首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The mechanism of oxide inclusion-induced pitting corrosion in 316L stainless steel exposed to sulphur environments containing chloride ions was investigated by scanning electron microscope analysis, electrochemical measurements and scanning Kelvin probe force microscopy (SKPFM). Two inclusion types were observed. The (Mg, Al, Ca)-oxide inclusions play an important role in pitting formation. SKPFM measurement results show that the inclusion sites exhibited a lower surface potential than the matrix. Finally, the schematic representation of the initiation and propagation process of the (Mg, Al, Ca)-oxide inclusion-induced pitting corrosion in 316L stainless steel exposed to sulphur environments containing chloride ions was established.  相似文献   

2.
为改善316L不锈钢在海洋环境下的耐腐蚀性能,通过MnSi2增强316L不锈钢基体,采用选区激光熔化(SLM)制备MnSi2/316L不锈钢复合材料。利用Image-Pro Plus软件、光学显微镜、扫描电镜(SEM)及电化学工作站研究了激光功率对316L不锈钢金属基复合材料致密度及耐腐蚀性能的影响,通过Tafel极化曲线和阻抗谱表征其耐腐蚀性能的强弱,并通过点蚀形貌揭示了其腐蚀机理。结果表明:添加MnSi2是提高316L不锈钢耐腐蚀性能的有效途径。随着激光功率的增大,耐腐蚀性能呈现先提高后降低的趋势,当激光功率达到190 W时,2%MnSi2/316L不锈钢复合材料的致密度为99.80%,其腐蚀电位为-0.053 V (vs SCE)。同时,2%MnSi2可以显著改善316L不锈钢的成形质量,提高其耐腐蚀性能,其腐蚀形式为氯离子诱导氯化物生成的点蚀,且点蚀产生位置主要集中在孔隙边界处。  相似文献   

3.
The electrochemical behavior of 316L stainless steel was investigated in acid chloride environments, and pitting potentials were determined electrochemically and chemically. An increase in the anodic maximum current density was observed upon decreasing the cathodic potential from which the scan was initiated to determine the polarization curve. To determine the critical pitting potential through the chemical method, the potential was increased by increasing the concentration of ferric ions in ferric chloride while holding the chloride ion concentration constant with sodium chloride. When 316L stainless steel was immersed in 15 g/1 of FeCl36H2O containing the same chloride ion concentration as 5% NaCl with pH=2 at 57°C, the corrosion potential increased to 0.47 V (SHE) within two minutes due to initial passivation. Immediately after reaching 0.47 V (SHE), which was just above the pitting potential of 0.45 V (SHE) determined electrochemically in 5% NaCl (pH=2, 57°C), the corrosion potential continuously decreased, indicating the onset and propagation of pitting corrosion. A correlation between the electrochemical and chemical methods can be verified if the proper measurements are made and the observations are properly interpreted.  相似文献   

4.
This study examined the effect of L-ascorbic acid (A.A) concentration on the pitting corrosion properties of 316L stainless steel (316L STS) of heat exchanger in synthetic tap water containing 400 ppm of Cl- ion. The pitting corrosion of 316L STS can be effectively inhibited by the 10-4 M of A.A concentration. In this condition, the adsorption of A.A reinforced the passive film of steel by blocking the Cl- ions at the active site. However, the passive film was deteriorated and severe pitting corrosion occurred above the 10-4 M of A.A concentration. Above the 10-4 M of A.A concentration, A.A generates soluble chelate rather than absorbs on the steel surface and it causes passive film deterioration and severe pitting corrosion. The critical ratio, which is a critical ratio of surface coverage of aggressive to inhibitive ion necessary to initiate localized corrosion, calculated 2.93 up to the 10-4 M. It has approximately 2.93:1 ratio of the coverage of local Cl- ions to A.A. Above the critical ratio, the pitting corrosion will occur with degradation of the passive film. On the other hands, above the 10-4 M A.A concentration caused a negative effect because the heat energy for adsorption is increased.  相似文献   

5.
龙晋明  司云森 《腐蚀与防护》1999,20(7):307-309,313
利用动电位法测定316L奥氏体不锈钢和R1双相不锈钢在C5H6O4-Cl^--NO3^-水溶液体系中的阳极极化曲线和点蚀电位,探讨了衣康酸(C5H6O4)介质中Cl^-和NO3^-对点蚀的影响。结果表明:(1)Cl^-浓度[Cl^-]的提高导致不锈钢点蚀电位Eb降低,其关系为Eb=a-blg[Cl^-]。同样条件下,R1不锈钢的点蚀电位比316L不锈钢高300 ̄400mV;(2)在含Cl^-的衣康  相似文献   

