首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND: A simple and quick on‐site test for trace levels of cadmium (Cd) in food is needed because of the human toxicity of this heavy metal. We developed an immunochromatography kit which uses the antigen‐antibody complex reaction between the Cd–ethylenediaminetetraacetic acid (Cd–EDTA) complex and an anti‐Cd–EDTA antibody. We previously reported the successful use of this kit to determine Cd concentrations in brown rice with respect to the international standard: 0.4 mg kg?1. Here, we measured, using this immunochromatography kit, Cd concentrations in crops with lower international standards than rice. RESULTS: Cadmium extracted with 0.1 mol L?1 HCl from wheat grain and fresh eggplant was purified sufficiently using an ion‐exchange column treatment. Appropriate HCl extraction rates and dilution rates for the column eluate were selected; Cd concentrations in wheat grain and fresh eggplant were determined successfully by immunochromatography with respect to the international standards of 0.2 mg kg?1 and 0.05 mg kg?1 fresh weight, respectively. CONCLUSION: Approximate Cd concentrations in wheat grain and fresh eggplant can be monitored easily and quickly by this method at locations where facilities for acid digestion and precision analysis are not available. Copyright © 2011 Society of Chemical Industry  相似文献   

2.
BACKGROUND: In most parts of Pakistan, untreated city effluent is utilised for growing vegetables around large urban settlements such as Faisalabad. Farmers use it as a source of irrigation water and plant nutrients. However, its continuous use may have serious environmental implications, since it also contains heavy metals. In this study the Faisalabad city effluent was examined for irrigation quality and its impact on irrigated soils and vegetables. RESULTS: Irrigation hazard of the effluent was moderate (electrical conductivity (EC) 1.1–1.7 dS m?1, Sodium adsorption ratio (SAR) 5.9–17.4 mmol1/2 L?1/2, Residual sodium carbonate (RSC) 1.0–2.1 mmolc L?1) at site 1 and strong (EC 3.7–4.1 dS m?1, SAR 16.1–21.8 mmol1/2 L?1/2, RSC 4.0–9.1 mmolc L?1) at site 2. Mean concentrations of ammonium bicarbonate/diethylene triamine pentaacetic acid (AB/DTPA)‐extractable Cd, Co and Mn at upper soil depth (0.0–0.2 m) were respectively 0.080, 0.057 and 217.4 mg kg?1 at site 1 and 0.101, 0.076 and 164.1 mg kg?1 at site 2. CONCLUSION: The concentrations of Cd and Mn were above the permissible limits but that of Co was below the permissible limit for irrigation. The concentrations of Cd, Co and Mn tended to decrease with increasing soil depth. Accumulation of metals was higher in leaves irrespective of whether leaves were the edible or non‐edible component of shoots. Use of untreated city effluent for irrigation without risk assessment and management could be a serious hazard, impacting soil and crop quality and ultimately human health. Copyright © 2007 Society of Chemical Industry  相似文献   

3.
BACKGROUND: Quantitative data about phytoavailability and transfer into consumed plant parts for heavy metals in intensively managed urban vegetable production areas of sub‐Saharan Africa are scarce. We therefore studied the transfer of zinc (Zn) and cadmium (Cd) from soil to the root and subsequent translocation to edible portions of four vegetables in six urban gardens. RESULTS: While respective diethylenetriaminepentaacetic acid (DTPA)‐available Zn and Cd concentrations ranged from 18 to 66 mg kg?1 and from 0.19 to 0.35 mg kg?1, respectively, in soils, total Zn and Cd were 8.4–256 mg kg?1 and 0.04–1.7 mg kg?1 in shoot parts. Metal transfer factor (MTF) ratios were higher in Zn (0.2–0.9) than in Cd (0.1–0.6). Our data suggest that total Zn concentration in soil is a reliable indicator to assess its transfer from soil to crop in lettuce, carrot and parsley, while for Cd DTPA‐extractable concentration may be used to estimate soil–crop transfer of Cd in amaranthus and carrot. Overall, Cd was more easily translocated to the aerial plant parts than Zn. CONCLUSION: Zinc and Cd accumulation by vegetables in our soils is mainly a metabolically controlled process. Such accumulation can contaminate the ecosystem but under our conditions intake and ingestion of these metals will likely have to occur over a prolonged period to experience health hazard. Copyright © 2011 Society of Chemical Industry  相似文献   

