首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 264 毫秒
1.
Dispersion coefficient of bubble motion based on velocity distribution theory has been analyzed in up and downward gas-liquid two-phase contactor. The intensity of dispersion of phase depends on motion of the dispersed phase and the characteristics of velocity distribution. In this paper the effects of operating and geometric variables on the dispersion coefficient of bubble motion and the characteristic factor of velocity distribution have been analyzed within the range of column diameter 0.10-2.5 m, superficial liquid velocity, 0.04-0.21 m/s and superficial gas velocity 0.41-3.16 mm/s. From the different developed model of longitudinal dispersion coefficient of liquid, comparison of dispersion coefficient of bubble motion and characteristic feature of velocity distribution in down and upflow two-phase contactor has been reported. Also the functionalities of dispersion coefficient of bubble motion and velocity characteristic factor have been developed with operating variables. The condition for dispersion based on velocity pattern has also been discussed in the present work. The present analysis on the dispersion coefficient of bubble motion and velocity distribution factor associated with the knowledge of the liquid phase dispersion in two-phase contactor can give insight into a further understanding and modeling of multiphase reactor in industrial applications.  相似文献   

2.
苯乙炔选择性加氢是从裂解汽油C8馏分中回收苯乙烯的关键反应,本文采用滴流床反应器对该反应体系的液相轴向返混行为进行了研究。首先利用脉冲示踪法测得了不同操作条件下的液相停留时间分布密度;然后基于固定床轴向扩散模型,通过有限元正交配置法和Levenberg-Marquardt非线性最小二乘法,计算得到了Péclet数和液相平均停留时间;最后考察了主要操作条件对液相轴向返混的影响。研究结果表明,增大液体流量、气体流量、温度以及压力均可减小液相返混,而增大颗粒粒径会使液相返混加剧。  相似文献   

3.
Lilly Shen 《Fuel》2003,82(4):465-472
Pyrolysis of activated sewage sludge was investigated under inert conditions in a fluidised-bed to study the effects of temperature and gas residence time on the product distribution and composition with an aim to maximise the oil yield. The temperature was varied from 300 to 600 °C and the gas residence time from 1.5 to 3.5 s. Three groups of products were produced, namely, a non-condensable gas (NCG) phase, a solid phase (char) and a liquid phase (oil). A maximum of 30% oil yield (wt% daf of sludge fed) was achieved at a pyrolysis temperature of 525 °C and a gas residence time of 1.5 s. Higher temperatures and longer gas residence times favoured the formation of NCG, suggesting that secondary cracking reactions had occurred. The oil obtained was analysed using GC-MS and H NMR to determine the oil's composition and structure, a unit structure of the oil was proposed which consisted of aromatic rings connected by hydrocarbons with -OH functional groups attached.  相似文献   

4.
针对多层三相流化床进行冷模试验,以饱和KCl溶液为示踪剂,采用电导法测定不同液速、气速和固相浓度条件下液相流体在床内的停留时间分布曲线、平均停留时间。采用多釜串联模型得到模拟参数以及其返混特性随着各操作参数变化的情况。结果表明:液相速度对平均停留时间影响显著,随液速增大而急剧减小;气速和载体对平均停留时间影响较小,随着气速和载体量增加平均停留时间均呈下降趋势。液相返混程度随气相速度增加而增加,随液相速度和载体含量的增加而减小。  相似文献   

5.
Stripping of acetone from isopropanol utilizing nitrogen as a sweeping gas was conducted in gas/liquid contactors with slit type microchannels and containing flat sheet, metal and Teflon tortuous pore membranes or microfabricated metal meshes with straight pores. The contactor consisted of parallel metal plates, gaskets, and the membrane or the microstructured mesh so that passages for gas and liquid phases were formed. These slit type microchannels were 200 μm thick for both gas and liquid phases. All the membranes/meshes were wetted by the isopropanol solution. Breakthrough of one phase into the other was successfully described if contortion of the gas/liquid interface was considered at the pore ends. Various conditions during acetone stripping were investigated such as membrane type, gas and liquid flowrates and inlet acetone concentration. A contactor employing a Micro-Etch metal mesh with 76 μm openings and thickness of 50 μm offered the lowest mass transfer resistance and resulted to the best acetone stripping performance. The separation efficiency increased by increasing the gas/liquid flowrate ratio, but was not affected when increasing the inlet acetone concentration. Good agreement between the experiments and an one-dimensional model with no adjustable parameters was observed.  相似文献   

