首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Ceramics International》2023,49(15):24794-24801
Thermal quenching (TQ) that weakens luminescent intensity is crucial for the application value of a phosphor. Here, we report a series of color-tunable phosphors Na2MgAl10O17:xEu2+ (NMA:xEu2+) from green to cyan. For optimized Eu2+ concentration of x = 0.15, its internal and external quantum efficiency can reach up to 86% and 43%, respectively. In addition, it is unexpected that NMA:0.15Eu2+ exhibits anti-temperature quenching (TQ) luminescence even up to 300 °C, which is due to the ability of the defect energy levels to counteract the usual loss of emission by TQ through EPR and TL spectral analysis. Then, a prototype w-LED lamp by using NMA:0.15Eu2+ cyan phosphor, CaAlSiN3:Eu2+ red phosphor, and 380 nm LED chip is fabricated. This work not only reports a new phosphor with high efficiency and good thermal stability of luminescence, but also brings forward a defect engineering approach for enhancing the thermal quenching resistance of a phosphor.  相似文献   

2.
《Ceramics International》2023,49(7):10273-10279
The photoluminescence behavior of inorganic phosphors is generally influenced by thermal stability, which determines the luminescence efficiency of the corresponding devices. Here, a series of Eu2+, Mn2+ co-doped LiAl5O8 blue-green-emitting phosphors with thermal robust are successfully fabricated. The concentration-dependent emission spectra and the decay curves of the as-obtained LiAl5O8: Eu2+, Mn2+ samples manifest the occurrence of the energy transfer from Eu2+ to Mn2+ ions via dipole-dipole interaction, and the corresponding emitted colors are gradually modulated from blue to green under the excitation of 310 nm. Moreover, the zero-thermal-quenching luminescence is observed when the operation temperature is up to 423 K, which is attributed to the energy release from the trapping centers to emitting centers (Eu2+ and Mn2+) at high temperature. Furthermore, a warm white light-emitting diodes (WLEDs) device with correlated color temperature of 5061 K, a color rendering index of 80.6 and long-term stability is fabricated by combining UV LED chip (λex = 310 nm), as-obtained LiAl5O8: Eu2+, Mn2+ phosphor, commercially available red phosphor and green phosphor. These results prove the potential application of the as-obtained LiAl5O8: Eu2+, Mn2+ phosphor for UV-pumped WLEDs devices.  相似文献   

3.
In order to develop an efficient and stable broadband cyan phosphor for full spectrum white lighting emitting diodes (wLEDs), novel Ba9Lu2Si6O24:Eu2+, xCa2+ is designed and synthesized. Ca-substitution induces Eu2+ ions into Lu3+ crystallographic site, which achieve rare nonequivalent cation substitution of Eu2+. Effects of Ca-substitution on crystal structure of matrix and phosphor are investigated by X-ray photoelectron spectroscopy, X-ray powder diffraction, transmission electron microscopy, and density functional thoery (DFT). Ba9Lu2Si6O24:Eu2+, xCa2+ can be effectively excited by with near-ultraviolet (NUV) and exhibit broadband cyan emission with full width at half maximum (FWHM) of 119.7 nm at x = 0.2, due to the multisite luminescence centers. For the sample x = 0.2, the internal quantum efficiency is 92.61%, and the luminous intensity at 423 K remains 89% of that measured at room temperature. The rigid structure of [SiO4]-[LuO6]-[SiO4] doped with Eu2+ ion makes Ca-substituted samples exhibit excellent luminescence efficiency and thermal stability. Our work develops a significant strategy based on multisite cation regulation to explore NUV-excited broadband cyan phosphors for full spectrum wLEDs.  相似文献   

4.
《Ceramics International》2023,49(5):7927-7934
PiGF (Phosphor-in-glass film) with high color rendering was successfully prepared at a low sintering temperature. The influence of sintering temperature, the mass ratio of glass and phosphor, and different fluorescent layers on the luminescence properties of PiGF was systematically studied. It is of note that the “cyan cavity” is significantly reduced due to the addition of “cyan phosphor” (BaSi2O2N2:Eu2+). Under 455 nm blue light laser excitation, PiGF has the highest luminous efficiency of 94.55 lm/W and a white light composite PiGF with a correlated color temperature of 5500 K and a color rendering index of 95 can be obtained. In short, this work shows that the PiGF has great potential application in white light laser lighting.  相似文献   

