首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Regioselective incorporation of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) into phosphatidylcholine (PC) was carried out using enzymatic and chemical synthesis. Incorporation at the sn‐1 position was successfully achieved by lipase‐catalysed esterification of 2‐palmitoyl‐lysophosphatidylcholine (LPC), although in most cases, the enzymes incorporated EPA and DHA at lower rates than other fatty acids. For the incorporation of DHA, Candida antarctica lipase B was the only useful enzyme, while incorporation of EPA was efficiently carried out using either this enzyme or Rhizopus arrhizus lipase. The highest yields in the lipase‐catalysed reactions were obtained at the lowest water activity (close to 0). However, by carrying out the reactions at a higher water activity of 0.22, more EPA and DHA were incorporated. Esterification of 2‐palmitoyl‐LPC with pure EPA at this water activity converted 66 mol‐% of LPC to PC using Rhizopus arrhizus lipase as catalyst. When the fatty acid was DHA and the catalyst Candida antarctica lipase B, 45 mol‐% of PC was obtained. For incorporation of EPA and DHA at the sn‐2 position, phospholipase A2 was used, but the reaction was very slow. Chemical coupling of 1‐palmitoyl‐LPC and EPA or DHA was more efficient, resulting in complete conversion of LPC.  相似文献   

2.
The objective of this study was to investigate the use of lipases as catalysts for producing concentrates of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) from fish oil as an alternative to conventional chemical procedures. Transesterification of fish oil with ethanol was conducted under anhydrous solvent-free conditions with a stoichiometric amount of ethanol. Among the 17 lipases tested, the results showed that Pseudomonas lipases had the highest activity toward the saturated and monounsaturated fatty acids in the fish oil, much lower activity toward EPA and DHA and, at the same time, good tolerance toward the anhydrous alcoholic conditions. With 10 wt% of lipase, based on weight of the fish oil triacylglycerol substrate (15% EPA and 9% DHA initial content), a 50% conversion into ethyl esters was obtained in 24 h at 20°C, in which time the bulk of the saturated and monounsaturated fatty acids reacted, leaving the long-chain n-3 polyunsaturated fatty acids unreacted in the residual mixture as mono-, di-, and triacylglycerols. This mixture comprised approximately 50% EPA+DHA. Total recovery of DHA and EPA was high, over 80% for DHA and more than 90% for EPA. The observed fatty acid selectivity, favoring DHA as a substrate, was most unusual because most lipases favor EPA.  相似文献   

3.
Guang Liu  Songqing Hu  Lin Li  Yi Hou 《Lipids》2015,50(11):1155-1163
An extracellular lipase (EC 3.1.1.3, AN0512Lip) from Aspergillus niger AN0512 was purified and its characteristics were investigated. After the process of ammonium sulfate precipitation followed by ion‐exchange chromatography and gel filtration, the purified lipase was achieved with 203.6‐fold purification and 22.1 % recovery. AN0512Lip exhibited the highest activity at 50 °C and pH 5.0. It was thermostable and pH‐stable, as indicated by that more than 50 % activity retained at 60 °C for 20 h and more than 90 % activity retained at pH 3.0 for 20 h, respectively. AN0512Lip activity was stimulated by some divalent metal ions (especially Cu2+, Ca2+), while greatly suppressed by EDTA, indicating that AN0512Lip was a metal‐activated enzyme. Moreover, AN0512Lip exhibited high tolerance for various polar organic solvents with log P < 0.8, and the highest lipase activity (476 % of its original activity) was achieved after addition of 90 % (V/V) isopropanol to the reaction mixture. AN0512Lip also displayed 3‐regiospecificity and great affinity for the long‐chain fatty ester. The preliminary test showed that AN0512Lip was a candidate for enriching EPA and DHA in fish oil. All the unique properties, such as thermostability, Cu2+‐dependent, 3‐regiospecificity, and polar organic solvent‐tolerance, indicated that AN0512Lip could have potential applications in the food industry, even in organic synthesis and the pharmaceutical industry.  相似文献   

