首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 229 毫秒
1.
Foam-like materials had attracted great interest as promising absorbent. In this study, thermoplastic polyurethane(TPU) block sponge was synthesized. Polyester(PET) braid tubular reinforced polyurethane(PU) spongy hollow fiber membrane was prepared by a concentric circular spinning method. The method was woven from an outer coated water-blown PU separation layer and inner PET braid tubular. We have developed a simple and useful preparation technique for the PU spongy hollow fiber membrane. For the first time, the PU spongy hollow fiber membrane was prepared using a coating and controlled foaming technique. The influence of toluene isocyanate index on the physical properties, morphology, and structure of flexible PU sponge was discussed in terms of water contact angle(CA), pure water flux(PWF), Fourier Transform Infrared Analysis(FTIR),pressure-responsive property, and pull-out strength. The morphologies of the membranes were investigated by scanning electron microscopy. We have characterized the foams from an intuitive point of view and demonstrated that the dimensional morphology of the membrane was closely related to isocyanate index. The result showed that the surface cell size of the PU sponge hollow fiber membrane gradually decreased with an increase of the isocyanate index. Due to the elasticity of PU at room temperature, the pressure responsive characteristic of the membrane was prepared. When isocyanate index was 1.05, the interface bonding strength of PU spongy hollow fiber membranes reached as high as 0.37 MPa, porosity and PWF were 71.5% and 415.5 L·m~(-2)·h~(-1),respectively.  相似文献   

2.
The pressure drop of gas-liquid two-phase flow in microchannel is of fundamental importance in heat and mass transfer processes. In this work,the pressure drop of gas-liquid two-phase flow in horizontal rectangular cross-section microchannels was measured by a pressure differential transducer system. Water,ethanol and n-propanol were used as liquid phase to study the effects of capillary number on pressure drop;air was used as the gas phase. Four microchannels with various dimensions of 100 μm× 200 μm,100 μm× 400 μm,100 μm× 800 μm and 100 μm× 2000 μm(depth × width) were used for determining the influence of configuration on the pressure drop. Experimental results showed that in micro-scale,the capillary number also affected the pressure drop remarkably,and in spite of only one-fold difference in aspect ratio,the variation of pressure drop reached up to near three times under the same experimental conditions. Taking the effects of aspect ratio and surface tension into account,a modi-fied correlation for Chisholm parameter C in the Chisholm model was proposed for predicting the frictional multi-plier,and the predicted values by the proposed correlation showed a satisfactory agreement with experimental data.  相似文献   

3.
Attempts had been made to synthesize Al2O3-2SiO2 nanopowders by sol-gel method with tetraethoxysilane(TEOS) and aluminum nitrate(ANN) as the starting materials.DTS,TEM,SEM and BET were employed to study the effects of process parameters on the size,specific surface area and structure(morphology) of powders.The alkali-activation reactivity of the powders was tested for manufacturing geopolymers and their hydrothermal reactions were performed for fabricating zeolites.The results show that the optimum process parameters and drying method for preparing Al2O3-2SiO2 nanopowders are as follows:the molar ratio of water and ethanol to TEOS are 0:1 and 12:1 respectively at synthetic temperature of 50 ℃ and the drying method is azeotropic distillation with microwave drying.The average particle diameters of the powders were about 70 nm and the largest BET specific surface area was up to 669 m2·g·1.The compressive strength of the geopolymer and the calcium exchange capacity(by CaCO3) of NaA zeolite prepared with the powders reached to 29 MPa and 366 mg·g·1 respectively.  相似文献   

4.
Scaffolds with multimodal pore structure are essential to cells differentiation and proliferation in bone tissue engineering.Bi-/multi-modal porous PLGA/hydroxyapatite composite scaffolds were prepared by supercritical CO_2 foaming in which hydroxyapatite acted as heterogeneous nucleation agent.Bimodal porous scaffolds were prepared under certain conditions,i.e.hydroxyapatite addition of 5%,depressurization rate of 0.3 MPa·min~(-1),soaking temperature of 55℃,and pressure of 9 MPa.And scaffolds presented specific structure of small pores(122 μm±66 μm)in the cellular walls of large pores(552μm±127μm).Furthermore,multimodal porous PLGA scaffolds with micro-pores(37 μm±11 μm)were obtained at low soaking pressure of 7.5 MPa.The interconnected porosity of scaffolds ranged from(52.53±2.69)% to(83.08±2.42)%by adjusting depressurization rate,while compression modulus satisfied the requirement of bone tissue engineering.Solvent-free CO_2 foaming method is promising to fabricate bi-/multi-modal porous scaffolds in one step,and bioactive particles for osteogenesis could serve as nucleation agents.  相似文献   