5.
Developing phosphors with narrow band emission and excellent performance is the main goal of current leading research. In this study, a novel narrow band blue-emitting phosphor Rb2ZrSi3O9: Eu2+ was prepared that can be fully excited by near ultraviolet (NUV) light, emits a bright blue light peak at 470 nm, and has a full width at half maximum (FWHM) of 60 nm. The synthesized Rb2ZrSi3O9: Eu2+ had excellent photoluminescence properties that were reflected in its good thermal stability (up to 82%) and high internal quantum efficiency (up to 75%). These remarkable luminescence properties were mainly ascribed to the highly symmetric and dense crystal structure composed of [Si3O9]6- ring pairs. Multiple emission centers in the Rb2ZrSi3O9: Eu2+ phosphor were confirmed through the photoluminescence (PL) spectra and time-resolved (PL) spectra. A bright warm WLED device with a low correlated color temperature (3386 K) and high color-rendering index (CRI~89.3) was produced by combining the blue phosphor with (Sr, Ba)2SiO4: Eu2+ and CaAlSiN3: Eu2+ and NUV (380 nm). The results indicate that Rb2ZrSi3O9: Eu2+ could be a promising phosphor for use in WLEDs.  相似文献   

6.
A case of phosphor is reported where the cooling rate parameter significantly influences the luminescence property. By quenching the sample after the high‐temperature solid‐state reaction at 1250°C, we successfully prepared the Eu2+‐doped α form Ca3(PO4)2 (α‐TCP:Eu2+) as a new kind of bright cyan‐emitting phosphor. The unusual emission color variation (from cyan to blue) depends on the cooling rate after sintering and Eu2+ doping level as it was observed in the TCP‐based phosphors. By the Rietveld analysis, it is revealed that the cyan‐ and blue‐emitting phosphors are two different TCP forms crystallizing in the monoclinic (space group P21/a, α‐TCP) and the rhombohedral structure (space group R3c, β‐TCP), respectively. Upon 365 nm UV light excitation, α‐TCP:Eu2+ exhibits an asymmetric broad‐band cyan emission peaking at 480 nm, while β‐TCP:Eu2+ displays a relatively narrow‐band blue emission peaking at 416 nm. The Eu2+‐doping in Ca3(PO4)2 shifts the upper temperature limit of the stable structural range of β form from 1125°C to ≥1250°C. Moreover, the crystal structures of α/β‐TCP:Eu2+ were compared in the aspects of compactness and cation site sets. The emission thermal stability of α/β‐TCP:Eu2+ was comparatively characterized and the difference was related to the specific host structural features.  相似文献   

7.
Pure and Eu2+-activated fluoroborate BaGaBO3F2 was prepared using high-temperature solid-state reaction. BaGaBO3F2 is a wide band semiconductor with the indirect transition characteristic. The excitation and luminescence spectra of the phosphor were measured, and it was found that Eu2+-activated BaGaBO3F2 exhibits a bright blue color under ultraviolet (UV) light. The narrow emission band peaked at 425 nm is attributed to the transitions of 4f65d→4f7(8S7/2), and the Stokes shift estimated for this phosphor sample is 3140 cm−1. The lifetime of the luminescence is also reported. The absolute quantum efficiency (QE) of the phosphor was evaluated, and it was found that the absolute QE decreases with increasing Eu2+ concentration. The phosphor shows an excellent quantum efficiency of 72.5% and a high thermal activation energy of 0.342 eV. The study concludes that Eu2+-doped BaGaBO3F2 phosphor has promising luminescence application abilities and can be used as a blue-emitting phosphor in a variety of applications.  相似文献   

8.
《Ceramics International》2023,49(1):579-590
A novel single-phase trivalent europium activated red-emitting SrLaNaTeO6 phosphor was first synthesized in a process of traditional high-temperature solid-state. The phase purity, morphology, and spectroscopy of the prepared phosphor were analyzed. Under 395 nm excitation, the photoluminescence (PL) spectra of the SrLaNaTeO6:Eu3+ products mainly contained five dominant sharp peaks. The intense red emission peak at 615 nm was the typical 5D07F2 electric dipole transition of Eu3+. The optimum product of high quenching concentration was the SrLaNaTeO6:0.90Eu3+, which reached a high internal quantum efficiency (IQE) of 90.6%. The SrLaNaTeO6:0.90Eu3+ was estimated to have Rc of 6.57 Å and possessed high color purity of 100.0%. The phosphors exhibited excellent thermal stability and high activation energy (Ea = 0.29 eV). The prepared white light-emitting diode (WLED) had a high color rendering index (CRI) Ra of 92 and a low correlated color temperature (CCT) of 5008 K. In conclusion, the phosphors have potential as red components for WLEDs.  相似文献   