6.
The aim of this work is to study a pre-treatment process of olive mill wastewaters based on ozonation. The efficiency of the process depends on the removal of pollutants and on ozone mass transfer performance. In order to choose an appropriate gas/liquid contactor, the rate constants of three phenolic compounds (gallic acid, p-hydroxybenzoic acid and p-coumaric acid) were determined by using competition kinetic model. These constants, obtained at pH 5, were found to be high (from 3.8 × 104 L/mol s to 2.9 × 105 L/mol s), inducing a diffusion controlled regime (Ha > 3). Thus, to obtain an efficient ozonation process, gas/liquid contactor should be adapted to this regime. An ejector was chosen as gas/liquid contactor. In a first time, treatment of synthetic effluent containing the three phenolic compounds was performed to evaluate efficiency of the process. Experimental conditions were chosen to obtain a diffusion controlled regime (Ha > 3). It appeared that this gas/liquid contactor permits obtaining complete and fast removal of pollutants with a very efficient ozone mass transfer (up to 90% during removal of phenolic compounds). So, this process was used to perform the ozonation treatment of olive mill wastewaters from Sfax (Tunisia). It was proved to be very efficient: up to 80% of phenolic compounds were removed and ozone mass transfer reached 95% during this oxidation.  相似文献   

7.
A Kenics® KMX static mixer that has curved-open blade internal structure was investigated to study its hydrodynamic performance related to residence time distribution and liquid holdup in a gas/liquid system. The static mixer reactor had 24 mixing elements arranged in line along the length of the reactor such that the angle between two neighboring elements is 90°. The length of the reactor was 0.98 m with an internal diameter of 3.8 cm and was operated cocurrently with vertical upflow. The fluids used were hydrogen (gas phase), monochlorobenzene (liquid phase) and hydrogenated nitrile butadiene rubber solution (liquid phase). In all the experiments, the polymer solution was maintained as a continuous phase while hydrogen gas was in the dispersed phase. All experiments were conducted in the laminar flow regime with the liquid side hydraulic Reynolds number in the range of 0.04-0.36 and the gas side hydraulic Reynolds number in the range of 3-18. Different polymer concentrations and different operating conditions with respect to gas/liquid flow rates were used to study the corresponding effects on the hydrodynamic parameters such as Peclet number (Pe) and the liquid holdup (εL). Empirical correlations were obtained for the axial dispersion coefficient (Da) and liquid holdup in liquid system alone and for the gas/liquid system separately. It was observed that the Peclet number decreased with the introduction of gas in to the reactor while in the liquid system alone, an increase in viscosity decreased the Peclet number. The liquid holdup was empirically correlated as a function of the physical properties of the fluids used in addition to the operating flow rates.  相似文献   

8.
Liquid phase axial mixing was measured in a 100 mm i.d. bubble column operated in the pressure range of 0.1-0.5 MPa. Water, ethanol and 1-butanol were used as the liquid phase and nitrogen as the gas phase. The temperature and superficial gas velocity were varied in the range of 298-323 K and 0.01-0.21 m/s, respectively. The axial dispersion coefficient increased with an increase in the gas density due to pressure. The temperature had surprisingly a small effect. A CFD model was developed for the prediction of flow pattern in terms of mean velocity and eddy diffusivity profiles. The model was further extended for the prediction of residence time distribution and hence the axial dispersion coefficient (DL). The predictions of axial dispersion coefficient agree favorably with all the experimental data collected in this work as well as published in the literature. The model was extended for different gas-liquid systems. The predicted values of axial dispersion coefficient were found to agree very well with all the experimental data.  相似文献   

9.
Three‐dimensional (3‐D) gas‐liquid–solid flow and mixing behaviors in microchannels were simulated by coupled volume of fluid and discrete phase method and simulations were validated against observations. The detachment time and length of gas slug are shortened in liquid–solid flow, compared with those in liquid flow due to higher superficial viscosity of liquid–solid mixture, which will move the bubble formation toward the dripping regime. Solid particles mainly distribute in liquid slug and particle flow shows obvious periodicity. With the increase of contact angle of the inner wall, gas slug (0–50°), stratified (77–120°), and liquid drop (160°) flows are observed. The residence time distributions of solid and liquid phases are similar because particles behave as tracers. The backmixing of solid and liquid phases in liquid drop flow is the weakest among the three flow patterns, and the backmixing of gas phase in slug flow is weaker than that in both stratified and liquid drop flows. The results can provide a theoretical basis for the design of microreactors. © 2013 American Institute of Chemical Engineers AIChE J, 59: 1934–1951, 2013  相似文献   

