首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
Microsilica addition in Al2O3–MgO and Al2O3–spinel castables helps to improve their flowability and partially accommodate their residual expansion after firing. Nevertheless, there is a lack of conclusive statements in the literature regarding the effects of microsilica on one of the main requisites for steel ladle refractories: corrosion resistance. In the present work, the performance of alumina–magnesia and alumina–spinel with or without microsilica when in contact with a steel ladle slag was evaluated based on three aspects: the material's physical properties, its chemical composition and the microstructural features before the slag attack. According to the attained results, microsilica induced liquid formation and pore growth during sintering, favoring the physical slag infiltration. Moreover, due to this liquid, CA6 was formed in the matrix, mainly for the Al2O3–spinel composition, which also favored the castable dissolution into the molten slag.  相似文献   

2.
《应用陶瓷进展》2013,112(3):149-154
Abstract

The aim of the present work is to prepare, characterise and assess MgO–Al2O3–SiO2 refractory ceramics; namely, spinel, mullite and cordierite from chemically recycled precipitates. These precipitates include pure and fine magnesium and aluminium hydroxides as well as water treated fumed silica. Corresponding batches of the aimed oxide ceramics were coprecipitated from these precipitates and subsequently processed up to firing using the proper techniques. The processed bodies were investigated for their chemical and phase composition as well as morphology, microstructure and physical properties. According to the results of these investigations, the processed ceramics could be recommended for the adequate applications. It is concluded that dense, direct bonded and highly refractory spinel and mullite–corundum bodies could be obtained after firing their coprecipitated batches up to 1700°C. On the other side, dense, porous and refractory cordierite–spinel bodies could be processed from its batch after firing up to 1350°C. All of these bodies are refractory oxide ceramics with a very wide range of thermo-chemical, physical and mechanical applications.  相似文献   

3.
To support commercialization of the MgO–Al2O3–B2O–SiO2-based low-dielectric glass fibers, crystallization characteristics of the relevant glasses was investigated under various heat-treatment conditions. The study focused on the effects of iron on the related thermal properties and crystallization kinetics. Both air-cooled and nucleation-treated samples were characterized by using the differential thermal analysis/differential scanning calorimeter method between room temperature and 1200°C. A collected set of properties covers glass transition temperature (Tg), maximum crystallization temperature (Tp), specific heat (ΔCp), enthalpy of crystallization (ΔHcryst), and thermal stability (ΔT=TpTg). Using the Kinssiger method, the activation energy of crystallization was determined. Crystalline phases in the samples having various thermal histories were determined using powder X-ray diffraction (XRD) and/or in situ high-temperature XRD method. Selective scanning electron microscope/energy-dispersive spectroscopy analysis provided evidence that crystal density in the glass is affected by the iron concentration. Glass network structures, for air-cooled and heat-treated samples, were examined using a midinfrared spectroscopic method. Combining all of the results from our study, iron in glass is believed to function as a nucleation agent enhancing crystal population density in the melt without altering a primary phase field. By comparing the XRD data of the glasses in two forms (bulk versus powder), the following conclusions can be reached. The low-dielectric glass melt in commercial operation should be resistant to crystallization above 1100°C. Microscopic amorphous phase separation, possibly a borate-enriched phase separating from the silicate-enriched continuous phase can occur only if the melt is held at temperatures below 1100°C, that is, below the glass immiscibility temperature. The study concludes that neither crystallization nor amorphous phase separation will be expected for drawing fibers between 1200°C and 1300°C in a commercial operation.  相似文献   

4.
Cordierite aerogels, made by supercritical drying, and xerogels, formed by ambient pressure drying, have been prepared by combining two different recipes. The chemical composition of the gels varied from stoichiometric cordierite 2MgO·Al2O3·5SiO2 to 0·5MgO·1·4Al2O3·5SiO2 due to different procedures for washing of the gels. The crystallization of nearly stoichiometric cordierite gels was shown to be relatively complex involving the formation of several metastable phases such as μ-cordierite (Mg2Al4Si5O18), spinel (Al6Si2O13) and sapphirine (Mg4Al8Si2O20) before the equilibrium phase composition was obtained at around 1350°C. On the other hand, during crystallization of gels with stoichiometry close to 0·5MgO·1·4Al2O3·5SiO2 the equilibrium phases mullite, cristobalite and α-cordierite were the major phases formed during heat treatment. A lower densification rate was observed for aerogels compared to xerogels due to a larger pore size. A lower crystallization temperature in aerogels probably due to heterogeneous nucleation reduced the densification. For gels with a composition near 0·5MgO·1·4Al2O3·5SiO2 nucleation and densification occur simultaneously and large differences in the densification behavior was observed. ©  相似文献   