4.
The objective of this study was to investigate the use of lipases as catalysts for separating eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in fish oil by kinetic resolution. Transesterification of various fish oil triglycerides with a stoichiometric amount of ethanol by immobilized Rhizomucor miehei lipase under anhydrous solvent-free conditions resulted in a good separation. When free fatty acids from the various fish oils were directly esterified with ethanol under similar conditions, greatly improved results were obtained. By this modification, complications related to regioselectivity of the lipase and nonhomogeneous distribution of EPA and DHA into the various positions of the triglycerides were avoided. As an example, when tuna oil comprising 6% EPA and 23% DHA was transesterified with ethanol, 65% conversion into ethyl esters was obtained after 24 h. The residual glyceride mixture contained 49% DHA and 6% EPA (8:1), with 90% DHA recovery into the glyceride mixture and 60% EPA recovery into the ethyl ester product. When the corresponding tuna oil free fatty acids were directly esterified with ethanol, 68% conversion was obtained after only 8h. The residual free fatty acids comprised 74% DHA and only 3% EPA (25:1). The recovery of both DHA into the residual free fatty acid fraction and EPA into the ethyl ester product remained very high, 83 and 87%, respectively.  相似文献   

5.
In an attempt to concentrate the content of DHA (docosahexaenoic acid) in a glyceride mixture containing triglyceride, diglyceride and monoglyceride, fish oil was hydrolyzed with six kinds of microbial lipase. After the hydrolysis, free fatty acid was removed and fatty acid components of the glyceride mixtures were analyzed. When the hydrolysis withCandida cylindracea lipase was 70% complete, the DHA content in the glyceride mixture was three times more than that in the original fish oil. The EPA (eicosapentaenoic acid) content became almost 70% of the original fish oil. Hydrolysis with other lipases did not result in an increase in the DHA content in the glyceride mixtures. Hydrolysis of DHA-rich tuna oil (DHA content is about 25%) withCandida cylindracea lipase resulted in 53% DHA in the glyceride mixture. The EPA content, however, remained close to that of the original tuna oil. In this report, the acyl chain specificity of lipases is evaluated in terms of hydrolysis resistant value (HRV). HRV is the ratio between the DHA contents in the glyceride mixture of hydrolyzed oil and original oil. HRV clearly indicates differences in hydrolysis between DHA and other fatty acids (e.g., saturated and monoenoic acids).  相似文献   

6.
Because of the complexity of marine lipids, polyunsaturated fatty acid (PUFA) derivatives in highly purified form are not easily prepared by any single fractionation technique. The products are usually prepared as the ethyl esters by esterification of the body oil of fat fish species and subsequent physicochemical purification processes, including short-path distillation, urea fractionation, and preparative chromatography. Lipase-catalyzed transesterification has been shown to be an excellent alternative to traditional esterification and short-path distillation for concentrating the combined PUFA-content in fish oils. At room temperature in the presence of Pseudomonas sp. lipase and a stoichiometric amount of ethanol without any solvent, efficient transesterification of fish oil was obtained. At 52% conversion, a concentrate of 46% eicosapentaenoic acid (EPA) plus docosahexaenoic acid (DHA) was obtained in excellent recovery as a mixture of mono-, di-, and triacylglycerols. The latter can be easily separated from the saturated and monounsaturated ethyl esters and converted into ethyl esters either by conventional chemical means or enzymatically by immobilized Candida antarctica lipase. Urea-fractionation of such an intermediary product can give an EPA+DHA content of approximately 85%.  相似文献   

7.
PUFA from oil extracted from Nile perch viscera were enriched by selective enzymatic esterification of the free fatty acids (FFA) or by hydrolysis of ethyl esters of the fatty acids from the oil (FA‐EE). Quantitative analysis was performed using RP‐HPLC coupled to an evaporative light scattering detector (RP‐HPLC‐ELSD). The lipase from Thermomyces lanuginosus discriminated against docosahexaenoic acid (DHA) most, resulting in the highest DHA/DHA‐EE enrichment while lipase from Pseudomonas cepacia discriminated against eicosapentaenoic acid (EPA) most, resulting in the highest EPA/EPA‐EE enrichment. The lipases discriminated between DHA and EPA with a higher selectivity when present as ethyl esters (EE) than when in FFA form. Thus when DHA/EPA were enriched to the same level during esterification and hydrolysis reactions, the DHA‐EE/EPA‐EE recoveries were higher than those of DHA/EPA‐FFA. In reactions catalysed by lipase from T. lanuginosus, at 26 mol% DHA/DHA‐EE, DHA recovery was 76% while that of DHA‐EE was 84%. In reactions catalysed by lipase from P. cepacia, at 11 mol% EPA/EPA‐EE, EPA recovery was 79% while that of EPA‐EE was 92%. Both esterification of FFA and hydrolysis of FA‐EE were more effective for enriching PUFA compared to hydrolysis of the natural oil and are thus attractive process alternatives for the production of products highly enriched in DHA and/or EPA. When there is only one fatty acid residue in each substrate molecule, the full fatty acid selectivity of the lipase can be expressed, which is not the case with triglycerides as substrates.  相似文献   

