首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper studies refrigeration cycles in which plate heat exchangers are used as either evaporators or condensers. The performance of the cycle is studied by means of a method introduced in previous papers which consists of assessing the goodness of a calculation method by looking at representative variables such as the evaporation or the condensation temperature depending on the case evaluated. This procedure is also used to compare several heat transfer coefficients in the refrigerant side. As in previous works the models of all the cycle components are considered together with the heat exchanger models in such a way that the system of equations they provide is solved by means of a Newton–Raphson algorithm. Calculated and measured values of the evaporation and the condensation temperatures are also compared. The experimental results correspond to the same air-to-water heat pump studied in other papers and they have been obtained by using refrigerants R-22 and R-290.  相似文献   

2.
The air-side heat transfer from wire-and-tube heat exchangers of the kind widely used in small refrigeration appliances has been studied. Radiation and free-convection components have been separately investigated. The radiation component was theoretically computed using a diffuse, gray-body network with interactions between each part of the heat exchanger and the surroundings. For the free-convection heat transfer component, a semiempirical correlation was developed on the basis of experimental tests conducted on a set of 42 low-emittance exchangers with various geometrical characteristics. Comparisons between overall heat transfer predictions and a second, independent set of experiments on eight high-emittance exchangers showed satisfactory agreement. The proposed analysis is suitable either to determine the heat transfer performance of an existing (already sized) exchanger or to design a new one for prescribed heat duty and working temperatures.  相似文献   

3.
A new way to assess the performance of refrigeration system models is presented in this paper, based on the estimation of cycle parameters, such as the evaporation temperature which will determine the validity of the method. This paper is the first of a series which will also study the influence of the heat transfer coefficient models on the estimation of the refrigeration cycle parameters. It focuses on fin and tube evaporators and includes the dehumidification process of humid air. The flow through the heat exchanger is considered to be steady and the refrigerant flow inside the tubes is considered one-dimensional. The evaporator model is discretised in cells where 1D mass, momentum and energy conservation equations are solved by using an iterative procedure called SEWTLE. This procedure is based on decoupling the calculation of the fluid flows from each other assuming that the tube temperature field is known at each fluid iteration. Special attention is paid to the correlations utilised for the evaluation of heat transfer coefficients as well as the friction factor on the air and on the refrigerant side. A comparison between calculated values and measured results is made on the basis of the evaporation temperature. The experimental results used in this work correspond to an air-to-water heat pump and have been obtained by using R-22 and R-290 as refrigerants.  相似文献   

4.
Hydrocarbons are considered as alternative fluids for refrigeration, air-conditioning and heat pump applications. Pure butane, propane or their mixtures can be adopted, but due to their flammable properties, the systems have to be designed in such a way that the refrigerant charge is minimized. Therefore, compact heat exchangers and enhanced geometries are adopted in such systems. In this paper, the current state of the art for two-phase heat transfer calculations for pure hydrocarbons and their mixtures is reviewed and analysed. Recommendations are proposed for estimating evaporation and condensation heat transfer in various geometries including enhanced tubes as well as compact heat exchangers.  相似文献   

5.
This study discusses the effects of the heat exchanger type, refrigerant, inner tube configuration, and fin geometry on evaporator performance by adopting updated correlations of EVSIM, a numerical analysis model based on the tube-by-tube method developed by Domanski. The heat exchanger types considered are the cross-counter flow type and cross-parallel flow type. The refrigerants considered for the numerical test as a working fluid are R-134a, R-410A and R-22. For inner tube configuration, enhanced tube and smooth tube cases are considered. For the air side evaporation performance, heat exchangers using plate fins, wavy fins and slit fins are analyzed. Results show that the heat transfer rate of the cross-counter flow type heat exchanger is 3% higher than that of the cross-parallel flow type with R-22. The total heat transfer rate of the evaporator using R-410A is higher than those using R-22 and R-134a, while the total pressure drop of R-410A is lower than those of R-22 and R-134a. The heat transfer rate of the evaporator using enhanced tubes is two times higher than that using smooth tubes, but the pressure drop of the enhanced tube is 45–50% higher than that of the smooth tubes. The evaporation performance of slit fins is superior to that of plate fins by 54%.  相似文献   

6.
This paper presents a few salient features of an investigation carried out to study the heat transfer augmentation during condensation of water and R-134a vapor on horizontal integral-fin tubes. The experimental investigation was performed on two different experimental set-ups for water and R-134a. The test-sections were manufactured by machining fins over plain copper tubes of 24.4 ± 0.6 mm outside diameter. The performance of two types of finned tubes viz. circular integral-fin tubes (CIFTs) and spine integral-fin tubes (SIFTs) was studied for the condensation of water and R-134a. These tubes were positioned one by one inside the test-condenser to perform the experiments. All together the experiments were conducted for the condensation on 10 different test-section tubes. With the help of the experimental results, authors have developed an empirical equation. This equation predicts the condensing heat transfer coefficient from their own experimental data for the condensation over CIFTs and SIFTs within a range of ± 15% and experimental data of other thirteen investigators in a range of ± 35% for condensation of water and different refrigerants.  相似文献   

