首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 276 毫秒
1.
CNP650压水堆不调硼负荷跟踪可行性研究   总被引:3,自引:0,他引:3  
海南昌江核电厂等CNP650压水堆采用Mode-A控制模式,该模式采用黑体控制棒,有很好的基负荷运行能力,但负荷跟踪能力相对较差。而对一些具有小电网的国家或地区,负荷跟踪运行能力具有一定的市场需求。不调硼负荷跟踪通过棒控系统自动完成,大大减轻了操纵员负担;负荷跟踪过程基本不需要频繁地调硼操作,允许简化化学和容积控制系统设计,减少了废液处理成本。为此,在CNP650压水堆上进行了不调硼负荷跟踪研究。负荷跟踪过程主要有两个控制任务:一是反应性补偿;二是功率分布控制。根据不调硼负荷跟踪的控制任务,重新进行了控制棒的设计、分组和布置,设置两套独立控制的控制棒组(功率补偿棒组和轴向偏移控制棒组),分别用于堆芯反应性控制和轴向功率分布控制,以实现不调硼负荷跟踪。使用SCIENCE程序包进行典型的12h~3h~6h~3h、100%—50%—100%功率水平的日负荷循环计算来进行不调硼负荷跟踪分析。计算步骤为:进行三维堆芯模型计算;根据三维堆芯模型建立一维堆芯模型;在一维模型基础上,进行模拟计算。完成了海南昌江核电厂平衡循环寿期末典型的日负荷循环不调硼运行分析,模拟计算结果表明在CNP650压水堆上不调硼负荷跟踪运行模式是可行的。  相似文献   

2.
华龙一号(HPR1000)压水堆核电厂最显著的技术特征是反应堆采用由177个燃料组件构成的堆芯(简称“177堆芯”),具有完全的自主知识产权。为深入分析其特点,本文介绍了“177堆芯”的主要技术特征,并在燃料组件及控制棒组件数目方面与157个燃料组件构成的堆芯(简称“157堆芯”)进行了对比分析;对2种典型反应堆堆芯(“177-A堆芯”与“177-B堆芯”)装载方案的异同进行了叙述和评价。结果表明,与“157堆芯”相比,“177堆芯”在安全性和经济性方面更有优势;2种典型堆芯的首循环装载布置各有所长,在可燃毒物选材上,“177-B堆芯”优于“177-A堆芯”。最后,从取消堆芯中央位置控制棒组件、设置堆芯径向金属反射层、实施无中子源启动、分批装载自主化燃料组件以及优化堆芯活性段长度等5个方面给出了HPR1000反应堆堆芯的优化建议。   相似文献   

3.
《核动力工程》2015,(2):101-104
以大亚湾核电站1号机组为研究对象,尝试将机械补偿控制策略(MSHIM)运行模式应用于M310核电厂。分析表明,M310核电厂具有基负荷的MSHIM运行能力,具备一定的不调硼负荷跟踪能力,但G1、G2、G3棒组和R棒组存在控制能力不足的问题。在现有控制棒数量及布置前提下,通过重新分组并定义控制棒组,有可能在M310机组上实现MSHIM运行与控制策略。  相似文献   

4.
经济、灵活及高自动化的运行控制策略是先进核电厂的设计目标之一。为适应这一发展趋势,近年来国际上提出了机械补偿运行控制的设计理念。机械补偿是一种主要通过控制棒的移动补偿堆芯反应性变化和控制轴向功率分布的先进控制策略。本文分别在基本负荷、负荷跟踪及启动/再启动运行模式下对机械补偿运行特性进行了研究。研究表明:机械补偿能自动实现堆芯的有效控制,并使功率峰因子保持在较低水平,是一种灵活、有效、经济的运行控制策略。此外,针对机械补偿运行对核电厂设计的影响进行了初步分析。  相似文献   