4.
BACKGROUND: Aflatoxins are a group of mycotoxins that cause serious chronic disease outbreaks and contaminate several food products such as corn and its by‐product, corn gluten. The aim of the current study was to evaluate the effect of hydrochloric acid (HCl) on aflatoxin B1 (AFB1) degradation in contaminated corn gluten under different HCl concentrations, hydrolysis temperatures and hydrolysis times. RESULTS: During the wet milling process the highest AFB1 level (45.68 µg kg?1) (37.86%) was found in corn gluten fraction. Treatment with 1 mol L?1 HCL at 110 °C resulted in degradation of AFB1 by 27.6% (33.07 µg kg?1) after 4 h and reached 42.5% (26.26 µg kg?1) after 8 h. Increasing HCl concentration from 1 to 3 mol L?1 HCl resulted in increased degradation of AFB1, while complete degradation occurred in the presence of 5 mol L?1 HCl after 4 h at 110 °C. Meanwhile, half‐life time of AFB1 was recorded after 2 h at 100 °C and was < 2 h at 110 °C in the presence of 3 mol L?1 HCl. CONCLUSION: It could be demonstrated that the manufacture of hydrolyzed vegetable protein is a suitable method for decontamination of aflatoxin in highly contaminated grains, especially gluten fractions. The hydrolysis reaction could be considered in terms of first‐order reaction kinetics of AFB1 degradation. Copyright © 2010 Society of Chemical Industry  相似文献   

5.
BACKGROUND: An immature wheat spike culture system was used to monitor cadmium (Cd) accumulation in grains, hulls and awns of bread wheat and durum wheat. Immature spikes were cultured prior to anthesis in a medium containing 50 g L?1 sucrose and 0.4 g L?1 L ‐glutamine, supplemented with 0, 0.1, 0.5, 1, 2, 3, 4, 5, 10, 15, 20 or 25 mg L?1 cadmium chloride (CdCl2). Grains were collected at maturity and their Cd accumulation was determined using inductively coupled plasma mass spectrometry (ICP‐MS). RESULTS: Cd accumulation at CdCl2 concentrations of 3 mg L?1 and above was higher in grains of durum wheat compared with bread wheat. In hulls a similar trend was observed at CdCl2 concentrations above 15 mg L?1. Starch concentration in grains increased slightly at 3 and 4 mg L?1 CdCl2. Cd accumulation negatively affected grain protein concentration. Expression patterns of Cd‐related genes glutathione reductase (TaGR), metallothionein (MT) and phytochelatin synthase (PCS) in spikes cultured in media containing 0, 5, 10, 15 and 25 mg L?1 CdCl2 at 5 days post‐anthesis showed that TaGR and PCS expression in bread wheat was up‐regulated at 5 mg L?1 CdCl2 but down‐regulated at other CdCl2 concentrations. However, in durum wheat, expression of all three genes was down‐regulated or remained unchanged. CONCLUSION: This study demonstrates that immature spike culture can be used to study Cd accumulation in grains and can delineate hyper‐accumulating durum wheat from bread wheat at CdCl2 concentrations of 2 mg L?1 and above. Copyright © 2011 Society of Chemical Industry  相似文献   