5.
In order to achieve high-quality and stable production of special steel, the performance of low-carbon MgO-C refractories needs to be further optimized. For this purpose, low-carbon MgO–Al2O3–La2O3–C refractories with enhanced thermal shock resistance and slag resistance were designed and successfully prepared by introducing Al2O3 as a reinforcer and La2O3 as a modifier. The results showed that the refractory samples with additives show better overall performance than those without additives. When 10 wt% of Al2O3 and La2O3 were added, the oxidation resistance, thermal shock resistance and slag resistance of the refractory samples coked at 1400 °C are increased by 13.57%, 17.75% and 43.09%, respectively. The analysis found that this can be mainly attributed to the formation of MgAl2O4, Mg2SiO4, and 2CaO·4La2O3·6SiO2 and the consequent volume expansion effect and intergranular phase enhancement effect. Therefore, a low-cost and enforceable reinforcement strategy for low-carbon MgO-C refractories is proposed, which is expected to be applied in steelmaking.  相似文献   

6.
This paper reports on development of novel alumina-containing glass-ceramics (GCs) with a high content of Al2O3 (12.5 wt.%) in the CaO–MgO–Al2O3–SiO2 system aimed for dental restorations. The thermal properties of the parent glasses, the microstructure and the mechanical properties of the produced sintered and crystallized GCs along with bio-inertia performance were experimentally studied. Dense, white, and bio-inert GCs, comprised of melilite, either as a single-phase or with diopside, were produced. The values of flexural strength ranged between 120 and 171 MPa, the modulus of elasticity varied between 28 and 42 GPa, while the values of the hardness and the fracture toughness (measured by the indentation–Niihara equation) ranged from 6.3 to 7.0 GPa, and from 2.6 to 2.8 MPa m0.5, respectively. The mechanical properties of the produced GCs, after being meticulously compared with the mechanical properties of GCs of various compositions reported in literature, including commercial ones, are a good match to the properties of dental hard tissues, and satisfy the requirements of the ISO 6872 “Dentistry-Ceramic Materials”.  相似文献   

7.
Three different spinel compositions with MgO:Al2O3 molar ratios 2:1, 1:1 and 1:2 were studied using TiO2 as an additive up to 2 wt.%. Solid state reaction sintering technique was employed for all the compositions in the temperature range of 1550–1650°C. Attrition milling was done for the reduction of particle size. Sintered products were characterised in terms of densification and shrinkage studies, phase analysis, strength evaluation both at ambient temperature and at elevated temperature, strength retention after different number of thermal cycles at 1000°C, quantitative elemental analysis and microstructural studies.  相似文献   

8.
Silica-supported phosphorus chloride has been proved to be an efficient and recyclable catalyst for Beckmann rearrangement of a variety of ketoximes and dehydration of various aldoximes in anhydrous THF under microwave irradiation. This protocol has advantages of high conversion, high selectivity, short reaction time, no environmental pollution, and simple work-up procedure.  相似文献   

9.
The beneficial effects of adding nanostructured expandable graphite (EG) hybridized yttrium aluminium garnet (EG\YAG) powder as a composite reinforcement in improving the oxidation resistance, hot-strength, and microstructure development in Al2O3–MgO–C refractories were studied. The refractory components reinforced with EG\YAG exhibited more than 60% of oxidation resistance enhancement and as high as 200% increase in hot-strength performance over the standard refractories, formulated without EG\YAG. Correlating the damage parameter (DE) calculations based on ultrasonic measurements with residual strength data (Rc, Rb) showed that there was a progressive increase in Rc and Rb values with consistent reduction in the oxidative damage of EG\YAG reinforced refractories. Analysis indicated that these beneficial features were majorly ascribed to the in-situ development of bimodal microstructure with EG\YAG sintered framework throughout the refractory interior in these new class of reinforced systems. Additionally, the mechanism of toughening and implications of these results to materials design are discussed.  相似文献   