7.
This paper presents a steady-state model for predicting the performance of vapour-compression liquid chillers over a wide range of operating conditions. The model overcomes the idealisations of previous models with regard to modelling the heat exchangers. In particular, it employs an elemental NTU- methodology to model both the shell-and-tube condenser and evaporator. The approach allows the change in heat transfer coefficients throughout the heat exchangers to be accounted for, thereby improving both physical realism and the accuracy of the simulation model. The model requires only those inputs that are readily available to the user (e.g. condenser inlet water temperature and evaporator water outlet temperature). The outputs of the model include system performance variables such as the compressor electrical work input and the coefficient of performance (COP) as well as states of the refrigerant throughout the refrigeration cycle. The methodology employed within the model also allows the performance of chillers using refrigerant mixtures to be modelled. The model is validated with data from one single screw chiller and one twin-screw chiller where the agreement is found to be within ±10%.  相似文献   

8.
Different designs of flat-tube heat exchangers with plain fins have been evaluated theoretically in a parameter study in order to evaluate their performance potential in indirectly cooled display cabinets. Two different types of flat-tube heat exchangers were considered; one with serpentine fins and one with continuous plate fins. Both flat-tube heat exchanger types were adapted to the laminar flow regime on the liquid as well as on the air side. The performance of the two heat exchanger types had previously been verified experimentally under dehumidifying conditions. The results from this parameter study show that considerable savings in the required electric drive power to compressors, pumps and fans can be obtained in comparison with the traditional cooling coil. The savings may be up to 15%. In addition, the required temperature difference for the flat-tube heat exchangers is so small that frost-free operation is possible, which would result in even larger savings.  相似文献   

9.
This paper presents the results of a predictive two-dimensional mathematical model of an adsorption cooling machine consisting of a double consolidated adsorbent bed with internal heat recovery. The results of a base-case, taken as a reference, demonstrated that the COP of the double bed adsorption refrigeration cycle increases with respect to the single bed configuration. However, it was verified that, in order to maximize also the specific power of the machine, the adsorbent beds must have proper thermo-physical properties.Consequently, a sensitivity analysis was carried out, studying the influence of the main heat and mass transfer parameters on the performance of the machine. The results obtained allowed us to define the adsorbent bed design that maximizes its heat and mass transfer properties, as well as the most profitable heat recovery conditions.  相似文献   

10.
This paper presents a transient simulation model that is useful for predicting the dynamic performance of vapour-compression liquid chillers over a wide range of operating conditions. The model employs a thermal capacitance approach for specific state variables to account for the dynamics of the chiller and ancillaries. The model accounts for the change in heat transfer coefficients throughout the heat exchangers thereby improving both physical realism and the accuracy of the simulation model. The model requires only a select few initial conditions (eg. the chilled water and condenser water temperatures). A simple compressor model based on empirical regression has been employed in the simulation. The outputs of the model include system performance variables such as the compressor electrical work input and the coefficient of performance (COP) as well as states of the refrigerant throughout the refrigeration cycle with respect to time. The model is validated with data from two in -situ screw chillers. Predictions are found to be within ±10%, although for one of the chillers a degree of empiricism was employed for the evaporator tube wall mass in order to give satisfactory results for the start-up process.  相似文献   

11.
Condensation heat transfer, both inside and outside horizontal tubes, plays a key role in refrigeration, air conditioning and heat pump applications. In the recent years the science of condensation heat transfer has been severely challenged by the adoption of substitute working fluids and new enhanced surfaces for heat exchangers. Well-known and widely established semiempirical correlations to predict heat transfer during condensation may show to be quite inaccurate in some new applications, and consequently a renewed effort is now being dedicated to the characterisation of flow conditions and associated predictive procedures for heat transfer and pressure drop of condensing vapours, even in the form of zeotropic mixtures. This paper critically reviews the most recent results appeared in the open literature and pertinent to thermal design of condensers for the air conditioning and refrigeration industry; both in-tube and bundle condensation are considered, related to the use of plain and enhanced surfaces.  相似文献   

12.
Current and future prospects of enhanced heat transfer in ammonia systems   总被引:2,自引:0,他引:2  
In the last decade a moderate headway has been made in the application of enhanced surface heat exchangers in ammonia refrigeration systems. This has been a result of the persistent issue of ozone and global warming which has resulted in keen interest in natural refrigerants such as ammonia that has played a prominent role in the refrigeration industry for years, particularly in the field of food, beverage and marine. The only drawback with ammonia is the toxicity; hence, if smaller heat exchangers could be introduced in order to reduce ammonia charge, this negative aspect about ammonia can be addressed to a great extent. In order to achieve this goal, novel and compact heat exchangers with enhanced surfaces have to be introduced. This paper presents an over view of the status of ammonia as a refrigerant and discusses the present and the future trends in the development of compact heat exchangers for use in ammonia refrigeration.  相似文献   