8.
The regio-isomeric distribution of the omega-3 polyunsaturated fatty acids (PUFA) cis-5,8,11,14,17-eicosapentaenoic acid (EPA) and cis-4,7,10,13,16,19-docosahexaenoic acid (DHA) in the triacylglycerols (TAG) of anchovy/sardine fish oil was determined by 13C nuclear magnetic resonance (NMR) analysis under quantitative conditions. From the measurements of sn-1,3 and sn-2 carbonyl peak areas it was established that EPA was mainly located in the sn-1,3 positions, whereas DHA primarily occupied the sn-2 position. Reconstituted TAG prepared by Candida antarctica lipase-B (CALB) glycerolysis of the ethyl ester (EE) or the free fatty acid (FFA) forms of anchovy/sardine fish oil, displayed a different pattern: EPA was equally distributed, while DHA was preferentially attached to the sn-1,3 positions. TAG concentrates of varying EPA and DHA molar fractions were prepared by CALB-catalyzed glycerolysis of the corresponding EE and FFA. 13C-NMR analysis of the purified products revealed a lack of CALB regioselectivity for EPA and a slight sn-1,3 regioselectivity for DHA. Since this pattern was observed in all cases of this study, it was concluded that the lipase regioselectivity during TAG synthesis is independent of both the acyl donor type (carboxylic acid or ester) and the fatty acid content of the oil substrate.  相似文献   

9.
The aim of this study was to determine whether eicosapentaenoic acid (EPA) or docosahexaenoic acid (DHA), or both, were responsible for the triglyceride (TG)-lowering effects of fish oil. EPA (91% pure) and DHA (83% pure), a fish oil concentrate (FOC; 41% EPA and 23% DHA) and an olive oil (OO) placebo (all ethyl esters) were tested. A total of 49 normolipidemic subjects participated. Each subject was given placebo for 2–3 wk and one of the n-3 supplements for 3 wk in randomized, blinded trials. The target n-3 fatty acid (FA) intake was 3 g/day in all studies. Blood samples were drawn twice at the end of each supplementation phase and analyzed for lipids, lipoproteins, and phospholipid FA composition. In all groups, the phospholipid FA composition changed to reflect the n-3 FA given. On DHA supplementation, EPA levels increased to a small but significant extent, suggesting that some retroconversion may have occurred. EPA supplementation did not raise DHA levels, however, FOC and EPA produced significant decreases in both TG and very low density lipoprotein (VLDL) cholesterol (C) levels (P<0.01) and increases in low density lipoprotein (LDL) cholesterol levels (P<0.05). DHA supplementation did not affect cholesterol, triglyceride, VLDL, LDL, or high density lipoprotein (HDL) levels, but it did cause a significant increase in the HDL2/HDL3 cholesterol ratio. We conclude that EPA appears to be primarily responsible for TG-lowering (and LDL-C raising) effects of fish oil.  相似文献   

