首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 781 毫秒
1.
张润生 《宽厚板》2014,(2):13-17
通过成分设计以及复合制坯、轧制、热处理工艺设计,采用Nb、V、Ti微合金化、高温低速大压下、轧后钢板缓冷、正火处理等工艺手段,成功研发了185 mm厚S355JR+N-Z35结构钢板,屈服强度富裕量在40MPa以上,抗拉强度富裕量在50 MPa以上,20℃冲击功平均值大于200 J,平均断面收缩率≥45%,探伤满足"EN10160 S1/E1"标准,钢板的力学性能优良,内部质量良好。  相似文献   

2.
通过添加微合金元素Nb和适当的Ni,并施以合适的控轧和正火处理工艺,成功生产出厚度规格70~200 mm、满足-50℃低温冲击韧性要求的特厚低合金高强度A633D钢板。不同厚度钢板的拉力、横纵向冲击、硬度等各项性能良好,富裕量较大,晶粒度可以达到9.0级以上。  相似文献   

3.
采用金相检验、扫描电镜及能谱分析等手段对120mm厚Q345GJCZ35特厚板Z向性能不合格原因进行了分析,结果表明:特厚板Q345GJCZ35Z向性能不合格主要是由于钢锭中偏析处较多块状Nb(Ti)C聚集、存在着Nb(Ti)C裂纹源,偏析处存在贝氏体等硬相组织。通过优化成分设计、加强精炼过程控制、改进模铸浇注工艺、制定合理轧制和热处理工艺等相关措施,取得了良好的效果,Z向性能合格率达到96%以上。  相似文献   

4.
以低碳微合金设计为基础,采用洁净钢冶金技术,通过两阶段轧制和ACC层流冷却工艺来保证钢板的强度和高韧性,济钢开发了厚规格X65M管线钢。钢板具有针状铁素体和贝氏体混合组织,屈服强度470~520 MPa,抗拉强度600~700 MPa,屈强比0.76~0.85;-60℃夏比冲击功均值在290 J以上,-20℃DWTT在90%以上,各项性能指标满足标准要求。结合新开发的制管工艺,使批量生产的厚规格X65M焊管具有充足的强度富裕量、高的低温韧性和焊接性能。  相似文献   

5.
回顾了近十年来首钢为生产优质冷轧钢板和特厚钢板而开发的板坯连铸新技术。为了降低优质冷轧钢板表面冶金缺陷,开发了浸入式水口防堵塞技术、结晶器内钢液流动综合控制技术和中高拉速FC结晶器技术等。综合应用这些技术后,水口堵塞率降低60%以上,结晶器液面波动±3 mm比例提高至98%以上,冷轧钢板表面卷渣缺陷指数降低50%以上。为了提升特厚钢板的冶金质量,开发了特厚板坯窄面鼓肚控制技术、倒角结晶器连铸技术、半干法连铸技术和二冷间歇式喷淋等技术,400 mm厚板坯窄面鼓肚量降低至5 mm以下,含铌微合金化钢板坯表面裂纹发生率大大降低。开发了特厚板坯连铸轻压下技术,中心偏析C类1.0级及以下比例达到100%,确保了150 mm特厚钢板的心部韧性达到100 J以上。  相似文献   

6.
叙述了245 mm厚度Q345RZ35特厚压力容器用钢板的研制开发过程。成分设计采用添加Nb、Cr元素,通过成分设计、轧制及热处理工艺,试制成功245 mm特厚Q345RZ35高强度压力容器钢板。结果表明:钢板的常规力学性能及抗层状撕裂性能均满足国家标准要求,钢板内部探伤达JB/T2970-2004II级标准。  相似文献   

7.
 南阳汉冶特钢有限公司将自主研发的水冷模用于特厚桥梁钢的开发试验,通过成分设计、轧制、热处理工艺设计,采用100t转炉—模铸—3800mm轧机—热处理的工艺研制开发过程,获得了细小、均匀的内部组织,钢板的各项性能指标均符合国家标准要求,成功研制出150mm厚的Q370qE-Z35特厚、大单重桥梁板。  相似文献   

8.
对微合金化设计、控轧方法生产的100 mm厚D36高强度船用结构钢采用合理的正火处理,试验成功地解决了特厚规格高强度船板钢组织、性能均匀性的问题。通过比较控轧态和正火试验后钢板的力学性能及金相组织,表明880~900 ℃+50 min的正火工艺可以使D36高强度船用结构钢的强度达到船级社要求的同时,伸长率达到30%以上,-20 ℃和-40 ℃冲击都达到200 J以上,从而获得综合性能良好的钢板。  相似文献   

9.
阐述了南阳汉冶特钢采用100 t转炉—模铸—3 800 mm轧机轧制—热处理的工艺研发130 mm特厚Q345qD桥梁结构用钢板的过程。通过试验最终确定微合金元素化学成分设计、32 t锭模浇注、TMCP轧制工艺及正火热处理工艺,成功地开发出了130 mm特厚保二级探伤、保力学性能的Q345qD桥梁结构钢板。  相似文献   

10.
采用连铸坯真空焊接复合轧制技术,通过成分、加热、轧制及热处理工艺设计,以及高温低速大压下工艺、轧后钢板缓冷、正火处理等手段,成功研发了150~200 mm欧标S355J2+N特厚结构钢板,其批量生产特厚钢板的各项性能优良,内部质量良好,各性能优于欧标EN 10025-2:2004各项要求,满足了用户的需求。  相似文献   