9.
Pc-WLEDs are considered to play a spectacular role in future generation light sources in view of their outstanding energy efficiency. In this regard, Eu3+ activated BaY2ZnO5 phosphor was prepared and investigated by XRD, PL and SEM analyses. Rietveld refinement analysis was carried out to confirm the structure of the synthesized phosphor. The prepared phosphor shows an intense red emission around 627 nm under excitation by near UV light. The 5D0-7F2 transition intensity of the prepared phosphor is three times higher compared to the commercial (Y,Gd)BO3:Eu3+ red phosphor. The CIE colour coordinates of BaY2ZnO5:Eu3+ (9mol%) phosphor corresponds to be (0.6169, 0.3742) and it has a high 97.9 % colour purity. The obtained results reveal the utility of BaY2ZnO5:Eu3+ phosphor as an efficient red component in WLEDs, anti-counterfeiting and fingerprint detection applications.  相似文献   

10.
《Ceramics International》2021,47(21):30514-30522
A reliable yellow phosphor converter that can be efficiently excited by a 405 nm bluish violet laser is in high demand for laser illumination applications. A NaAlSiO4:Eu2+ phosphor with a quantum efficiency reaching 92% was obtained using LTA zeolite as the raw material. NaAlSiO4:Eu2+ ceramics with suitable porosities for laser illumination were prepared from the phosphor powders via spark plasma sintering. The ceramics lost only 2% of the quantum efficiency compared to the powders, maintained good thermal quenching properties (30% drop at 150 °C), and showed good thermal conductivity (2.02 W‧m−1‧K−1). The NaAlSiO4:Eu2+ ceramic with 405 nm bluish violet lasers, with the increase in laser power density to 9.15 W/mm2, exhibited an increasing luminous flux (23.83–70.26 lm) and maintained a stable luminous efficacy (47.7–46.8 lm/W), and the temperature distribution of the ceramic remained uniform and stable under long-time laser irradiation. This indicates that the nepheline-phase NaAlSiO4:Eu2+ ceramic is a promising material for laser illumination.  相似文献   

11.
《Ceramics International》2021,47(24):34323-34332
Eu3+-activated Sr3−xCaxLa(VO4)3 phosphors were fabricated via citric-acid-assisted sol combustion. Characterization of the Sr3−xCaxLa(VO4)3:Eu3+ samples with different concentrations of Ca2+ revealed a hexagonal crystal structure belonging to the R-3m space group. The amount of Ca2+ added (x) was controlled within 0 ≤ x ≤ 2 to yield high-purity phosphors. Scanning electron microscopy results showed that an increase in Ca2+ concentration resulted in a decrease in the particle size of Sr3−xCaxLa(VO4)3:Eu3+, with the shape gradually changing from nearly equiaxed to lath-shaped. The Sr2CaLa(VO4)3:Eu3+ phosphor (denoted as SCLVO:Eu3+) exhibited the strongest photoluminescence (PL) intensity at 618 nm among the samples under excitation of 394-nm near-UV (NUV) light. The study of Eu3+ doping concentration confirmed that Eu3+ could enter the lattice of the SCLVO matrix without altering its crystal structure. SCLVO:Eu3+ was found to strongly absorb 394 nm NUV light and 464 nm blue light. The optimal concentration of the Eu3+ dopant in the SCLVO host was 0.11, which resulted in the phosphor achieving an excellent PL intensity and a color purity of 98.68%. Tunable luminescence from the orange area (0.5280, 0.4522) of Commission Internationale de l'éclairage (CIE) to the red area (0.6313, 0.3650) was achieved by adjusting the concentration of Eu3+. Under 394 nm excitation, SCLVO:0.11Eu3+ phosphor has a quantum yield (QY) of 28.2% and excellent thermal stability with 0.383 eV activation energy. Consequently, White-light-emitting diode (WLED) based on SCLVO:0.11Eu3+ phosphor yielded a high color rendering index (CRI), low correlated color temperature (CCT), and CIE coordinates of 91.8, 5196 K, and (0.3407, 0.3612), respectively, under the 20 mA driven current. These results indicated the tremendous potential of SCLVO:0.11Eu3+ phosphors for application in WLEDs excited by NUV or blue light.  相似文献   