10.
The fatty acid specificity of four lipases towards eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) was evaluated when performing ethanolysis of squid oil. During the first part of ethanolysis, no DHA ethyl esters were detected when using the lipases from Thermomyces lanuginosus, Pseudomonas cepacia or Pseudomonas fluorescens (in the case of the second and third lipases, no EPA ethyl esters were detected either). This indicates that these three lipases could not catalyse the conversion of DHA located in a triacylglycerol to ethyl ester, and that the Pseudomonas lipases could not catalyse the conversion of EPA either. This pattern was not found for the lipase from Rhizomucor miehei. The lipase from Thermomyces lanuginosus showed the lowest specificity towards DHA and the highest DHA recovery during DHA enrichment in the acylglycerol fraction. It was thus used to catalyse the ethanolysis of squid oil on a larger scale. The ethyl esters formed were removed using short‐path distillation, resulting in a product containing mainly mono‐ and diacylglycerols. The product contained 34 mol‐% DHA and 17 mol‐% EPA, compared with 19 mol‐% DHA and 12 mol‐% EPA in the original squid oil.  相似文献   

11.
Lipase-catalyzed enrichment of long-chain polyunsaturated fatty acids   总被引:4,自引:13,他引:4  
Lipase hydrolysis was evaluated as a means of selectively enriching long-chain ω3 fatty acids in fish oil. Several lipases were screened for their ability to enrich total ω-3 acids or selectively enrich either docosahexaenoic acid (DHA) or eicosapentaenoic acid (EPA). The effect of enzyme concentration, degree of hydrolysis, and fatty acid composition of the feed oil was studied. Because the materials that were enriched in long-chain ω3 acids were either partial glycerides or free fatty acids, enzymatic reesterification of these materials to triglycerides by lipase catalysis was also investigated. Hydrolysis of fish oil by eitherCandida rugosa orGeotrichum candidum lipases resulted in an increase in the content of total ω3 acids from about 30% in the feed oil to 45% in the partial glycerides. The lipase fromC. rugosa was effective in selectively enriching either DHA or EPA, resulting in a change of either the DHA/EPA ratio or the EPA/DHA ratio from approximately 1:1 to 5:1. Nonselective reesterification of free fatty acids or partial glycerides that contained ω3 fatty acids could be achieved at high efficiency (approximately 95% triglycerides in the product) by using immobilizedRhizomucor miehei lipase with continuous removal of water.  相似文献   

12.
The aim of the present study was to investigate whether eicosapentaenoic acid (EPA) or docosahexaenoic acid (DHA) was responsible for the triglyceride-lowering effect of fish oil. In rats fed a single dose of EPA as ethyl ester (EPA-EE), the plasma concentration of triglycerides was decreased at 8 h after acute administration. This was accompanied by an increased hepatic fatty acid oxidation and mitochondrial 2,4-dienoyl-CoA reductase activity. The steady-state level of 2,4-dienoyl-CoA reductase mRNA increased in parallel with the enzyme activity. An increased hepatic long-chain acyl-CoA content, but a reduced amount of hepatic malonyl-CoA, was obtained at 8 h after acute EPA-EE treatment. On EPA-EE supplementation, both EPA (20:5n-3) and docosapentaenoic acid (DPA, 22:5n-3) increased in the liver, whereas the hepatic DHA (22:6n-3) concentration was unchanged. On DHA-EE supplementation retroconversion to EPA occurred. No statistically significant differences were found, however, for mitochondrial enzyme activities, malonyl-CoA, long-chain acyl-CoA, plasma lipid levels, and the amount of cellular fatty acids between DHA-EE treated rats and their controls at any time point studied. In cultured rat hepatocytes, the oxidation of [1-14C]palmitic acid was reduced by DHA, whereas it was stimulated by EPA. In thein vivo studies, the activities of phosphatidate phosphohydrolase and acetyl-CoA carboxylase were unaffected after acute EPA-EE and DHA-EE administration, but the fatty acyl-CoA oxidase, the rate-limiting enzyme in peroxisomal fatty acid oxidation, was increased after feeding these n-3 fatty acids. The hypocholesterolemic properties of EPA-EE may be due to decreased 3-hydroxy-3-methylglutaryl-CoA reductase activity. Furthermore, replacement of the ordinary fatty acids, i.e., the monoenes (16:1n-7, 18:1n-7, and 18:1n-9) with EPA and some conversion to DPA concomitant with increased fatty acid oxidation is probably the mechanism leading to changed fatty acid composition. In contrast, DHA does not stimulate fatty acid oxidation and, consequently, no such displacement mechanism operates. In conclusion, we have obtained evidence that EPA, and not DHA, is the fatty acid primarily responsible for the triglyceride-lowering effect of fish oil in rats.  相似文献   