11.
阐述了南阳汉冶特钢通过合理的成分设计、模铸浇注、钢锭加热、3800轧机轧制及热处理,成功地在转炉-LF+VD精炼-模铸浇注-加热-轧制-正火热处理生产线开发出了420 mm特厚保性能、保探伤低合金结构钢Q345B钢板。热处理后钢板性能检测,屈服强度在305~350 MPa,抗拉强度在500~555 MPa,伸长率在23%~28%,20℃纵向冲击功在109~287J,性能指标均达到了250 mm厚Q345B标准要求。  相似文献   

12.
陈焕德  刘东升 《钢铁》2014,49(4):69-75
 提出一种低碳微合金MnCuNiCrMo钢,测试了其过冷奥氏体连续冷却相变(CCT)曲线,分别研究未再结晶区变形量、冷却速率对其相变行为的影响。使用厚板坯连铸(CC)—钢板控轧控冷(TMCP)工艺流程,在5m宽厚板工业生产线上成功开发出60mm特厚Q500qENH桥梁钢板。开发钢板的显微组织为细密粒状贝氏体(GB)+针状铁素体(AF)+多边形铁素体(PF);横向室温屈服强度大于560MPa,抗拉强度大于660MPa, 伸长率大于20%;Z向面缩率大于76%;-40℃下纵向Charpy冲击吸收能量(KV2)大于170J;零塑性温度为-85℃。  相似文献   

13.
袁恒  唐郑磊  朱成杰  杨东  李红洋  杨阳 《炼钢》2012,28(3):7-10
为拓宽公司的品种钢结构,满足工程制造行业客户的要求,南阳汉冶特钢有限责任公司采用锭模浇铸、3 800 mm轧机轧制、正火热处理工艺成功地开发并批量生产了150 mm厚A633GrD低合金高强度结构钢板,屈服强度控制在340~370 MPa,抗拉强度控制在495~520 MPa,伸长率控制在25%~35%,冲击功控制在122~167 J,各项指标均满足A633GrD的开发要求。  相似文献   

14.
采用热处理实验方法,同时结合热模拟压缩和热模拟拉伸试验,研究了热处理对奥氏体不锈钢OOCr24Ni13铸坯高温热塑性的影响.实验结果表明:热处理能够明显改变实验钢铸坯中δ铁素体的形貌;经1200℃保温3h空冷后,原始铸坯中存在的大面积连续网状δ铁素体完全转变为弥散分布的细小颗粒状组织.具有颗粒状δ铁素体的热处理试样与热处理前相比,不同温度压缩时的变形抗力略有增加,但并没有急剧恶化;热模拟抗拉强度基本保持不变;相同温度下的断面收缩率(Z)显著提高,其中Z≥60%的温度区间由1150—1280℃扩展为1050~1300℃,高塑性(Z≥80%)温度范围在150℃左右(1150~1300℃).   相似文献   

15.
为解决高强度高韧性工程机械用型钢质量波动的问题,研究了钢种成分、夹杂物、魏氏组织等对低温冲击韧性的影响。采取适当降低锰和钒含量、使用铝脱氧及整体塞棒包全保护浇铸等措施,并对铸坯加热制度等进行了优化。优化后的产品性能及稳定性显著提高,一次检验合格率100%,屈服强度平均461MPa,抗拉强度平均602MPa,断后伸长率平均22%,-5℃冲击值平均61J,金相组织中魏氏组织基本消除,晶粒度7.5~8.0级。  相似文献   

16.
冷镦钢连铸过程高温塑性的模拟研究   总被引:2,自引:0,他引:2  
罗德信  帅习元 《炼钢》2005,21(4):21-23,52
采用热加工模拟试验机研究了w(C)为0.24%的冷镦钢在连铸过程中的物理冶金学现象,通过模拟工艺参数变化对钢的高温塑性的影响,研究高温下钢的抗拉强度和塑性的变化规律和特点,旨在预防和控制连铸坯表面裂纹的形成,提高和改善铸坯质量。  相似文献   

17.
基于一种低碳硅锰系成分,结合热轧直接淬火配分工艺,开发了一种厚规格热轧直接淬火配分钢,研究了配分过程对实验钢微观组织,力学性能和冲击韧性的影响.用SEM、XRD、TEM分析观察材料的微观组织.研究结果显示,实验钢抗拉强度为1 080~1 400 MPa,屈强比为0.6~0.79,强塑积高达28 000 MPa%.等温配分钢的低温冲击韧性较动态配分钢更好,并且随着冲击温度的降低,等温配分钢冲击功比动态配分钢下降更慢.实验钢残余奥氏体含量(体积分数)为16%-28%,碳质量分数为1.05%-1.35%.同时等温配分钢较动态配分钢具有更高的残余奥氏体含量和更低的残余奥氏体碳含量.  相似文献   

18.
概述了近些年来水电站用钢的国内外的生产现状,分析了水电站用钢生产工艺与微观组织之间的关系,认为不同的热处理工艺均能生产出以低碳贝氏体组织为主的钢材;讨论了低碳贝氏体强韧化机制与力学性能之间的关系,碳化物的弥散析出是其主要的强化机制,不同形状的铁素体基体在钢板承受冲击载荷时起到吸收能量的作用是其韧化机制。同时指出了水电站用钢生产过程中的不足主要是产品抗拉强度和-50℃低温冲击韧性值波动较大,超厚规格钢板厚度方向的性能均匀性需要进一步改进。最后指出了水电站用钢的发展趋势,一是需要开发更加优异的热处理生产技术来获得具有更高强度和更高韧性匹配的贝氏体钢,二是需要研究更加优异的轧制技术来细化超特厚钢板厚度1/2处的晶粒和开发优异淬火技术来提高超特厚钢板厚度1/2处的淬透性,最后需要开发先进的热处理回火设备配合优异的工艺来控制回火过程中碳化物的尺寸和分布,通过第二相和基体的协同作用使钢材具备更优异的力学性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号