6.
A pot trial was conducted with 52 rice cultivars of different types collected from different origins. The results showed that there were great differences in Cd concentrations in straw, brown rice and grain chaff among the rice cultivars grown in a soil containing a Cd concentration of 100 mg kg?1; the Cd concentrations in brown rice ranged from 0.22 to 2.86 mg kg?1. The great genotypic differences in Cd concentrations indicated that it is possible to lower the Cd content of rice through cultivar selection and breeding. Significant differences were found in the Cd concentrations of the rice types of Indica consanguinity and those of Japonica consanguinity, but not between their origins. There were significant correlations between straw and brown rice in Cd concentration and in the total amount of Cd accumulated. The distribution ratios of the Cd accumulated in brown rice to the total Cd accumulation in the above‐ground rice plant varied greatly from 12.9 to 137.8 g kg?1, and there was significant correlation between the distribution ratios and Cd concentrations in brown rice. These indicated that Cd concentration in rice grain is governed by the transport of Cd from root to shoot and also from shoot to grain. Cd concentrations in brown rice also correlated significantly with some important agronomic traits, as well as with nitrogen concentrations, one of the most important criteria for rice quality. Copyright © 2004 Society of Chemical Industry  相似文献   

7.
8.
BACKGROUND: Rice is the most important staple food in Asia but has also been identified as one of the major sources of cadmium (Cd) intakes for some Asian population. This study investigated whether grain yield could be maintained but Cd in grains be reduced through proper irrigation management when rice was grown in Cd‐contaminated soil. RESULTS: Compared to the well watered treatment, the alternate wetting and moderate soil drying (MD, re‐watered when soil water potential decreased to ?20 kPa) increased grain yield by 10–12% and improved milling and appearance quality of rice when grown in a soil containing a water‐soluble Cd content of 18 g kg?1. An alternate wetting and severe soil drying (SD, re‐watered when soil water potential decreased to ?40 kPa) showed an opposite effect. Both MD and SD significantly increased Cd content in roots while they reduced it in the straw. MD reduced Cd content by 19–21% in the grain and by 40% in milled rice. The SD significantly increased Cd content in the grain but reduced it in milled rice. CONCLUSION: An alternate wetting and moderate soil drying could increase rice yield and quality and also reduce Cd in the diet of rice. Copyright © 2009 Society of Chemical Industry  相似文献   

9.
BACKGROUND: Fumonisins are a group of naturally occurring mycotoxins produced by various Fusarium species that commonly infect maize and other cereals, including sorghum and rice. In this study a sensitive and selective method was developed for the determination of fumonisins B1 and B2 (FB1 and FB2) in Chinese rice wine. The method is based on high‐performance liquid chromatography and fluorescence detection following precolumn derivatisation with 6‐aminoquinolyl‐N‐hydroxysuccinimidyl carbamate (AQC). RESULTS: FB1 and FB2 in Chinese rice wine were extracted and purified using strong anion exchange cartridges and derivatised with AQC at room temperature. The AQC derivatives were stable for 5 days. Optimal fluorescence was obtained at an excitation wavelength of 246 nm and an emission wavelength of 390 nm. Chromatography was performed using a C18 column and gradient elution at 1 mL min?1 with methanol and 0.05 mol L?1 phosphate buffer at pH 4. The limit of detection was 6 µg L?1 for both FB1 and FB2. The method was successfully applied to the determination of FB1 and FB2 in Chinese rice wine, with recoveries of 87.5–94.5% being obtained. CONCLUSION: The established method was stable and sensitive for the determination of FB1 and FB2 in Chinese rice wine. © 2012 Society of Chemical Industry  相似文献   