13.
郑毅  郑楠  吴松刚 《化工学报》2006,57(2):353-358
采用吸附与交联相结合的方法固定化米曲霉脂肪酶.脂肪酶固定化的参数条件:载体为硅藻土、吸附温度为25℃、吸附时间为6 h、pH值为7.0 KH2PO4-NaOH缓冲液、缓冲液离子强度为0.03 mol&#8226;L-1、给酶量为900 U&#8226;(g硅藻土)-1、交联剂为0.5%戊二醛、交联的时间为1.5 h,所得固定化酶酶活力为247 U&#8226;(g载体)-1,蛋白载量为25 mg&#8226;(g硅藻土)-1,水解鱼油操作半衰期为264 h.固定化脂肪酶富集鱼油中ω-3多不饱和脂肪酸甘油酯的最适条件是:温度38 ℃、油水比为1∶1、加酶量为150U&#8226;(g油)-1、反应转速为200 r&#8226;min-1、最佳富集时间为24 h.在此工艺条件下鱼油中EPA由3.0%提高到7.0%,DHA由4.3%提高到14.5%,EPA+DHA由7.3%提高到21.5%.  相似文献   

14.
The objective of this study was to investigate the use of lipases as catalysts for separating EPA and DHA in fish oil by kinetic resolution based on their FA selectivity. Esterification of FFA from various types of fish oils with glycerol by immobilized Rhizomucor miehei lipase under water-deficient, solvent-free conditions resulted in a highly efficient separation of EPA and DHA. Reactions were conducted at 40°C with a 10% dosage of the lipase preparation under vacuum to remove the coproduced water, thus rapidly shifting the reaction toward the products. The bulk of the FA, together with EPA, were converted into acylglycerols, whereas DHA remained in the residual FFA. As an example, when FFA from tuna oil comprising 5% EPA and 25% DHA were esterified with glycerol, 90% conversion into acylglycerols was obtained after 48 h. The residual FFA contained 78% DHA and only 3% EPA, in 79% DHA recovery. EPA recovery in the acylglycerol fraction was 91%. The type of fish oil and extent of conversion were highly important parameters in controlling the degree of concentration.  相似文献   

15.
Decreased triacylglycerol synthesis within hepatocytes due to decreased diacylglycerol acyltransferase (DGAT) activity has been suggested to be an important mechanism by which diets rich in fish oil lower plasma triacylglycerol levels. New findings suggest that eicosapentaenoic acid (EPA), and not docosahexaenoic acid (DHA), lowers plasma triacylglycerol by increased mitochondrial fatty acid oxidation and decreased availability of fatty acids for triacylglycerol synthesis. To contribute to the understanding of the triacylglycerol-lowering mechanism of fish oil, the different metabolic properties of EPA and DHA were studied in rat liver parenchymal cells and isolated rat liver organelles. EPA-CoA was a poorer substrate than DHA-CoA for DGAT in isolated rat liver microsomes, and in the presence of EPA, a markedly lower value for the triacyl[3H]glycerol/diacyl[3H]glycerol ratio was observed. The distribution of [1-14C]palmitic acid was shifted from incorporation into secreted glycerolipids toward oxidation in the presence of EPA (but not DHA) in rat liver parenchymal cells. [1-14C]EPA was oxidized to a much greater extent than [1-14C]DHA in rat liver parenchymal cells, isolated peroxisomes, and especially in purified mitochondria. As the oxidation of EPA was more effective and sensitive to the CPT-I inhibitor, etomoxir, when measured in a combination of both mitochondria and peroxisomes, we hypothesized that both are involved in EPA oxidation, whereas DHA mainly is oxidized in peroxisomes. In rats, EPA treatment lowered plasma triacylglycerol and increased hepatic mitochondrial fatty acid oxidation and carnitine palmitoyltransferase (CPT)-I activity in both the presence and absence of malonyl-CoA. Whereas only EPA treatment increased the mRNA levels of CPT-I, DHA treatment increased the mRNA levels of peroxisomal fatty acyl-CoA oxidase and fatty acid binding protein more effectively than EPA treatment. In conclusion, EPA and DHA affect cellular organelles in relation to their substrate preference. The present study strongly supports the hypothesis that EPA, and not DHA, lowers plasma triacylglycerol by increased mitochondrial fatty acid oxidation.  相似文献   