5.
In this paper, calcium hexaaluminate(CA_6) porous ceramics were prepared by a foaming method combined with cement solidification molding. The effects of the foaming agent addition on the microstructure and the properties of the ceramics were studied. The results show that the microstructure and the porosity of the ceramics can be controlled by adjusting the addition of the foaming agent. As the addition of the foaming agent increased, the bulk density reduced from 1 g · cm~(-3) to 0.35 g · cm~(-3), the porosity increased from 70.4% to 89.6%, the compressive strength reduced from 18.46 MPa to 1.66 MPa, and the thermal conductivity at 1 000 °C decreased from 0.382 W · m~(-1) · K~(-1) to 0.144 W · m~(-1) · K~(-1). It is indicated that calcium hexaaluminate porous ceramics with low density, high strength and low thermal conductivity can be obtained by the foaming method. As the lining material of high temperature electric furnaces, the ceramic has excellent energy saving effect.  相似文献   

6.
The rubber composites with good thermal conductivity contribute to heat dissipation of tires. Graphite filled natural rubber composites were developed in this study to provide good thermal conductivity. Graphite was coated with polyacrylate polymerized by monomers including methyl methacrylate, n-butyl acrylate and acrylic acid. The ratios between a filler and acrylate polymerization emulsion and those between monomers were varied. Eight types of surface modification formulas were experimentally investigated. Modification formula can affect coating results and composite properties greatly. The best coating type was achieved by a ratio of 1:1 between methyl methacrylate and n-butyl acrylate. The coating of graphite was thermal y stable in a running tire. Filled with modified graphite, the tire thermal conductivity reached up to 0.517–0.569 W·m-1·K-1. In addition, the mechanical performance was improved with increased crosslink density, extended scorch time and short vulcanization time.  相似文献   

7.
The properties of styrene-butadiene rubber (SBR) reinforced by modified silica was investigated according to national standards. Silica was modified by silane coupling agents KH-570, KH-590, and KH-792. The optimized geometries of molecular modified silica reinforced SBR were obtained by using B3LYP calculation of density functional theory with the 6-31+G basis sets. The natural bond orbital analyses were carried out. The Si-O bond length of silica modified by KH-792 was the shortest and the electronegative of O was the highest. It indicated that the connection between silica and KH-792 was the tightest. Higher tensile strength and elongation of reinforced SBR was obtained by silica modified with the KH-792. It was caused by large delocalization of lone pair electrons of the two N atoms in KH-792. The S-C bond length in silica modified by KH-590 was longer than the ordinary S-C bond length. Then the sulfur free radical (·S·) was produced more easily in vulcanization. The degree of crosslink was increased by the cross-linkage of the rubber molecule and the sulfur free radical. That was why the highest stress and tear strength of reinforced SBR was produced when silane coupling agent KH-590 was used. The calculation results was in accord with experimental data.  相似文献   

8.
With the wide using of transparent alumina ceramics and synthetic sapphire,the demand of the furnace for them is promoted steadily,and the furnace lining materials are upgrading. Having low thermal conductivity and the same composition with transparent alumina ceramics and sapphire,porous alumina ceramics with high purity are expected to lower the high energy consumption without contamination. In this paper,porous alumina ceramics with porosity of 75. 3%- 81. 9% and impurity less than 0. 1% were prepared by a foaming method combined with gelcasting,using high purity alumina powders as raw materials. By changing the amount of foaming agent and the solid content,the microstructure and properties of porous ceramics were tailored. The compressive strength of the porous ceramics ranged from( 22. 4 ± 2. 5) MPa to( 48. 1 ± 3. 1) MPa,the thermal conductivity of porous ceramics at 1 000 ℃ ranged between 0. 41- 0. 65 W·( m·K)~(-1).  相似文献   