10.
Hydrostatic pressure (HP) and heat treatments of myofibrillar proteins have both been shown to induce protein denaturation, but different gel formation properties result from these treatments. To characterise differences in the properties of proteins resulting from HP or heat treatment, Ca‐ and Mg‐ATPase activities (ATP, adenosine triphosphate) and protein solubility in 0.1 and 0.6 mol L?1 KCl buffers (pH 7) were evaluated in this study. The inactivation rate of Ca‐ATPase of myofibrillar proteins (Mf) induced by HP was slower than that of Mg‐ATPase at each of the tested pressures. However, the inactivation rate of Ca‐ATPase induced by heating was faster than that of Mg‐ATPase at each of the tested temperatures. The level of soluble proteins in Mf suspension induced by HP in 0.1 mol L?1 KCl buffer increased with increasing pressure up to 400 MPa and then decreased slightly at 500 MPa. However, the level of soluble proteins in Mf suspension induced by heat treatment in 0.1 mol L?1 KCl buffer increased with increasing temperature up to 55°C. According to the results of sodium dodecyl sulfate polyacrylamide gel electrophoresis, the levels of soluble myosin heavy chain and actin in Mf suspension induced by HP in 0.6 mol L?1 KCl buffer decreased simultaneously at pressures higher than 300 MPa. The level of soluble MHC in 0.6 mol L?1 KCl buffer decreased gradually with increasing temperature, but there were no changes in the level of soluble actin in 0.6 mol L?1 KCl buffer with increasing temperature up to 50°C. These results showed that the mechanism of HP‐induced protein denaturation was different from the mechanism underlying heat‐induced protein denaturation. Copyright © 2006 Society of Chemical Industry  相似文献   

11.
BACKGROUND: Salinity is one of the most serious constraints facing agriculture today. Some mechanical, chemical and biological approaches are being pursued to cope with soil salinity. Although exogenously treated mammalian sex hormones (MSHs), progesterone, β‐estradiol and androsterone, activate significant effects in various biological aspects in plants growing under normal conditions, there is no report investigating their effects on plants growing under salt stress. The present study aimed to investigate whether MSHs could alleviate the destructive effect of salt stress on wheat seedlings and thereby increase their salt tolerance. Wheat leaves were sprayed with 10?6, 10?8 and 10?10 mol L?1 concentrations of MSH on the ninth day after sowing. MSH‐treated seedlings (10‐day‐old seedlings) were subjected to salt stress for 5 days (between days 10 and 15). RESULTS: At all the concentrations tested, MSH treatment provided a significant protection against to detrimental effects of salt stress in wheat seedlings. It improved dry weight, sugar, proline, protein, chlorophyll and glutathione contents in comparison to salinity alone. Similarly, superoxide dismutase, peroxidase, catalase, ascorbate peroxidase and nitrate reductase activities also were augmented by MSH treatment. On the other hand, increases in lipid peroxidation level, superoxide production and hydrogen peroxide content arising from salt treatment were reduced by MSH treatment. The highest salt tolerance was obtained at the concentrations of 10?6 mol L?1 for progesterone and 10?8 mol L?1 for β‐estradiol and for androsterone. CONCLUSION: MSHs could be used effectively to protect wheat seedlings from the destructive effects of salt stress by stimulating both enzymatic and non‐enzymatic antioxidant mechanism and by promoting levels of osmotic protectants such as proline and sugars resulting in osmotic adjustment, carbon storage and radical scavenging in plants. Copyright © 2011 Society of Chemical Industry  相似文献   

12.
BACKGROUND: Acids are often used for deamidating proteins, but the literature on acetic acid deamidation of proteins is sparse. Previous research on acetic acid‐induced modification of proteins has focused on peptide proteolysis by relatively high concentrations of acetic acid (>1.5 mol L?1) rather than on the accompanying effect of deamidation. Therefore the objective of this study was to determine the deamidation effect of acetic acid with as little peptide proteolysis as possible by employing low‐concentration acetic acid (<0.05 mol L?1) to deamidate wheat gluten. Changes in surface hydrophobicity, conformation, functional properties and nutritional characteristics of acetic acid‐modified samples were determined and compared with those of hydrochloric acid (HCl)‐modified samples. RESULTS: At similar degree of deamidation and nitrogen solubility index, samples deamidated with acetic acid showed less destruction of peptides bandings, better foaming properties and a more decompacted form (lower S? S content in protein as determined by Raman spectroscopy) than those deamidated with HCl and also exhibited improved emulsification capacity and emulsion stability compared with native wheat gluten. Acetic acid deamidation led to fewer changes in peptide molecular size and secondary structure of wheat gluten compared with HCl deamidation according to the results of sodium dodecyl sulfate polyacrylamide gel electrophoresis and Fourier transform infrared spectroscopy respectively. Amino acid analysis revealed that the nutritional characteristics of wheat gluten were well maintained after deamidation with acetic acid. CONCLUSION: The results show that low‐concentration acetic acid can modify wheat gluten mainly by deamidation, resulting in deamidated wheat gluten with good functional and nutritional properties. Copyright © 2009 Society of Chemical Industry  相似文献   