5.
华龙一号(HPR1000)反应堆是我国具有自主知识产权的三代核电压水堆堆型。其堆芯由177个燃料组件组成,不仅具有较高的堆芯输出功率,而且具有较低的线功率密度使其具备较高的安全裕量。HPR1000反应堆平衡循环采用18个月换料策略,核电厂可利用率超过90%。采用IN-OUT换料方式,平均批卸料燃耗大于45000MW·d/t(U)。堆芯具有很好的反应性负反馈固有特性,仸何运行状态下的慢化剂和燃料温度效应均为负值。HPR1000反应堆采用2套独立的停堆系统,紧急停堆情况下即使1束最大价值的控制棒被卡在堆外,反应堆也能被快速有效地带入到停堆状态幵保证足够的停堆裕量。HPR1000反应堆采用了机动性较好的Mode-G运行方式,基于Mode-G运行方式,HPR1000可以迚行负荷跟踪、负荷阶跃等机动运行。同时采用了在线监测系统,可以实时监测反应堆运行过程中的三维堆芯功率分布。  相似文献   

6.
一体化增殖燃烧堆双向递推式倒料方案研究   总被引:1,自引:0,他引:1  
一体化增殖燃烧堆利用自身的增殖特性,在堆芯内实现核燃料增殖和燃烧的一体化利用。其实现途径之一是将堆芯的燃料布置固定,而增殖燃烧波逐渐移动的行波堆概念,另一种则是通过定期倒料,保持堆芯内燃烧区相对固定的驻波堆。对于驻波堆,需要通过合理的堆芯布置与倒料方案来平衡燃料的燃烧和增殖过程,从而维持堆芯在整个寿期内的稳定运行。提出的双向式堆芯布置与倒料方案中,堆芯中心为燃烧区,燃料组件由内向外依次倒料,而在堆芯外围是增殖区,燃料组件由外向内依次倒料,该方案可以保持堆芯在整个反应堆寿期内具有稳定的功率分布。另外双向递推式堆芯布置与倒料方案最终的组件卸料燃耗是相对均衡的,所有从燃烧区倒出的组件都具有相近的燃耗,一般在30%左右。这使得一体化增殖燃烧堆可以在不进行燃料后处理的条件下,实现铀资源的高效利用。  相似文献   

7.
一体化先进压水堆小型核电站堆芯燃料管理设计   总被引:2,自引:1,他引:1  
采用SCIENCE核程序包进行装载方案的设计计算,确定了满足设计准则的各个过渡循环至平衡循环的堆芯.选择合理的平衡循环堆芯燃料的富集度、换料燃料组件数以及各循环的装载和换料方式,使平衡循环达到预定的2 a换料循环长度.堆芯采用低泄漏"内-外"式布置,旧燃料组件布置于堆芯外区.第一循环堆芯,高富集度的组件置于堆芯外区,低富集度的组件排列在堆芯内区.第二循环堆芯装入44个富集度为4.95%的新燃料组件,同时卸出44个旧燃料组件,旧燃料组件布置于堆芯外区.第三循环开始到反应堆寿期内的所有堆芯,都只使用含0、12和20根载钆燃料棒的燃料组件.各循环燃料组件最大卸料燃耗满足设计准则要求.  相似文献   

8.
徐李  胡赟  张坚 《原子能科学技术》2020,54(10):1879-1884
在钠冷快堆中,反应堆运行时的反应性补偿和停堆安全主要由控制棒来实现。当前的钠冷快堆设计中,一般含有安全棒、补偿棒和调节棒。其中,补偿棒中10B的富集度较高,使补偿棒的燃耗较高,且发热量较大,并造成周围燃料组件功率峰因子偏大。本文提出一种分段设计方案,可用于改进上述缺点。该方案相比于传统方案,控制棒发热减小约30%,控制棒燃耗减小50%,并能有效改善周围燃料组件的功率峰因子,控制棒更换周期可提升1倍。  相似文献   

9.
小型棒控压水堆舍弃了可溶硼,并高度依赖控制棒与可燃毒物棒控制堆芯的反应性。为研究控制棒对堆芯关键性能的影响,本文以核动力破冰船用KLT-40模型为对象,以轴向功率偏移、堆芯寿期、燃料利用率与径向功率峰因子为指标,开展长寿期小型棒控压水堆控制棒布置与动作策略设计分析。首先,基于OpenMC程序开发带棒燃耗程序;其次,比较堆芯带控制棒与无控制棒运行时的堆芯寿期等指标;最后,分析不同动作策略对轴向功率偏移等指标的影响。结果表明:控制棒将堆芯寿期从590 EFPDs(等效满功率天,Effective full power days)延长至650~698 EFPDs;低价值棒组优先动作策略使轴向功率偏移程度由-0.69与+0.80分别下降至-0.29与+0.52。因此,要准确计算长寿期压水堆寿期必须采用带控制棒燃耗计算策略,并且通过合理的动作策略能够有效减小控制棒带来的轴向功率偏移。  相似文献   