9.
The complicated reaction mechanism and the character of competitive reactions lead to a stringent requirement for the catalyst of C4 alkylation process. Due to their unique properties, ionic liquids (ILs) are thought to be new potential acid catalysts for C4 alkylation. An analysis of the regular and modified chloroaluminate ILs, novel Br?nsted ILs and composite ILs used in isobutane/butene alkylation shows that the use of either ILs or ILs coupled with mineral acid as homogeneous catalysts can help to greatly adjust the acid strength. By modifying the struc-tural parameters of the cations and anions of the ILs, the solubility of the reactants could also be adjusted, which in turn displays a positive effect on improving the activity of ILs. Immobilization of ILs is an effective way to mod-ulate the surface adsorption/desorption properties and acid strength distribution of the solid acid catalysts. Such a process has a tremendous potential to reduce the deactivation of catalyst and enhance the activity of the solid acid catalyst. The development of novel acid catalysts for C4 alkylation is a comprehensive consideration of acid strength and its distribution, interfacial properties and transport characteristics.  相似文献   

10.
Poly(m-xylylene adipamide)/poly(ethylene terephthalate)(MXD6/PET) copolymers are synthesized by melt copolycondensation with 1–5 wt% low molecular weight PET oligomers into the MXD6 oligomers at 260 °C.FR-IR and1 H NMR analysis results indicate that the interchange reaction has occurred between MXD6 oligomers and PET oligomers. The thermal behavior of copolymers shows that the melting temperature of MXD6/PET copolymers decreases with the increasing of amount of PET oligomers, while the crystallization temperature accordingly increases. And the equilibrium temperature Tm0 is evaluated to be 251.8 °C for the copolymers with5 wt% PET oligomer adding, which is very close to that of neat MXD6. The tensile and impact strength of MXD6/PET copolymers are significantly improved than that of pure MXD6 by mechanical properties test, and the microfibril structure in the impact fracture sample's surface reveals the feature of ductile fracture.  相似文献   

11.
In this study, poly(vinilydene fluoride-co-hexafluoropropylene)(PVDF-HFP) was used for preparation of hydrophobic membranes using non-solvent induced phase inversion(NIPS) technique. PVDF-HFP copolymer with concentrations of 10 wt% and 12 wt% was prepared to investigate the effect of polymer concentration on pore structure,morphology, hydrophobicity and performance of prepared membranes. Besides, the use of two coagulation baths with the effects of parameters such as coagulant time, polymer type and concentration, and the amount of nonsolvent were studied. The performance of prepared membranes was evaluated based on the permeability and selectivity of oxygen and nitrogen from a gas mixture of nitrogen/oxygen under operating conditions of feed flow rate(1–5 L·min~(-1)), inlet pressure to membrane module(0.1–0.5 MPa) and temperatures between 25 and 45 °C. The results showed that the use of two coagulation baths with different compositions of distillated water and isopropanol,coagulant time, polymer type and concentration, and the amount of non-solvent additive have the most effect on pore structure, morphology, thickness, roughness and crystallinity of fabricated membranes. Porosity ranges for the three fabricated membranes were determined, where the maximum porosity was 73.889% and the minimum value was 56.837%. Also, the maximum and minimum average thicknesses of membrane were 320.85 μm and115 μm. Besides, the values of 4.7504 × 10~(-7) mol· m~(-2)· s~(-1)· Pa~(-1), 0.525 and 902.126 nm were achieved for maximum oxygen permeance, O_2/N_2 selectivity and roughness, respectively.  相似文献   

12.
Affinity membrane was prepared with chitosan immobilized on the hydrophile- modified poly(vinylidene fluoride) (PVDF) membrane. Fourier transform infrared spectroscopy (FTIR) analysis indicated that the contents of-NH2 and -OH groups increased and fluoride decreased on the membrane surface after modification. Using this kind of affinity membrane, the effects of operation parameters such as pH, ionic strength and flow rate, on the amount of endotoxin removed were investigated. The results showed that the equilibrium adsorption capacity and the dissociation constant of the affinity membrane to endotoxin were 21.4 EU·mg-1 membrane and 0.50 EU·ml-1,respectively, at pH 7.0 and ionic strength 0.2 mol·L-1. Adsorption appeared to follow a typical Langmuir adsorption isotherm. At pH 5.0, ionic strength of 0.2 mol·L-1, the removal rate of endotoxin from BSA solution with the chitosan affinity membrane was up to 88.6% (11.50 EU·mg-1 membrane), and the recovery of BSA was 93.4% (0.187 mg·mg-1 membrane), while at pH 11.0, ionic strength of 0.2 mol·L-1, the removal rate of endotoxin from lysozyme solution was 72.4% (9.92 EU·mg- 1 membrane), and the recovery of lysozyme was 92.3% (0.104 mg·mg- 1 membrane).  相似文献   