6.
The effect of tin on general and pitting corrosion behaviors of the austenitic stainless steel in sulfuric acid and sodium chloride solutions was investigated by potentiostatic critical pitting temperature, cyclic potentiodynamic polarization, electrochemical impedance spectroscopy, and scanning electron microscopy. The results showed that there is an optimal tin addition which is around(0.062–0.1) wt%, and the general corrosion resistance of B316 LX with 0.08 wt% tin addition in boiling H2SO4 increased remarkably with a corrosion rate of an order of magnitude lower than that of 316 L.Hydrolyzation of tin ions induces more metastable pit occurrence on the material surface. However, the pitting resistance of B316 LX increases because tin oxides improve the density and uniformity of the passive film, and hydroxide and oxide of tin inhabit the process of pit growing. The effect of tin on pitting corrosion process is illustrated schematically.  相似文献   

7.
使用S316L不锈钢材质制造的压力壳下体在工作2000 h之后,其内表面存在大量的点蚀坑,压力壳内壁处于柴油燃烧产物的弱酸性气体环境。本文分析了S316L不锈钢压力壳材料的化学成分和力学性能。使用扫描电子显微镜观察了点蚀坑形貌,使用能谱对腐蚀产物进行了表征。金相分析和XRD表明,在奥氏体基体中存在大量的夹杂物和铁素体相。点蚀坑在内表裂纹深处形核。分析认为,材料的自身因素诱发了点蚀的形核,而压力壳所提供的腐蚀环境加速了点蚀的生长过程。  相似文献   

8.
《Intermetallics》1999,7(2):185-191
The corrosion behaviour of an Fe3Al-base intermetallic compound with different crystal structures in a chloride containing solution has been investigated. The corrosion current densities of this intermetallic were independent of the material crystal structure showing a passive state stable with time. These corrosion rates were of the same order of magnitude as for 316L stainless steel. The pitting corrosion resistance evaluated by means of cyclic anodic polarization curves was high for all different states. Amongst the different crystal structures of this intermetallic alloy, the two ordered states present the lowest pitting probability. This Fe3Al intermetallic shows higher pitting corrosion resistance than the 316L stainless steel but its capacity for repassivation is lower. A damaging factor of influence on the pitting corrosion behaviour is the presence of non-metallic inclusions on the surface which reduce the pitting corrosion resistance by almost a half.  相似文献   

9.
不锈钢在含SO2-4稀HCl中的电化学腐蚀行为   总被引:3,自引:2,他引:3  
应用电化学测量技术研究了1Cr18Ni9Ti和316L在含硫 酸盐(SO2-4)的稀HCl介质中的腐蚀行为。极化曲线测量结果表明,SO2-4 能显著抑制1Cr18Ni9Ti的点蚀,而对316L的腐蚀有加速作用并降低其钝化性能。电化学阻抗 谱测量结果表明,不锈钢表面钝化膜的保护性随着温度升高而降低。  相似文献   

10.
Stainless steel is one of the most popular materials used for selective laser melting (SLM) processing to produce nearly fully dense components from 3D CAD models. The tribological and corrosion properties of stainless steel components are important in many engineering applications. In this work, the wear behaviour of SLM 316L stainless steel was investigated under dry sliding conditions, and the corrosion properties were measured electrochemically in a chloride containing solution. The results show that as compared to the standard bulk 316L steel, the SLM 316L steel exhibits deteriorated dry sliding wear resistance. The wear rate of SLM steel is dependent on the vol.% porosity in the steel and by obtaining full density it is possible achieve wear resistance similar to that of the standard bulk 316L steel. In the tested chloride containing solution, the general corrosion behaviour of the SLM steel is similar to that of the standard bulk 316L steel, but the SLM steel suffers from a reduced breakdown potential and is more susceptible to pitting corrosion. Efforts have been made to correlate the obtained results with porosity in the SLM steel.  相似文献   

11.
316L不锈钢焊接头耐蚀性能研究   总被引:2,自引:0,他引:2  
分别采用扫描电镜(SEM)、X射线衍射(XRD)、动电位极化技术及零内阻安培表方法研究爆炸焊接316L不锈钢接头的显微组织形貌、物相、点蚀及电偶腐蚀行为。结果表明,316L不锈钢侧焊缝金属存在严重的组织形变和金属间化合物相,且相对于基体试样,316L不锈钢侧焊缝和熔合区产生了更多的δ铁素体相,这些因素导致焊接后的316L不锈钢耐点蚀和电偶腐蚀性能降低。  相似文献   