10.
MgO—Al2O3系浇注料的设计   总被引:4,自引:0,他引:4  
沈继耀  谈家琪 《硅酸盐通报》1998,17(5):21-26,32
以相关知识和实践经验为依据,探讨了MgO-Al2O3系中铝镁质(含刚玉-尖晶石质和矾土熟料-尖晶石质)浇注料的基质料的设计和结合剂的合理选择问题。  相似文献   

11.
MgO对Al2O3瓷性能的影响   总被引:4,自引:0,他引:4  
研究了CaO-Al2O3-SiO3系Al2O3 添加不同量滑石对提高其抗折强度、硬度、耐磨性、密度等性能的影响,探讨了MgO在显微结构中所起的作用及影响机理,并找出了形成低温细晶95Al2O3瓷中添加滑石的最佳范围。  相似文献   

12.
《应用陶瓷进展》2013,112(6):352-357
Abstract

MgO–Al2O3–SiO2 (MAS) cordierite based glass ceramics were prepared by volume crystallisation. X-ray diffraction, Scanning electron microscopy and Energy diffraction scanning were used to investigate crystallisation behaviour and the influence of P2O5 on microstructure MAS based glass ceramics. The results showed that P5+ could promote the phase separation of MAS glass and that the glass was divided into two areas, such as Mg4Al2Ti9O25 and the containing P5+ area at <900°C. Mg4Al2Ti9O25 and Mg3(PO4)2 in the area were both advantageous to the precipitation of μ cordierite, which further transformed to α cordierite due to P5+ in the residual glassy phase. However, P5+ inhibited the presence of cordierite when the heat treatment temperature was >900°C.  相似文献   

13.
《应用陶瓷进展》2013,112(3):178-182
Abstract

Effects of heat treatment conditions on phase transformation, microstructure and thermal expansion coefficient (TEC) in MgO–Al2O3–SiO2 system glass–ceramics were investigated by means of differential thermal analysis, X-ray diffraction and scanning electron microscopy. The magnesium aluminium titanate (MAT) precipitated firstly at 850°C and β-quartz solutions (β-QSS) formed at 950°C. Further increasing temperature to 1000°C, MAT disappeared and β-QSS became master phase, following little amount of α-cordierite, MgTi2O5, rutile and sapphirine. When glass was treated at 1050°C, β-QSS content decreased and α-cordierite became master phase. As temperature reached higher than 1100°C, β-QSS and sapphirine disappeared, and α-cordierite became master phase accompany with rutile and MgTi2O5 as secondary phase. The microstructure transformed gradually from particle shape crystallites to slat shape network with the increase in heat treatment temperature. By controlling heat treatment condition, an ideal glass–ceramics with proper TEC for matching sealing to 4J29 alloy has been obtained.  相似文献   

14.
Recently, nanostructured thermal barrier coatings have received considerable attention because of some superior properties in comparison with their conventional counterpart. In this study, nanostructured 8 wt% yttria-stabilized zirconia (n-YSZ) coatings were deposited by atmospheric plasma spraying, and the degradation behavior caused by molten calcium-magnesium-aluminon-silicate (CMAS) attack was investigated. Results showed that the thermo-chemical reaction product between CMAS and YSZ (both powders and coatings) is different with the change of CMAS content. At low CMAS concentration, a cubic phase is generated by the diffusion of Ca into YSZ grains. As compared to the conventional YSZ, less C-ZrO2 is detected for n-YSZ. When CMAS reaches a certain concentration (eg 15 mg/cm2), disruptive phase transformation from tetragonal to monoclinic will occur and the reaction is more readily for n-YSZ. Two different chemical reaction mechanisms governing the CMAS content effect were proposed. It should be noted that the nanozone in the coatings plays an important role in the CMAS degradation process, which enhances CMAS infiltration rate and accelerates the chemical reaction, leading to a poor CMAS resistance of the nanostructured coating than that of the conventional counterpart.  相似文献   