13.
BACKGROUND By‐products generated during the processing of plant food can be considered a promising source of dietary fibre as a functional compound. The dietary fibre composition, soluble sugars and antioxidant activity of the extractable polyphenols of pea and broad bean by‐products have been analysed in this study. RESULTS: Total dietary fibre using AOAC methods plus hydrolysis (broad bean pod: 337.3 g kg?1; pea pod: 472.6 g kg?1) is higher (P < 0.05) in both by‐products than with the Englyst method (broad bean pod: 309.7 g kg?1; pea pod: 434.6 g kg?1). The main monomers are uronic acids, glucose, arabinose and galactose in broad bean pods. However, pea pods are very rich in glucose and xylose. The soluble sugars analysed by high‐performance liquid chromatography in both by‐products have glucose as the most important component, followed by sucrose and fructose. The ferric reducing antioxidant power (broad bean pod: 406.4 µmol Trolox equivalents g?1; pea pod: 25.9 µmol Trolox equivalents g?1) and scavenging effect on 2,2‐diphenyl‐1‐picrylhydrazyl radical (EC50 of broad bean pod: 0.4 mg mL?1; EC50 of pea pod: 16.0 mg mL?1) were also measured. CONCLUSIONS: Broad bean and pea by‐products are very rich in dietary fibre, particularly insoluble dietary fibre and their extractable polyphenols demonstrate antioxidant activity. Therefore they might be regarded as functional ingredients. Copyright © 2011 Society of Chemical Industry  相似文献   

14.
BACKGROUND: To provide information concerning the geographical distribution of selenium (Se) in the soils of Scotland, we analysed 47 arable soils selected on the basis of their parent rock, which were expected to have relatively high, low or unclassified Se concentrations. To investigate relationships between the actual minerals in the soils and the aqua regia extractable Se concentration of the soil, soil minerals were quantified by X‐ray diffraction. RESULTS: The aqua regia extractable Se concentrations of the soils were between 0.19 and 1.46 mg kg?1. No simple correlation between the aqua regia extractable Se concentrations of the soil and the parent rock classification estimated by soil survey was evident. Partial least squares analysis revealed that the aqua regia extractable Se concentration of the soils was positively related to loss on ignition (LOI) or C concentration and negatively related to the K‐feldspar concentration, with other minerals being less important. CONCLUSION: The Se concentration of arable topsoils from Scotland is more related to LOI or carbon concentration, with parent material being less important. Copyright © 2010 Society of Chemical Industry  相似文献   