10.
经济、灵活及与电网匹配的运行控制是先进核电厂的设计目标之一。本文对核电厂典型的控制模式和机械补偿运行控制策略进行了介绍,进一步以机械补偿设计理念为基础,研究分析了其在各种负荷跟踪模式下的运行特性。分析结果表明,采用机械补偿运行策略可实现多种模式下的负荷跟踪运行,并且在绝大部分寿期内可实现URD要求的50%额定功率以上不调硼日间负荷跟踪运行。且在满足功率负荷变化及能量输出需求的前提下,功率峰因子还具有足够的裕量。由此说明机械补偿运行策略可以较大幅度地提升电厂的运行灵活性、经济性以及与电网匹配的适应性。  相似文献   

11.
This paper presents the study of load follow operations without boron adjustment for CPR1000. To enable the CPR1000 to perform load follow maneuvers without changing soluble boron concentration, the worth of Rod Cluster Control Assemblies (RCCAs) are reconfigured with their amount and location unchanged according to the reactivity variations during the load follow transient. To ensure the real-time ability of the reactor core, the target axial offset (AO) during load follow operations is set to the same value with that in based load, and the Delta-I is maintained within the special trapezoidal shaped target band around its target value.For the simulation of the reactor core, the time-dependent one-dimensional two group diffusion equations with the reactivity feedback of moderator temperature, Doppler and xenon–iodine are used. The transverse buckling is adjusted at each time interval so that the one-dimensional model can match the average characteristics of the three-dimensional reactor core accurately. To show the superiority of the improved core control strategy for CPR1000 reactor, the load follow results employing the purposed boron-adjustment free control strategy are compared to those obtained with the typical MODE-G control strategy. It has been demonstrated by the simulation results that the load follow capability of CPR1000 reactor is greatly improved due to the elimination of boron concentration adjustments during load change transients. Full load follow capability of the reactor has been extended from the initial 80% of cycle life to more than 90% of cycle life. Thus, the boron adjustment free improvement on the MODE-G core control strategy is feasible for CPR1000, which can improve the economical performance of the plant and simplify the operational process during power maneuvers.  相似文献   

12.
The renaissance of nuclear power brings more attention to advanced reactor designs and their improved performance and flexibility, including their enhanced load follow capability. Reactor control strategy used to perform transients including power changes has impact on the overall control system design. In particular, as the power change is performed within a load follow maneuver, several modifications occur in the core from a neutronic view point: the fuel and moderator temperature change, the xenon concentration and distribution are modified, the power distribution skewed axially, etc. These changes need to be adequately counterbalanced to keep both the core critical and the power distribution acceptable. The traditional approach in PWRs is to compensate for the reactivity change due to the power variation by adjusting the soluble boron concentration and moving a limited number of control rod banks. However, advanced reactors may adopt a different strategy for a variety of reasons. For example, water-cooled reactors that do not use soluble boron in coolant obviously cannot use its adjustment for this purpose. Moreover, Integral Primary System Reactors (IPSRs) using soluble boron, due to their integral design, have a large inventory of primary coolant. Therefore dilution/boration strategy, while in principle an option, becomes expensive for short time changes and leads to large volume of liquid effluent, in particular toward the end of cycle. Therefore, a capability to perform load follow without changing soluble boron concentration is very desirable for a range of reactor designs.International Reactor Innovative and Secure (IRIS) is an advanced medium-size IPSR that has been selected as the reference reactor for the purpose of this study. A capability to perform load follow maneuvers without changing soluble boron concentration has been examined and demonstrated through implementation of the Westinghouse Mechanical Shim (MSHIM) control strategy. A control bank design suited for MSHIM operation has been devised. Nine load follow scenarios covering a wide range of possible operating requirements, including Westinghouse design basis plus others proposed by EPRI for Advanced LWRs, have been successfully performed through the control rod banks movement only, without soluble boron adjustment, and maintaining power peaking factors within the acceptable range. Thus, IRIS provides improved operation by enabling load follow through MSHIM.  相似文献   