12.
《Ceramics International》2023,49(13):21510-21520
High power phosphor converted light emitting diodes (pc-LED) are thought to be the next generation technology for lighting and high-tech electronics applications. To achieve optimal luminous efficiency, maximal color gamut and stable color reproducibility, the discovery of high efficient phosphor materials with suitable excitation matching, narrow band emission and robust thermal stability is essential. Herein, we design and construct a new family of alkaline phosphate phosphors ANa3Mg7(PO4)6:Eu2+ (ANMP:Eu2+, A = K, Rb and Cs) with rigid diamond-like chain structure. The results indicates that ANMP:Eu2+(A = K, Rb and Cs) phosphors exhibit ultra-small Stokes shift and efficient blue emission (λmax = 444–465 nm) with high internal quantum efficiency (IQE = 83.2%, 90.6% and 93.4% for A = K, Rb and Cs), narrow full width at half maximum (FWHM∼50 nm) and low thermal quenching (87.5%, 96.5% and 84.2%@140 °C for A = K, Rb and Cs), which demonstrate to have higher colorful purity, wider color gamut and better wavelength applicability for using in long-wavelength near ultraviolet (LWUV) LEDs, compared with the traditional commercially available blue phosphor BaMgAl10O17:Eu2+ (BAM:Eu2+). The Eu2+ site preferences and thermal quenching mechanism are studied in detail. Moreover, the in situ temperature dependent Raman spectra and density function theory (DFT) are employed to get better comprehensions of the relationship between crystal-electronic structures and luminescent properties from experiment and calculation, which will provide a good guidance for develop new phosphors with high QE and excellent thermal stability. Finally, utilizing the title phosphors, white LED lamps are fabricated with high color rendering index and an appropriate correlated color temperature. Therefore, all the results demonstrate that the blue-emitting phosphor ANMP:Eu2+ (A = Cs, K, Rb) has great potential for applications in high power LWUV pumped pc-LEDs.  相似文献   

13.
We report orange-emitting Sr8La0.5Na0.5Mg1.5(PO4)7:Eu2+ (SLNMPO-0.5:Eu2+) and Sr7LaNaMg1.5(PO4)7:Eu2+ (SLNMPO-1:Eu2+) phosphors with broad emission bands covering from 450 to 800 nm. The phosphors can be excited by n-ultraviolet and blue light efficiently. Their crystal structure, diffuse reflection spectra, photoluminescence (PL) spectra, fluorescence decay curves and thermal stability were investigated systematically. Under the excitation of 365 and 400 nm, SLNMPO-0.5:Eu2+ and SLNMPO-1:Eu2+ both exhibit better PL properties and contain more red emissions than SMPO:Eu2+. CIE coordinates of SLNMPO-0.5:Eu2+ and SLNMPO-1:Eu2+ under 365 nm excitation are (0.460, 0.497) and (0.457, 0.494), respectively. Furthermore, high-quality warm white light can be generated by fabricating warm white light-emitting diode (WLED) devices with 370 nm LED chips, BaMgAl10O17:Eu2+ commercial blue phosphor and orange-emitting SLNMPO-0.5:Eu2+ (or SLNMPO-1:Eu2+) phosphor. The correlated color temperature, Ra and color coordinates are 3880 K, 94.05, (0.3895, 0.3922) and 3736 K, 91.73, (0.4005, 0.4078) for the fabricated WLED devices with SLNMPO-0.5:Eu2+ and SLNMPO-1:Eu2+, respectively. The excellent performances indicate that SLNMPO-0.5:Eu2+ and SLNMPO-1:Eu2+ have great potential to be attractive candidates in the application of warm WLEDs.  相似文献   

14.
《Ceramics International》2023,49(10):15402-15412
A series of Ca2GdNbO6: xSm3+ (0.01 ≤ x ≤ 0.15) and Ca2GdNbO6: 0.03Sm3+, yEu3+ (0.05 ≤ y ≤ 0.3) phosphors were synthesized by the traditional solid-state sintering process. XRD and the corresponding refinement results indicate that both Sm3+ and Eu3+ ions are doped successfully into the lattice of Ca2GdNbO6. The micro-morphology shows that the elements of Ca2GdNbO6: 0.03Sm3+, 0.2Eu3+ phosphor are evenly distributed in the sample, and the particle size is about 2 μm. The optical properties and fluorescence lifetime of Ca2GdNbO6: 0.03Sm3+, Eu3+ phosphors were detailedly studied. The emission peak at 5D07F2 (614 nm) is the strongest and emits red light under 406 nm excitation. The increase of Eu3+ concentration causes the energy transfers from Sm3+ to Eu3+ ions, and the transfer efficiency reaches 28.6%. Ca2GdNbO6: 0.03Sm3+, 0.2Eu3+ phosphor has a quantum yield of about 82.7%, and thermal quenching activation energy is of 0.312 eV. The color coordinate (0.646, 0.352) of Ca2GdNbO6: 0.03Sm3+, 0.2Eu3+ phosphors is located in the red area. The LED device fabricated based on the above phosphor emit bright white light, and CCT = 5400 K, Ra = 92.8. The results present that Ca2GdNbO6: 0.03Sm3+, Eu3+ phosphors potentially find use in the future.  相似文献   