15.
BACKGROUND: The time course of polyphenol oxidase (PPO) activity in the leaves of two olive cultivars (Picual and FS‐17) irrigated with nutrient solutions differing in Mn concentration (0, 2 and 1280 µmol L?1) was studied under hydroponic conditions to determine whether PPO activity could be used as an early criterion of Mn status of olive plants, and to elucidate whether genotypic differences exist between the two olive cultivars studied, concerning the effect of Mn concentration on PPO activity. RESULTS: In all the Mn treatments, PPO activity was greater in Picual than in FS‐17. Under excess Mn (1280 µmol L?1), PPO activity gradually increased with time, starting from day 30 of the experiment in both cultivars, and this increase preceded the appearance of Mn toxicity symptoms. In contrast, in the other two Mn treatments (0 and 2 µmol L?1) PPO activity increased and afterwards decreased during the experiment, but the trend was not clear. In the 1280 µmol L?1 treatment, PPO activity linearly increased (R = 0.8836 for Picual and 0.943 for FS‐17) with the increase of Mn concentration in the leaves of both cultivars. In the 1280 µmol L?1 Mn treatment, PPO activity was negatively related with Fe and Zn concentrations in the leaves, and positively in the 0 and 2 µmol L?1 Mn treatments with the Ca, Mg and K concentrations. CONCLUSION: From the differential time course of PPO activity in the three Mn treatments (0, 2 and 1280 µmol L?1), it is concluded that periodic measurements of PPO activity in the leaves of the olive cultivars Picual and FS‐17 can be used for the early detection of Mn toxicity (before the appearance of symptoms). Copyright © 2010 Society of Chemical Industry  相似文献   

16.
BACKGROUND: A voltammetric study of vitamin E (DL‐ α‐tocopherol) detection using square wave stripping and cyclic voltammetry is discussed in this paper. The working sensor was made by mixing carbon nanotube powder with DNA (double‐stranded calf thymus DNA) and mineral oil. In this electrode, the anodic peak was obtained for ? 0.6 V in a 0.1 mol L?1 phosphate electrolyte solution. RESULTS: Under optimized stripping conditions, analytical linear working ranges of 0.5–4.0 µg L?1 and 40.0–160.0 µg L?1 were obtained. The RSD precision was pegged at 0.105% with seven points using an 80 µg L?1 spike. The detection limit (S/N) was found to be 0.056 µg L?1 (1.30 × 10?10 mol L?1). CONCLUSION: The developed method was found to be applicable to quality control analysis in the food, pharmaceutical and other manufacturing sectors. Copyright © 2008 Society of Chemical Industry  相似文献   

17.
BACKGROUND: Grapes and red wines are rich sources of phenolic compounds such as anthocyanins, catechins, flavonols and stilbenes, most of which are potent antioxidants showing cardioprotective properties. We first isolated scirpusin A, a hydroxystilbene dimer, from a wine grape of Xinjiang, and studied its antioxidant activity. RESULTS: Reactive oxygen species scavenging effects and the protection against reactive singlet oxygen‐induced DNA damage of scirpusin A have been investigated in our experiments. The concentration of scirpusin A required to inhibit 50% of 1O2 generation was 17 µmol L?1, while addition of scirpusin A at 140 µmol L?1 caused complete inhibition. Further kinetic study revealed that the reaction of Scirpusin A with singlet oxygen has an extremely high rate constant (ka = 4.68 × 109 L mol?1 s?1). Scirpusin A (140 µmol L?1) exhibited significant inhibition effects on pBR322 DNA breakage. However, scavenging effects of scirpusin A on superoxide anion O2?? and hydroxyl radical ·OH were not potent as the inhibitor rates at a concentration of 1400 µmol L?1 were 28.83% and 19.5%, respectively. CONCLUSION: The present study shows that scirpusin A is a selective quencher of singlet oxygen and a protector against reactive singlet oxygen‐induced pBR322 DNA damage at very low concentrations. Copyright © 2010 Society of Chemical Industry  相似文献   

18.
The association of continuous flow injection and spectrophotometry affords a simple, novel and rapid way of monitoring continuously the activity of naturally immobilized enzymes in their natural environment, thus eliminating cumbersome purification. The method was applied to determine the activity of polyphenol oxidase (PPO) enzymes naturally immobilized on coconut (Cocus nucifera, L.) fiber tissues. Maximum enzyme activity occurred at a temperature of 25C and at pH 6.0 using catechol as substrate. Thermal stability was assayed in a temperature range of 20 to 75C. The PPO exhibited excellent thermal stability, with only 50% loss in its activity at 75C after 4.3 min exposure. For catechol apparent Michaelis‐Menten constant (apparent Km), apparent Vmax and the apparent activation energy were 9.1 × 10?3 mol L?1, 0.20 abs min?1 and 10.5 kcal mol?1, respectively. The immobilized PPO showed high activity for o‐diphenols. The reactivity order was caffeic acid > pyrogallol > catechol. Complete inhibition of the enzyme was observed with 1 × 10?3 mol L?1 concentration of cyanide, thiourea, L‐cysteine, ascorbic acid, sodium sulfite, nitrates of cadmium, zinc and mercury, individually. Benzoic acid, 3‐hydroxy‐benzoic acid, 4‐acetamidephenol, sodium azide, resorcinol, L‐cystine and EDTA at equal concentrations inhibited PPO partially.  相似文献   