10.
研究了循环浆态床气流段的气流量和液体循环量对气体停留时间分布的影响。实验结果表明,减小气流量或者增加液体循环量,气体返混程度变大,气体平均停留时间增长。建立模型模拟循环浆态床气流段气体停留时间分布,得到停留时间分布密度函数和物料分率p与射流相似准数Ct和气液动量比准数Cr的关联式。从关联式看出,气液动量比准数Cr越小,物料分率p越大,表明循环液体流量越大,气体停留时间分布越接近于全混流。这一结论与实验结果相符。  相似文献   

11.
The liquid phase backmixing has been reduced significantly by introducing horizontal perforated sieve plates into a 6.2 cm diameter and 77 cm height and in a 20 cm diameter and 90 cm height bubble columns. For the visbreaking operation of the petroleum residue, where the bubble column is used as soaker such a sectionalization has been suggested. The effect of the introduction of different gas quantities at various axial locations has also been studied to check the effect of increasing gas quantity formed in the visbreaking operation. The nonideality in the liquid phase backmixing has been studied by measuring liquid phase RTD and analysed by using one parameter dispersion model. A new parameter FP (flow parameter) has been defined and a correlation to predict liquid phase dispersion coefficient has been developed which covers the entire range of variables used in the present work.  相似文献   

12.
This work concerns the effect of gas phase properties on incipient flooding in counter-current gas–liquid two-phase flow in small diameter inclined tubes (D < 10 mm). The aim is to propose generalized correlations that can be used to predict incipient flooding in small diameter tubes. Experiments were performed in a 7 mm glass tube and at two inclination angles, i.e. 30 and 60° from the horizontal, using water as liquid phase and atmospheric air, He and CO2 as gas phase. Previously proposed correlations for flooding prediction ( Pantzali et al., 2008) were suitably adjusted to incorporate the effect of gas phase properties. It has been proved that the flooding curves calculated using the proposed correlations are in good agreement with both the results of the present study and relevant literature data.  相似文献   

13.
Gas–liquid hollow fiber membrane contactor can be a promising alternative for the CO2 absorption/stripping due to the advantages over traditional contacting devices. In this study, the structurally developed hydrophobic polyvinylidene fluoride (PVDF) hollow fiber membranes were prepared via a wet spinning method. The membranes were characterized in terms of morphology, permeability, wetting resistance, overall porosity and mass transfer resistance. From the morphology analysis, the membranes demonstrated a thin outer finger-like layer with ultra thin skin and a thick inner sponge-like layer without skin. The characterization results indicated that the membranes possess a mean pore size of 9.6 nm with high permeability and wetting resistance and low mass transfer resistance (1.2 × 104 s/m). Physical CO2 absorption/stripping were conducted through the fabricated gas–liquid membrane contactor modules, where distilled water was used as the liquid absorbent. The liquid phase resistance was dominant due to significant change in the absorption/stripping flux with the liquid velocity. The CO2 absorption flux was approximately 10 times higher than the CO2 stripping flux at the same operating condition due to high solubility of CO2 in water as confirmed with the effect of liquid phase pressure and temperature on the absorption/stripping flux.  相似文献   

14.
Tracer and disinfection tests were performed with the ozone bubble-diffuser contactors at the Belmont and Southport Advanced Wastewater Treatment Plants operated by the City of Indianapolis, Department of Public Works. The objective of the study was to develop a better understanding for the role of hydrodynamics and contactor design on the disinfection efficiency achieved in these contactors. Tracer tests were performed at varying gas and wastewater flow rates. The results indicated that high backmixing occurred within each chamber of the over-under ozone bubble-diffuser contactor trains. The addition of three baffles to one of the contactor trains resulted in a decrease in overall contactor backmixing. Low contactor backmixing was observed at high wastewater flow rates combined with high or medium gas flow rates for both the modified and original trains. Monitoring of effluent fecal coliform concentrations for both the original and modified contactor trains revealed lower average concentrations in the modified train effluent as compared to the original train.  相似文献   

15.
Axial backmixing lowers the efficiency of packed countercurrent high-pressure extraction columns. To quantify backmixing, a method of measuring the residence time distribution and calculating the axial dispersion coefficient in high-pressure extraction columns is introduced. Using a design of experiments, the effect of supercritical and liquid mass flow rates as well as the pressure at a constant temperature on the mean residence time and the axial dispersion coefficient are evaluated for the system water/supercritical CO2. The experimental data is correlated to the Reynolds and Schmidt number.  相似文献   