13.
During load follow operation of PWRs, it is required to control the core power distribution and to reduce the amount of cost due to the usage of control devices such as boron adjustment and control rod. Since occurrence of xenon spatial distribution oscillation following the change of the reactor power can cause oscillation in the power distribution, one task in the core power distribution control is to suppress xenon oscillation as effectively as possible. A lot of studies have been done to solve the problem, some of which use complex mathematical treatments. On the other hand, the three axial offsets trajectory method, which uses a simple mathematical treatment based on two points reactor model, has been proved to be effective for xenon oscillation control. In this study, we examined the feasibility of application of the three axial offsets trajectory method in the load follow operation by comparing with conventional strategies such as boron priority control and control rods priority control. In order to increase the effectiveness of control means, we propose a new method that is constructed by considering the superiority of each control strategy.  相似文献   

14.
Load follow operations have been performed by manually changing the boron concentration in the reactor core and moving Control Element Assemblies (CEAs) for controlling the power and the power distribution. The manual operation of load follow requires experience and predictions related to core behavior following power changes because CEA movements distort the power distribution and a boron concentration control is also inaccurate and difficult due to the long time delay in boration/dilution operations. A boron concentration prediction model, accurately predict boron concentration in the reactor coolant system, including the chemical and volume control system (CVCS) following boration or dilution, was developed in order to enhance the boron concentration control during load follow operation. The model was developed using a multi-cell concept and integrated with the KOPEC Integrated Systems Performance Analysis Code (KISPAC), which is a system code used for design purposes. Boron concentration behavior was analyzed to verify the model for both direct and indirect injection using SKN 3&4 data. The load follow operation was simulated and the results were compared with the measured data obtained during the startup period. The developed model accurately predicted boron concentration behavior for all subsystems in the reactor control system and CVCS.  相似文献   

15.
A fast prediction model for load-following operations in a soluble boron-free reactor has been proposed, which can predict the core status when three or more control rod groups are moved at a time. This prediction model consists of two multilayer feedforward neural network models to retrieve the axial offset and the reactivity, and compensation models to compensate for the reactivity and axial offset arising from the xenon transient. The neural network training data were generated by taking various overlaps among the control rod groups into consideration for training the neural network models, and the accuracy of the constructed neural network models was verified. Validation results of predicting load following operations for a soluble boron-free reactor show that this model has a good capability to predict the positions of the control rods for sustaining the criticality of a core during load-following operations to ensure that the tolerable axial offset band is not exceeded and it can provide enough corresponding time for the operators to take the necessary actions to prevent a deviation from the tolerable operating band.  相似文献   

16.
快堆一般采用以碳化硼(B4C)为吸收剂的控制棒进行反应性控制。小型模块化快堆中子泄漏率较大,增殖能力偏弱,单位燃耗反应性损失较大。模块化反应堆运行周期较长,且需要紧凑型堆芯设计,控制棒数量有限。因此,小型模块化快堆需要高10B富集度的B4C进行反应性控制。由于吸收剂燃耗深、功率密度高且导热能力受辐照削弱严重,B4C的安全使用寿命有限。本文通过对比硼化铪(HfB2)、氢化铪(HfH162)和传统B4C为吸收剂的控制棒的反应性价值、堆芯功率分布、堆芯反应性反馈系数、控制棒温度裕度与吸收剂燃耗深度,发现HfB2有更高的安全裕度和更长的安全使用寿命。HfH162控制棒略微改善了功率分布,但其高温氢气解离问题有待进一步研究。  相似文献   

17.
New core design and operating strategies have been proposed for daily load following of an improved BWR core with large power swing.

The core concepts were based on the WNS core which uses an axially two-zoned enrichment fuel. One principal design strategy utilized was to reduce power in the lower portion of the core by adjusting a division point of the axially two-zoned enrichment fuel. One operating strategy introduced is for controlling Xe distributions. This method, coupled with a direct power distribution control by control rods, could decrease the xenon induced power change in the lower part of core.

The BWR core designed and operated under the new strategies was shown to meet the daily load demand with large power swing: 1-h reduction in power from 100 to 50%; 8-h hold at 50% power; 1-h increase in power from 50 to 100%; and 14-h hold at 100% power.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号