15.
A series of LiCaGd(WO4)3 : xEu3+ (0 ≤ x ≤ 1.0) red phosphors with tetragonal scheelite structure were synthesized via the conventional solid-state reaction. Their crystal structure, photoluminescence excitation (PLE), and photoluminescence (PL) spectra, thermal stability and quantum efficiency were investigated. The phosphors exhibit a typical red light upon 395 nm near ultraviolet excitation, and the strongest emission peak at 617 nm is dominated by the 5D07F2 transition of Eu3+ ions. The PL intensity of the phosphors gradually increases with the increase of Eu3+ doping concentration, and the concentration quenching phenomenon is hardly observed. The quantum efficiency and the color purity of the phosphor reach maximum values of about 94.2 and 96.6% at x = 1.0, respectively. More importantly, LiCaGd(WO4)3:xEu3+ phosphors have prominent thermal stability. The temperature-dependent PL intensity of the phosphors at 423 K is only reduced to 89.1% of the PL intensity at 303 K, which is superior to that of commercial red phosphors Y2O3:Eu3+. Finally, LiCaGd(WO4)3:Eu3+ phosphor is packaged with near ultraviolet InGaN chips to fabricate white light emitting diodes, which has a low color temperature (CCT = 4622 K) and a high color rendering index (CRI= 89.6).  相似文献   

16.
To enhance the display quality of light-emitting diodes (LEDs), it is of great significance to exploit green/yellow-emitting phosphors with narrow emission band, high quantum yield, and excellent color purity to satisfy the application. Herein, orthophosphate-based green/yellow-emitting Na3Tb(PO4)2:Ce3+/Eu2+ (NTPO:Ce3+/Eu2+) phosphors have been successfully synthesized by a facile solid-state reaction method. The absorption band of NTPO samples was extended to the near-ultraviolet region and the absorption efficiency was significantly improved owing to a highly efficient energy transfer from Ce3+/Eu2+ ion to Tb3+ ion in NTPO host certified by time-resolved PL spectra. Upon 300 nm excitation, the NTPO:Ce3+ is characterized by ultra-narrow-band green emission of Tb3+ with an absolute quantum yield of 94.5%. Unexpectedly, NTPO:Eu2+ emits bright yellow light with a color purity of 73% as a result of the blending of green light emission from Tb3+ and red light emission from Eu3+. The thermal stability has been improved by controlling the stoichiometric ratio of Na+. The prototype white LED used yellow-emitting NTPO:Eu2+ phosphor has higher color-rendering index (Ra = 83.5), lower correlated color temperature (CCT = 5206 K), and closer CIE color coordinates (0.338, 0.3187) to the standard white point at (0.333, 0.333) than that used green-emitting NTPO:Ce3+ phosphor, indicating the addition of the yellow light component improved the Ra of the trichromatic (RGB) materials.  相似文献   

17.
《Ceramics International》2023,49(10):15320-15332
A variety of Bi3+ and/or Eu3+ doped KBaYSi2O7 phosphors with deep blue, cyan, orange-red, and white light multicolor emissions have been fabricated by a Pechini sol-gel (PSG) method. The KBaYSi2O7:Bi3+ phosphors exhibit an intense cyan emission or a unique narrow deep blue emission when excited by different wavelengths, which may bridge the cyan gap or act as a promising deep blue phosphor for white light-emitting diodes (WLEDs). The tunable multicolor emissions can be achieved by changing the Bi3+ doping concentrations. The Bi3+/Eu3+ co-doped KBaYSi2O7 phosphors display intrinsic emissions of Bi3+ and Eu3+ and an energy transfer process between Bi3+ and Eu3+ can be detected. The luminescence colors of KBaYSi2O7:Bi3+,Eu3+ regularly shift from blue, through cold and warm white, finally toward orange-red by adjusting the relative doping concentrations of Bi3+ and Eu3+. The single-phase white light-emitting material can be generated in both cold and warm white regions by simply varying the Eu3+ doping concentrations. Furthermore, three kinds of WLEDs devices are fabricated by KBaYSi2O7:Bi3+ or KBaYSi2O7:Bi3+,Eu3+ phosphors, which can exhibit dazzling white light emissions with eminent CIE coordinates, correlated color temperature, and color rendering index. The result offers direct evidence that the as-synthesized phosphors may be potentially applied in WLEDs and solid-state lighting.  相似文献   