16.
The effect of louver baffles on the particle concentration profiles, pressure fluctuations, bed expansion, and gas mixing of a fluidized bed was investigated in a transparent 2-D column of cross-section 500×30 mm and height 6 m over a broad range of operating conditions covering both the bubbling and turbulent flow regimes. Visual observations, pressure fluctuations and steady gas tracer experiments showed that louver baffles can break bubbles, as indicted by the lower amplitudes and higher mean frequencies of differential pressure fluctuations, but they were only effective for superficial gas velocities <∼0.7 m/s for the FCC particles considered in this study. The ability of louver baffles to break bubbles reached a maximum near the onset of the turbulent flow regime. A gas cushion of low particle concentration appeared below the louver baffle, and its height increased with increasing superficial gas velocity, indicating increasing suppression of solids backmixing. Internal emulsion circulation was promoted above the louver baffle, causing an uneven distribution of gas flow. The addition of louver baffles reduced the upstream tracer gas concentrations by 80-90%, indicating a significant decrease in the backmixing fluxes of both gas and solids across the baffle layer. The tracer gas concentrations above the louver baffles increased resulting from the promoted emulsion circulation by louver baffles.  相似文献   

17.
膜接触器是一种通过膜作为两相之间的分离界面而实现相间传质的新型杂化膜过程,具体应用形式包括膜蒸馏、膜萃取、膜吸收、膜结构填料等.膜接触器使用微孔中空纤维膜将两流体分隔开,膜孔为两流体之间提供传质的场所.与传统接触分离器相比,新兴的膜接触器拥有分离效率高、工作范围宽、两相流速可单独控制以及结构紧凑等诸多独特的优点.文章着重于膜接触器及其相关过程在废水处理领域的最新研究成果和进展,具体分析比较了上述几种膜接触器的结构、工作原理和操作特点,充分展示了膜接触器在废水处理以及化工、医药、食品等领域特种分离中的广阔应用前景.  相似文献   

18.
A. J. Dreher  R. Krishna   《Catalysis Today》2001,69(1-4):165-170
Installation of perforated sieve plates into a bubble column has the effect of introducing structure into an otherwise chaotic hydrodynamic behaviour. In this study, we focus on the reduction of backmixing of the liquid phase in compartmentalised bubble columns. Liquid-phase residence time distribution (RTD) measurements were carried out in bubble columns with diameters DT=0.10, 0.15 and 0.38 m with air–water system operating at superficial gas velocities of UG=0.05–0.4 m/s. Partition sieve plates with open areas of 18.6 and 30.7% were used in the studies. The measured data on RTD were interpreted in terms of an axial dispersion model extended to allow for liquid interchange between compartments. The interchange velocity was found to be strongly dependent on the free area of the plates but practically independent of the column diameter.  相似文献   

19.
A continuous-flow, backmix reactor, based upon the principle of drag flow and capable of handling viscous reactions, was designed and constructed. Its backmixing effectiveness was demonstrated via residence time distribution measurements, flow visualization experiments, and a stepwise polymerization reaction. The molecular weight distribution of the resulting polymer, which was measured and contrasted with that produced in a plug-flow type (extruder) reactor, was significantly altered by backmixing, as predicted computationally.  相似文献   

20.
To deeply understand the effect of coupled configuration between two-stage separators on the gas flow behavior in fluid catalytic cracking disengager space, the gas flow field and residence time distribution in a bench-scale disengager is numerically studied on the platform of the commercial computational fluid dynamics software package, Fluent 6.1. Two conventionally used coupling configurations in refineries and a newly-designed configuration are investigated. The Reynolds stress model is applied to simulate the gas flow field and the results agree well with the experimental values measured by a smart five-hole probe. Coupled with the Reynolds stress model, a scalar transport equation is used to obtain the gas residence time distribution. It is shown that the coupling configuration between the primary and secondary cyclones has an apparent effect on the gas flow behavior. The newly-designed configuration is better to quickly discharge the gas into the secondary cyclone inlet with a maximum residence time of 0.38 s, compared to 7.72 s and 2.79 s for the two conventional configurations. The simulation results indicated that the appropriate modification of the coupling configuration can help to improve the gas flow. The knowledge of the gas flow field also help to understand the coke formation process in the disengager space.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号