12.
采用实验室加速腐蚀实验对比研究316L、304不锈钢和20#锅炉钢(记为20g)在模拟黄磷尾气腐蚀环境条件下的腐蚀性能。结果表明,316L不锈钢的耐蚀性要优于304不锈钢和20g,在250℃~300℃时304和316L不锈钢均发生酸蒸汽的露点腐蚀,且 304不锈钢出现较为严重的孔蚀现象。  相似文献   

13.
目的研究H2S环境下不同Cl^-浓度对冷变形316L奥氏体不锈钢应力腐蚀行为的影响,探究Cl^-造成影响的原因,为不锈钢安全服役提供理论数据。方法采用力学方法研究了冷变形316L奥氏体不锈钢的力学行为,通过计算延伸率损失表征材料的应力腐蚀敏感性,通过电化学手段表征了点蚀电位。最后为了研究点蚀与基体中氢含量的关系,进行了扩散氢含量的测试,通过测量试样的扩散氢含量,进一步理解应力腐蚀行为。结果随着Cl^-浓度的增加,316L奥氏体不锈钢的延伸率损失逐渐增大,应力腐蚀敏感性增强。断口形貌从杯状的等轴韧窝转变为解理型脆性断裂。动电位极化测试表明,Cl^-浓度的增加,点蚀电位逐渐降低,直至–0.0228V,试样更容易发生点蚀。扩散氢含量的测量进一步显示了点蚀坑的存在促进了氢进入到金属内部。结论 Cl^-对316L奥氏体不锈钢在H2S环境中的应力腐蚀行为有重要影响,随着Cl^-浓度的增加,应力腐蚀敏感性增强,结合点蚀电位的测量结果,可能是由于Cl^-破坏金属表面的钝化膜,产生点蚀坑,裂纹形核并扩展,同时点蚀坑还促进了氢进入金属内部,应力腐蚀敏感性增强。  相似文献   

14.
目的研究常减压装置高温原油馏分及塔顶水相中氯离子、硫离子含量对316L不锈钢和Monel合金(镍基合金)腐蚀的影响。方法通过腐蚀挂片实验,获得316L不锈钢和Monel合金在含不同浓度氯离子和硫离子的水相、油相中的腐蚀速率变化规律。利用扫描电子显微镜,研究316L和Monel合金表面腐蚀后的微观形貌,探讨两种离子对316L不锈钢和Monel合金腐蚀的影响规律。结果在酸值较高的脱后原油中,316L不锈钢和Monel合金的腐蚀速率分别为0.0091,0.0248 mm/a;在酸值较低的常二段馏分中,316L不锈钢和Monel合金的腐蚀速率分别为0.0078,0.0031 mm/a。在常二段馏分中,加入600mg/L氯离子和30 mg/L硫化钠时,316L不锈钢和Monel合金的腐蚀速率分别为0.1755,0.1707 mm/a。在相同条件的脱后原油中,316L不锈钢的腐蚀速率为0.0545 mm/a,Monel合金的腐蚀速率为0.1281mm/a。结论油相中氯离子含量较低时,环烷酸腐蚀占主导因素;而氯离子含量达到较高水平后,氯离子对腐蚀的影响占主导作用。316L不锈钢和Monel合金的腐蚀速率都随氯离子含量的增加而增加,并且硫离子的存在对腐蚀也有一定的促进作用。在塔顶水相中,氯离子和硫离子均对Monel合金腐蚀的影响不大。  相似文献   

15.
316L不锈钢柠檬酸钝化工艺及其耐点蚀性能研究   总被引:3,自引:2,他引:1  
采用正交试验方法研究了316L不锈钢柠檬酸钝化工艺,利用电化学测试方法测量了不锈钢焊接接头各部位在钝化前后点蚀电位的变化,并以此评价钝化工艺对不锈钢耐点蚀性能的影响.研究结果表明,由正交试验优选出的最优配方和工艺为:柠檬酸、双氧水、乙醇的质量分数分别为3%、10%、5%,温度25℃,钝化时间90 min.此工艺配方可大大提高316L不锈钢整体的耐点蚀性能.  相似文献   

