varying high gain are shown respectively to be practically stable and asymptotically stable. Then we continue to consider output feedback stabilization for this coupled ODE‐wave system, and we design a variable structure unknown input‐type state observer that is shown to be exponentially convergent. The disturbance is estimated through the extended state observer and then canceled in the feedback loop by its approximated value. These enable us to design an observer‐based output feedback stabilizing control to this uncertain coupled system. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
设计了一种基于无位置传感器的永磁同步电动机(PMSM)反演控制器.该控制器包括基于定子电流检测的速度观测器与反演速度控制器.速度观测器代替位置传感器实现转速的在线估计;反演控制器的设计确保速度控制系统具有快速的转速跟踪与转矩响应.通过设计全局Lyapunov函数保证了控制系统的稳定性.仿真和试验结果表明:基于速度观测器...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号