15.
Reducing the amount of inclusions during the steelmaking process as much as possible and much earlier plays a vital role in improving the quality of steel products. To reveal the dissolution mechanism of inclusions in slag during the converter tapping process, some comparison experiments were conducted by adding isolated spherical alumina balls as inclusions in CaO–SiO2–Al2O3–FetO–MgO slag, and FetO content up to 10% was contained in slag. The results showed that the dissolution rate of alumina balls in the slag was mainly affected by the diffusion of Al2O3, and the diffusion coefficients of Al2O3 were 4.2 × 10–11, 7.5 × 10–11, and 1.5 × 10–10 m2/s at 1500℃, 1550℃, and 1600℃, respectively. In addition, the upgraded diffusion-distance-controlled dissolution model (DDD-Model), in which FetO content was introduced and applied in the study. The results illustrated that the Al2O3 inclusion apparent dissolution rate was improved by a high FetO content, increasing CaO/SiO2 and raising the temperature as soon as possible at the early stage of the converter tapping process. It is not necessary to increase the FetO content in the slag to enhance the dissolution rate of the Al2O3 inclusion at the last tapping stage. The predicted complete dissolution time of spherical Al2O3 inclusions with 1000 µm in diameter based on the upgraded DDD-Model was approximately 1796 s during the actual converter tapping process.  相似文献   

16.
Hordieiev  Yu. S.  Karasik  E. V.  Zaichuk  A. V. 《SILICON》2023,15(2):1085-1091
Silicon - The glass formation region in the MgO–B2O3–SiO2 system was determined by the conventional melt-quenching technique at 1450&nbsp;°C. The homogeneous transparent...  相似文献   

17.
MgO对95Al2O3瓷性能的影响   总被引:2,自引:0,他引:2  
本文研究了添加不同量MgO对提高刚玉瓷耐磨性,抗折强度,硬度,击穿强度等性能的影射,同时在偏光显微下观察其微观结构,讨论了其影响机是,提出了氧化镁的最佳添加范围。  相似文献   

18.
Al2O3–MgO mixed oxides prepared by a co-precipitation method have been used as supports for potassium-promoted iron catalysts for CO2 hydrogenation to hydrocarbons. The catalysts have been characterized by XRD, BET surface area, CO2 chemisorption, TPR and TPDC techniques. The CO2 conversion, the total hydrocarbon selectivity, the selectivities of C2–C4 olefins and C5+ hydrocarbons are found to increase with increase in MgO content upto 20 wt% in Fe–K/Al2O3–MgO catalysts and to decrease above this MgO content. The TPR profiles of the catalysts containing pure Al2O3 and higher (above 20 wt%) MgO content are observed to contain only two peaks, corresponding to the reduction of Fe2O3 to Fe0 through Fe3O4. However, the TPR profile of 20 wt% MgO catalyst exhibits three peaks, which indicate the formation of iron phase through FeO phase. The TPDC profiles show the formation of three types of carbide species on the catalysts during the reaction. These profiles are shifted towards high temperatures with increasing MgO content in the catalyst. The activities of the catalysts are correlated with physico-chemical characteristics of the catalysts. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
Titania (TiO2) was introduced into a model calcium-magnesium aluminosilicate (CMAS) glass in additions of 5-20 wt%. The crystallization behavior of the mixtures was characterized over a series of temperature profiles and compared to that of CMAS alone. X-ray diffraction, differential scanning calorimetry, light and scanning electron microscopy, and energy dispersive spectroscopy were used to characterize glass and crystalline products. Titania additions in the amount of approximately 12.5-20 wt% aided in the formation of CaTiO3 from melts equilibrated at either 1300 or 1500°C and cooled at 10°C/min. Holding CMAS + TiO2 (TiO2 ≥ 10 wt%) at 900°C after cooling from 1300/1500°C resulted in the formation of additional crystalline phases including melilite, paqueite, and diopside. Implications for CMAS interactions with thermal and environmental barrier coatings are discussed.  相似文献   

20.
1IntroductionMgO·Al2 O3spinelisanimportantceramicmaterialextensivelyusedinrefractoriesindustry ,especiallyforapplicationsathightemperaturecriticalareaswherether malshockresistanceandslagpenetrationresistanceareprimaryrequisites[1] .ButlittleinformationaboutMgO·Al2 O3spinelfibershasbeenreportedinliterature .Inthiswork ,itisfoundthatwhenpressedspecimenscomposedofpulverizedMg Al Omaterialwithappropriateoxide metalratioarefiredat 15 0 0℃for 6hoursundercon trolledatmosphere ,MgO·Al2 O3spi…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号