16.
Free fatty acids from fish oil were prepared by saponification of menhaden oil. The resulting mixture of fatty acids contained ca. 15% eicosapentaenoic acid (EPA) and 10% docosahexaenoic acid (DHA), together with other saturated and monounsaturated fatty acids. Four commercial lipases (PS from Pseudomonas cepacia, G from Penicillium camemberti, L2 from Candida antarctica fraction B, and L9 from Mucor miehei) were tested for their ability to catalyze the esterification of glycerol with a mixture of free fatty acids derived from saponified menhaden oil, to which 20% (w/w) conjugated linoleic acid had been added. The mixtures were incubated at 40°C for 48h. The ultimate extent of the esterification reaction (60%) was similar for three of the four lipases studied. Lipase PS produced triacylglycerols at the fastest rate. Lipase G differed from the other three lipases in terms of effecting a much slower reaction rate. In addition, the rate of incorporation of omega-3 fatty acids when mediated by lipase G was slower than the rates of incorporation of other fatty acids present in the reaction mixture. With respect to fatty acid specificities, lipases PS and L9 showed appreciable discrimination against esterification of EPA and DHA, respectively, while lipase L2 exhibited similar activity for all fatty acids present in the reaction mixture. The positional distribution of the various fatty acids between the sn-1,3 and sn-2 positions on the glycerol backbone was also determined.  相似文献   

17.
Camelina oil (CO) replaced 50 and 100 % of fish oil (FO) in diets for farmed rainbow trout (initial weight 44 ± 3 g fish?1). The oilseed is particularly unique due to its high lipid content (40 %) and high amount of 18:3n‐3 (α‐linolenic acid, ALA) (30 %). Replacing 100 % of fish oil with camelina oil did not negatively affect growth of rainbow trout after a 12‐week feeding trial (FO = 168 ± 32 g fish?1; CO = 184 ± 35 g fish?1). Lipid and fatty acid profiles of muscle, viscera and skin were significantly affected by the addition of CO after 12 weeks of feeding. However, final 22:6n‐3 [docosahexaenoic acid (DHA)] and 20:5n‐3 [eicosapentaenoic acid (EPA)] amounts (563 mg) in a 75 g fillet (1 serving) were enough to satisfy daily DHA and EPA requirements (250 mg) set by the World Health Organization. Other health benefits include lower SFA and higher MUFA in filets fed CO versus FO. Compound‐specific stable isotope analysis (CSIA) confirmed that the δ13C isotopic signature of DHA in CO fed trout shifted significantly compared to DHA in FO fed trout. The shift in DHA δ13C indicates mixing of a terrestrial isotopic signature compared to the isotopic signature of DHA in fish oil‐fed tissue. These results suggest that ~27 % of DHA was synthesized from the terrestrial and isotopically lighter ALA in the CO diet rather than incorporation of DHA from fish meal in the CO diet. This was the first study to use CSIA in a feeding experiment to demonstrate synthesis of DHA in fish.  相似文献   

18.
Five groups of salmon, of initial mean weight 127±3 g, were fed increasing levels of dietary linseed oil (LO) in a regression design. The control diet contained capelin oil (FO) only, and the same oil was blended with LO to provide the experimental diets. After an initial period of 40 wk, all groups were switched to a finishing diet containing only FO for a further 24 wk. Growth and flesh lipid contents were not affected by dietary treatment. The FA compositions of flesh total lipids were linearly correlated with dietary FA compositions (r 2=0.88–1.00, P<0.0001). LO included at 50% of added dietary lipids reduced flesh DHA and EPA (20∶5n−3) concentrations to 65 and 58%, respectively, of the concentrations in fish fed FO. Feeding 100% LO reduced flesh DHA and EPA concentrations to 38 and 30%, respectively, of the values in fish fed FO. Differences between diet and flesh FA concentrations showed that 16∶0, 18∶1n−9, and especially DHA were preferentially retained in flesh, whereas 18∶2n−6, 18∶3n−3, and 22∶1n−11 were selected against and presumably utilized for energy. In fish previously fed 50 and 100% LO, feeding a finishing diet containing FO for 16 wk restored flesh DHA and EPA concentrations, to ≈80% of the values in fish fed FO throughout. Flesh DHA and EPA concentrations in fish fed up to 50% LO were above recommended intake values for humans for these EFA. This study suggests that LO can be used as a substitute for FO in seawater salmon feeds and that any reductions in DHA and EPA can be largely overcome with a finishing diethigh in FO before harvest.  相似文献   