16.
Potentiodynamic anodic polarization experiments on advanced stainless steels (SS), such as nitrogenbearing type 316L and 317L SS, were carried out in Hank’s solution (8 g NaCl, 0.14 g CaCl2, 0.4 g KC1, 0.35 g NaHCO3, 1 g glucose, 0.1 g NaH2PO4, 0.1 g MgCl2, 0.06 g Na2HPO4 2H2O, 0.06 g MgSO4 7H2O/1000 mL) in order to assess the pitting and crevice corrosion resistance. The results showed a significant improvement in the pitting and crevice corrosion resistance than the commonly used type 316L stainless steel implant material. The corrosion resistance was higher in austenitic stainless steels containing higher amounts of nitrogen. The pit-protection potential for nitrogen-bearing stainless steels was more noble than the corrosion potential indicating the higher repassivation tendency of actively growing pits in these alloys. The accelerated leaching study conducted for the above alloys showed very little tendency for leaching of metal ions, such as iron, chromium, and nickel, at different impressed potentials. This may be due to the enrichment of nitrogen and molybdenum at the passive film and metal interface, which could have impeded the releasing of metal ions through passive film.  相似文献   

17.
用开路电位、动电位扫描、电化学阻抗技术和扫描电镜等方法,研究了316L不锈钢在硫酸盐还原菌(SRB)溶液中的腐蚀电化学行为,分析了炼油厂冷却水系统微生物腐蚀的特征及机制.结果表明,在含有SRB溶液中的自腐蚀电位(Ecorr)和点蚀电位(Epit)随浸泡时间的增加而负移,极化电阻(Rp)随浸泡时间的增加而减小;在含有SRB溶液中的腐蚀速率均大于在无菌溶液中;SRB的生长代谢活动影响了316L SS表面的腐蚀过程,使不锈钢表面的钝化膜层腐蚀破坏程度增加,加速了316L SS的腐蚀.  相似文献   

18.
Abstract

The pitting corrosion resistance of DIN W. Nr. 1·4460 stainless steel (SS) with high amounts of nitrogen (0·87%) was evaluated to be used for medical implants. The SS pitting corrosion resistance was tested in a minimum essential medium at 37°C by electrochemical impedance spectroscopy and potentiodynamic polarisation curves and in a 0·1 mol L?1 NaCl solution at 25°C, by scanning electrochemical microscopy. This last technique measures the concentration of chemical species released by corrosion processes. The potential of an ultramicroelectrode was set to amperometrically detect the Fe2+ ions released at the anodic areas and also the depletion of oxygen due to the cathodic reactions in the vicinity of the cathodic areas. The AISI 316L stainless steel was also tested for comparison reasons. The results showed that the DIN W. Nr. 1·4460 with 0·87% nitrogen presents higher pitting corrosion resistance than the AISI 316L SS, being a potential candidate for biomaterial applications.  相似文献   

19.
Repassivation behavior of type-312L stainless steel containing 6% of molybdenum was examined in NaCl solution using in situ micro-indentation technique, together with type-304 and 316L stainless steels. High stability of the passive film formed on the type-312L stainless steel was also examined by depth profiling analysis of passive films using glow discharge optical emission spectroscopy (GDOES). In 0.9 mol dm−3 NaCl solution at 296 K the type-304 and 316L stainless steels are passive only up to 0.3 V (SHE), above which pitting corrosion occurs. In contrast, no pitting corrosion occurs on type-312L stainless steel. Despite the significant difference of the pitting corrosion resistance, the repassivation kinetics of the three stainless steels, examined by micro-indentation at 0.3 V (SHE), is similar. The presence of molybdenum in the stainless steel does not influence the repassivation kinetics. The charge required to repassivate the ruptured type-312L stainless steel surface increases approximately linearly with the potential, even though the passivity-maintaining current increased markedly at potentials close to the transpassive region. Repassivation occurs without accompanying significant dissolution of steel, regardless of the stability of passive state. Depth profiling analyses of the passive films on the type-312L stainless steels formed at several potentials revealed that molybdenum species enrich in the outer layer of the passive film, below which chromium-enriched layer is present. The permeation of chloride ions may be impeded by the outer layer containing molybdate, enhancing the resistance against the localized corrosion of the type-312L stainless steel.  相似文献   

20.
分析了盐化工环境中316L不锈钢短接腐蚀裂纹的宏观特征、微观形貌及显微组织,研究了卤水介质参数及短接制造工艺对316L不锈钢腐蚀的影响。结果表明:短接过早失效的机制是点蚀和应力腐蚀开裂;短接点蚀主要由卤水高温以及高Cl-含量引起,焊接残余应力及卷曲加工应力的共同作用促进了短接的应力腐蚀开裂;用铸造成形代替焊接成形,并适当增加316L不锈钢的钼含量,有利于延长短接的使用寿命。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号