13.
Oleic acid (OA)-modified CaCO3 nanoparticles were prepared using surface modification method. Infrared spectroscopy (IR) was used to investigate the structure of the modified CaCO3 nanoparticles, and the result showed that OA attached to the surface of CaCO3 nanoparticles with the ionic bond. Effect of OA concentration on the dispersion stability of CaCO3 in heptane was also studied, and the result indicated that modified CaCO3 nanoparticles dispersed in heptane more stably than unmodified ones. The optimal proportion of OA to CaCO3 was established. The effect of modified CaCO3 nanoparticles on crystallization behavior of polypropylene (PP) was studied by means of DSC. It was found that CaCO3 significantly increased the crystallization temperature, crystal-lization degree and crystallization rate of PP, and the addition of modified CaCO3 nanoparticles can lead to the for-mation of β-crystal PP. Effect of the modified CaCO3 content on mechanical properties of PP/CaCO3 nanocompo-sites was also studied. The results showed that the modified CaCO3 can effectively improve the mechanical proper-ties of PP. In comparison with PP, the impact strength of PP/CaCO3 nanocomposites increased by about 65% and the flexural strength increased by about 20%.  相似文献   

14.
To get more accurate kinetic data of the absorption of CO2 into aqueous solution of N-methyldiethanolamine, a wetted wall column was modified to more uniformly distribute the liquid on the column surface and gas in the absorbing chamber and change the length of the column. The average liquid film thickness and the liquid-phase mass transfer coefficient were measured, and a correlation for the Sherwood number, Reynolds number and Schmidt number was obtained for the modified wetted wall column. The equilibrium concentrations in chemical reactions were calculated with a minor absolute error for calculating the rate constant more accurately. A mathematical model for the CO2 absorption was established based on the diffusional mass transfer accompanied with parallel reversible reactions, and the partial differential equation was solved by Laplace transform. An analytical expression for the concentration of carbon dioxide as a function of time and penetration depth in liquid film and the average interphase mass transfer rate was obtained. This model was also used to calculate the rate constant for a second-order reaction, which was in good agreement with reported data.  相似文献   

15.
Micron-size superparamagnetic poly(styrene-divinylbenzene-glycidyl methacrylate) (PSt-DVB-GMA)spheres were prepared via a modified suspension copolymerization method. Oleic acid coated magnetite (Fe3O4) nanoparticles made by co-precipitation were first mixed with monomers of St, DVB, GMA, and benzoyl peroxide (BPO) to form oil in water suspension with the presence of poly(vinyl pyrrolidone) (PVP-K30) as a stabilizer.Then the temperature of mixture was increased at a controlled rate to obtain small and relatively uniform droplets.Finally, the copolymerization reaction was initiated by the decomposition of BPO. The morphology and properties of magnetic PSt-DVB-GMA microspheres were examined by SEM, TEM, VSM, XRD and FT-IR. The magnetic microspheres obtained have very small size (about 4-7 μm) in diameter with narrow size distribution and superparamagnetic characteristics. Powder X-ray diffraction measurements show the inverse cubic spinel structure for the magnetite dispersed in polymer microspheres. FT-IR spectroscopy indicates extensive oxirane groups existed on the surface of magnetic PSt-DVB-GMA microspheres.  相似文献   

16.
The influence of solid particles size,density and loading on the critical gas-inducing impeller speed was investigated in a gas–liquid–solid stirring tank equipped with a hollow Rushton impeller.Three types of solid particles,hollow glass beads with diameters of 300 μm,200 μm,100 μm,and 60 μm,silica gel and desalting resin,were used.It was found that the adding solid particles would change the critical impeller speed.For hollow glass beads and silica gel,whose relative densities were less than or equal to 1.5,the critical impeller speeds increased with the solid loading before reaching the maximum values,and then decreased to a value even lower than that without added solids.The size of the solids also had apparent influence on the critical impeller speed,and larger solid particles correspond to a smaller critical impeller speed.The experimental data also showed that the gasinducing was beneficial to the suspension of the solid particles.  相似文献   