19.
BACKROUND: Mammalian sex hormones (MSH)—progesterone, β‐estradiol and androsterone—enhance plant growth and development by stimulating significant morphological and biochemical parameters under normal conditions. However, there is no report regarding their effects on plants exposed to environmental stress conditions. Therefore, the present study was focused on elucidating the possible positive effects of MSH on seedling growth, antioxidant activity and synthesis reactions in maize seeds exposed to salt stress, one of the most important environmental stresses. For this purpose, the various concentrations (10?6, 10?8, 10?10 and 10?12 mol L?1) of MSH were studied. RESULTS: Salinity (100 mmol L?1 NaCl) significantly reduced root length and seedling height, whereas MSH treatment significantly ameliorated the adverse effects of salinity on root length and seedling height. On the other hand, although salinity increased soluble protein, soluble sugar and proline content in 7‐day‐old maize seedlings, these were higher in MSH‐treated seedlings. Similarly, MSH treatment augmented superoxide dismutase, peroxidase and catalase activities under salt stress, whereas it decreased superoxide production and lipid peroxidation level. The most favorable concentrations were determined as 10?8 mol L?1 for progesterone and β‐estradiol and 10?10 mol L?1 for androsterone. CONCLUSION: Exogenous MSH application was found to have an important ameliorative effect on growth of seeds exposed to salt stress by stimulating antioxidant activity and synthesis reactions. This is the first study investigating the effects of MSH on germination of seeds exposed to stress conditions. Copyright © 2011 Society of Chemical Industry  相似文献   

20.
Shoots, plantlets and semi‐differentiated callus (SDC) cultures of Pandanus amaryllifolius capable of producing high levels of basmati rice flavour were established in vitro using Murashige and Skoog nutrient medium. A total of 10% of the initial explants responded to produce shoot cultures in the presence of benzylamino purine (BAP) (0.5 mg L?1) and glutamine (100 mg L?1). Leaf explants and basal portions of shoots produced SDC whereas elongated in vitro shoots could be continuously multiplied, using BAP (1.5 mg L?1) and kinetin (Kn) (1.0 mg L?1), and rooted in half‐strength medium for ex vitro cultivation leading to a process of micropropagation. Steam‐distillation extraction (SDE) followed by gas chromatography‐mass spectrometry (GC‐MS) analysis of various cultured organs and spent liquid medium used for SDC revealed the presence of 2‐acetyl‐1‐pyrroline (2‐AP) to various extents. This 2‐AP compound has been identified as the major flavouring compound of scented basmati and other scented rice varieties. 2‐AP was found to be highest, on a fresh weight basis, in SDC (19.7 mg kg?1) on the 40th day, whereas in vitro roots, shoots and field leaves (of one‐year‐old plant) had lower levels of 15, 6.8 and 14 mg kg?1, respectively. Further enhancement of 2‐AP in SDC using precursor was possible by feeding into medium 1 mmol L?1 of L ‐proline where a highest level of 21.67 ppm of 2‐AP accumulated on the seventh day whereas a higher level of 2 mmol L?1 of L ‐proline suppressed 2‐AP levels. The present report is the first on the tissue culture studies of P. amaryllifolius where continuous production of plantlets as well as synthesis of high levels of 2‐AP has been documented. Copyright © 2005 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号