18.
《Ceramics International》2023,49(15):24972-24980
Phosphor-converted light-emitting diodes (pc-LEDs) are commonly used to regulate the light environment to control the growth rates and improve the production efficiency of plant. Among them, the exploration of blue-emitting phosphors with high efficiency, low thermal quenching and excellent spectrum resemblance matching with the plant response spectrum is still challenging. Herein, a narrow-band blue-emitting Rb2Ba3(P2O7)2:Eu2+ phosphor with high color purity of 93.4% has been developed. Under 345 nm excitation, it exhibits a blue emission band centered at 413 nm with a full width at half-maximum (FWHM) of 36 nm, and the emission spectrum of Rb2Ba3(P2O7)2:0.060Eu2+ sample shows 85.7% spectrum resemblance with the absorption spectrum of chlorophyll-a in the blue region from 400 to 500 nm. In addition, the temperature-dependent emission spectra demonstrate that the Rb2Ba3(P2O7)2:0.060Eu2+ phosphor has good thermal stability and small chromaticity shift, with the emission intensity dropping to 72.5% at 423 K of the initial intensity at 298 K and a chromaticity shift of 38 × 10-3 at 498 K. All results suggest that the blue-emitting Rb2Ba3(P2O7)2:Eu2+ phosphor has potential application in plant growth LEDs.  相似文献   

19.
A new method for improving color rendering index (CRI) and low correlated color temperature (CCT) in high‐power white‐light‐emitting diodes (WLEDs) is proposed. We used a configuration of phosphor‐in‐glass (PIG) and studied light output changes with the increment in concentration of yellow‐emitting Y3Al5O12:Ce3+ (YAG:Ce3+) phosphor. The PIG was coupled on the top of blue‐light‐emitting diodes (LED) chip (465 nm). To compensate the lack of red emission in the phosphor, Eu3+‐doped tellurium glass with different europium content was employed as a red emitter. The suitable contents of YAG:Ce3+ and Eu3+ were 7.5 weight percent (wt%) and 3 mol percent (mol%), respectively. The CRI value went from 72 to 82, whereas the CCT was reduced from 24 933 to 6434 K. The proposed structure can improve CCT as well as CRI of WLEDs just by placing a glass on top.  相似文献   

20.
Cyan-emitting phosphors have attracted widespread attention as an integral part to realize full-spectrum lighting. Understanding the site occupation of luminescence centers is of great importance to design and clarify the luminescent mechanism for new cyan-emitting phosphors. Here, we report a cyan-emitting phosphor Ca18Na3Y(PO4)14:Eu2+ synthesized by the high-temperature solid-state method. The crystal structure is characterized by X-ray diffraction and refined by the Rietveld method. The diffuse reflectance spectra, excitation/emission spectra, fluorescence decay curves, thermal stability, and related mechanism are systematically studied. The results show that Ca18Na3Y(PO4)14:Eu2+ crystallizes in a trigonal crystal system with space group R3c. Under excitation at 350 nm, a broadband cyan emission can be obtained at 500 nm with a half-width of about 120 nm, which is caused by Eu2+ occupying five different sites in host, namely, Na2O12 (450 nm), (Ca3/Na1)O8 (485 nm), Ca2O8 (515 nm), Ca1O7 (565 nm), and (Ca4/Y)O6 (640 nm), respectively. Moreover, crystal structure, room and low temperature spectroscopy, and luminescence decay time are used to skillfully verify the site-selective occupation of Eu2+. Finally, a full-spectrum light-emitting diode (LED) lamp is fabricated with an improved color rendering index (∼90.3), CCT (∼5492 K), and CIE coordinates (0.332, 0.318). The results show that Ca18Na3Y(PO4)14:Eu2+ has the potential to act as a cyan emission phosphor for full-spectrum white LEDs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号