17.
Vitamin E succinate was synthesized in organic solvents using a modified Novozym-435 as catalyst.In order to improve the catalytic performance of Novozym-435,the enzyme was modified using acetic anhydride, propionic anhydride and succinic anhydride separately.We found that both the hydrolytic activity and the thermal stability of the modified Novozym-435 were enhanced compared with the unmodified enzyme.The modified Novozym-435 catalysts were used to synthesize the succinate derivative of vitamin E.Compared with the native Novozym-435,the catalytic activity of the modified novozym-435 in promoting the synthesis of vitamin E succinate was dramatically increased,with the novozym-435 modified with succinic anhydride(N435-S)as the most active catalyst.Conditions for the synthesis of vitamin E succinate were also optimized.A mixture of tert-butanol and DMSO(volume ratio of 2︰3)was the most suitable medium for the reaction,whereas the appropriate molar ratio of vitamin E to succinic anhydride and reaction temperature were 1︰5 and 40°C,respectively.Under these reaction conditions,the yield of vitamin E succinate reached 94.4%.N435-S could be reused for five batches.  相似文献   

18.
Porous implants having interconnecting channels allow ingrowth of host connective tissue. Complete implant vascularization reduces the risk of infection, extrusion, and other complications associated with nonintegrated implants. Attempts were made to develop 60% and 70% porous ultra high molecular weight polyethylene (UHMWPE) scaffolds and blocks using sodium chloride as channeling agent, which when dissolved in boiling water leaves behind the interconnecting channels. The average diameter of the pores of 60% and 70% porous scaffolds was found to be approx. 170 μm and 210 μm, respectively. Mechanical characterizations of the scaffolds indicated sufficient strength to be used for orbital implant fabracation. Surface roughness of the scaffolds indicated increase in surface roughness with the increase in porosity. The scaffolds developed were found to be hemocompatible with the human blood. Subsequently, the 70% porous scaffold was dip coated with a solution mixture of sodium carboxy methyl cellulose (SCMC)/polyvinyl alcohol (PVA)/hydroxyapatite (HA) which also showed hemocompatibility. Ciprofloxacin release pattern from the membrane was determined. Finally an orbital implant was fabricated from the 70% porous scaffold.  相似文献   

19.
Foaming reduces the working volume and limits the biosynthesis of macrolide immunosuppressant ascomycin (FK520) in the batch fermentation process of Streptomyces hygroscopicus FS-35 in a 7.5 L bioreactor. To find the relation between FK520 production and foaming, effects of 10 fermentation parameters including organic acids and membrane permeability were investigated. The results suggest that acetate accumulation caused by short period oxygen deficiency and fast consumption of glucose is the reason for increased foaming and declined FK520 production. Therefore, a fed-batch fermentation strategy was developed to reduce the accumulation of ac-etate. After optimization, the maximum acetate concentration dropped from 320 mg·L?1 to 157 mg·L?1, de-creased by 50.8%, and the maximum foam height reduced from 5.32 cm to 3.74 cm, decreased by 29.7%, while the maximum FK520 production increased from 375 mg·L?1 to 421 mg·L?1, improved by 12%.  相似文献   

20.
Four sizes (0.095, 0.53, 1.0 and 2.01 μm) of polystyrene latex particles were used to prepare monodispersed suspensions at three different ionic strengths (103,10-2.5 and 10-2 M KCl). Filtration experiments were conducted using those suspensions in a filter column with glass beads as porous medium. The filter bed depth and the filtration velocity were kept at 5 cm and 1 m/h, respectively. When suspensions with equal mass concentrations (0.2 mg/L) or equal surface area concentrations (0.12 cm2/mL) were filtered through the system, the largest particles exhibited higher initial single collector efficiency, ⪯. The difference between the ? of largest particles and the smaller particles was prominent for suspensions with equal surface area concentrations at higher ionic strengths. The collision efficiency,α of those particles exhibits higher values at higher ionic strengths. Both at equal mass concentration and equal surface area concentration,α is only slightly dependent on particle sizes when compared to its dependence on ionic strength. Further, it was found that the specific surface coverage was similar for 0.095 μm, 0.53 μm and 1.0 μm particles during the transient stage of filtration at any ionic strength when the surface area concentrations of those suspension were equal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号