19.
Ischemia/reperfusion (I/R) injury can occur in consequence of myocardial infarction, stroke and multiple organ failure, the most prevalent cause of death in critically ill patients. I/R injury encompass impairment of endothelial dependent relaxation, increase in macromolecular permeability and leukocyte‐endothelium interactions. Polyunsaturated fatty acids (n‐3 PUFA), such as eicosapentaenoic acid (EPA, 20:5n‐3) and docosahexaenoic acid (DHA, 22:6n‐3) found in fish oil have several anti‐inflammatory properties and their potential benefits against I/R injury were investigated using the hamster cheek pouch preparation before and after ischemia. Before the experiments, hamsters were treated orally with saline, olive oil, fish oil and triacylglycerol (TAG) and ethyl ester (EE) forms of EPA and DHA at different daily doses for 14 days. Fish oil restored the arteriolar diameter to pre ischemic values during reperfusion. At onset and during reperfusion, Fish oil and DHA TAG significantly reduced the number of rolling leukocytes compared to saline and olive oil treatments. Fish oil, EPA TAG and DHA TAG significantly prevented the rise on leukocyte adhesion compared to saline. Fish oil (44.83 ± 3.02 leaks/cm2), EPA TAG (31.67 ± 2.65 leaks/cm2), DHA TAG (41.14 ± 3.63 leaks/cm2), and EPA EE (30.63 ± 2.25 leaks/cm2), but not DHA EE (73.17 ± 2.82 leaks/cm2) prevented the increase in macromolecular permeability compared to saline and olive oil (134.80 ± 1.49 and 121.00 ± 4.93 leaks/cm2, respectively). On the basis of our findings, we may conclude that consumption of n‐3 polyunsaturated fatty acids, especially in the triacylglycerol form, could be a promising therapy to prevent microvascular damage induced by ischemia/reperfusion and its consequent clinical sequelae.  相似文献   

20.
Structured triacylglycerols with caprylic acid at the sn‐1 and sn‐3 positions of the glycerol backbone and eicosapentaenoic acid (EPA) at the position sn‐2 were synthesised by acidolysis of a commercially available EPA‐rich oil (EPAX4510, Pronova Biocare) and caprylic acid catalysed by the 1,3‐specific immobilised lipase Lipozyme IM. The reaction was carried out in an immobilised lipase packed‐bed reactor by recirculating the reaction mixture through the bed. The exchange equilibrium constants between caprylic acid and the native fatty acids of EPAX4510 were determined. The n‐3 polyunsaturated fatty acids (PUFAs), EPA and docosohexaenoic acid (DHA), were the most easily displaced by the caprylic acid. The exchange equilibrium constants were 3.68 and 3.06 for EPA and DHA, respectively. The influence of the flow rate of the reaction mixture through the packed‐bed and the substrate concentration in the reaction rate were studied. For flow rates between 74 and 196 cm3 h?1 (bed of 6.6 mm internal diameter and 0.46 porosity) and triacylglycerol concentrations between 0.036 and 0.108 M , the data fitted well to an empirical kinetic model which allowed representative values of the apparent kinetic constant to be obtained. Hence, the average reaction rates and kinetic constants of exchange of caprylic acid and native fatty acids of EPAX4510 could be calculated. In the conditions indicated, the parameter (lipase mass × time/triacylglycerol mass, mLt/V[TG]0) constituted the intensive variable of the process for use in predicting the composition of structured triacylglycerols at different reaction times. At equilibrium, the structured triacylglycerol produced had the following composition: caprylic acid 59.5%, EPA 9.6%, DHA 2.2% and oleic acid 11.8%. Copyright © 2004 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号