13.
A time-dependent, two-dimensional mathematical model of a reciprocating Active Magnetic Regenerator (AMR) operating at room-temperature has been developed. The model geometry comprises a regenerator made of parallel plates separated by channels of a heat transfer fluid and a hot as well as a cold heat exchanger. The model simulates the different steps of the AMR refrigeration cycle and evaluates the performance in terms of refrigeration capacity and temperature span between the two heat exchangers. The model was used to perform an analysis of an AMR with a regenerator made of gadolinium and water as the heat transfer fluid. The results show that the AMR is able to obtain a no-load temperature span of 10.9 K in a 1 T magnetic field with a corresponding work input of 93.0 kJ m−3 of gadolinium per cycle. The model shows significant temperature differences between the regenerator and the heat transfer fluid during the AMR cycle. This indicates that it is necessary to use two-dimensional models when a parallel-plate regenerator geometry is used.  相似文献   

14.
This paper describes an analytical model that was developed to predict the performance of finned-tube heat exchangers under frosting conditions. The method models the frost growth mechanism and heat exchanger performance in a comprehensive manner. The results include frost accumulation and its effect on energy transfer in relation to varying humidities, fin densities and ambient conditions.  相似文献   

15.
The performance of a single-stage metal hydride cooling system working with the ZrMnFe/MmNi4.5Al0.5 pair has been evaluated based on heat transfer and reaction kinetics considerations. Results show that the initial and operating costs of the system have to be minimized by optimizing the bed thickness, effective thermal conductivity and overall heat transfer coefficients. Of the three operating temperatures (heat source, heat sink and refrigeration temperatures), refrigeration temperature has the greatest influence on system performance, as desorption during the refrigeration process normally controls the cycle time and specific alloy output. However, heat source and heat rejection temperatures assume importance at high refrigeration temperatures. The average COP of the above system lies between 0.45 and 0.50.  相似文献   

16.
The heat transfer in heat exchangers is commonly calculated using the concept of Logarithmic Mean Temperature Difference (LMTD). As is well known this approach is only valid for counter-current and co-current heat exchanger configurations. For other configurations, corrections for the deviation from pure counter-current are introduced. From any standard text book in heat transfer it may be found that the LMTD approach may also be used if condensation and evaporation occurs in the heat exchanger. The purpose of the present paper is to investigate if the LMTD approach can be used in a compact brazed plate evaporator. It will be shown through integration of the governing equations that the LMTD approach indeed may be used for practical cases, even though deviations occur at small logarithmic mean temperature differences. The article presents suggestions on the correction factor (F) needed under some simplified assumptions in a compact brazed plate heat exchanger operating as an evaporator for heat pump and refrigeration applications.  相似文献   

17.
A steady state simulation model has been developed to evaluate the system performance of a transcritical carbon dioxide heat pump for simultaneous heating and cooling. The simulated results are found to be in reasonable agreement with experimental results reported in the literature. Such a system is suitable, for example, in dairy plants where simultaneous cooling at 4 °C and heating at 73 °C are required. The optimal COP was found to be a function of the compressor speed, the coolant inlet temperature to the evaporator and inlet temperature of the fluid to be heated in the gas cooler and compressor discharge pressure. An optimizing study for the best allocation of the fixed total heat exchanger inventory between the evaporator and the gas cooler based on the heat exchanger area has been carried out. Effect of heat transfer in the heat exchangers on system performance has been presented as well. Finally, a novel nomogram has been developed and it is expected to offer useful guidelines for system design and its optimisation.  相似文献   

18.
In order to achieve widespread use of heat pumps across the full spectrum of potential applications, it is critical that the first cost of the units is acceptable. There are many factors influencing this cost, including the number of units manufactured, the ease of installation, the complexity of the control requirements, and the cost of the working fluid(s). A common feature of all heat pump cycles is the presence of at least one heat exchanger, indeed some heat-driven cycles are composed almost entirely of heat exchangers, each having a different but critical role to play. There are several important aspects of heat exchangers that can help to reduce first cost of these components and the system, (in addition to the possible positive impact on coefficient of performance). Two of these are discussed here — compact heat exchangers (CHEs) and heat transfer enhancement. The latter may be directly associated with CHEs but can be equally beneficial in reducing approach temperature differences in 'conventional' shell and tube heat exchangers. Both are essential features of many intensified processes, which the author argues need compatible heat pumps if the market for the latter is to flourish. In this paper, the most recent types of CHE are described, with emphasis on the benefits they can bring to heat pump first cost and performance. Heat transfer enhancement in heat pumps is also reviewed.  相似文献   

19.
Micro heat pumps, with dimensions in the order of centimetres, may in the future be utilised for the heating and/or cooling of buildings, vehicles, clothing, and other products or applications. A number of issues have yet to be solved, including the construction of a microscale compressor, and determination of micro heat exchanger heat transfer capacities. Test samples of micro heat exchangers and a corresponding test apparatus have been built. Some two-phase experiments with propane (R-290) as refrigerant have been conducted. Preliminary results for a micro condenser with 0.5 mm wide trapezoidal channels of 25 mm length showed that a heat flux of up to 135 kW/m2, based on the refrigerant-side area, was attainable. The corresponding overall heat transfer coefficient was 10 kW/(m2 K), with a refrigerant mass flux of 165 kg/(m2 s) and a refrigerant-side pressure drop of 180 kPa/m.  相似文献   

20.
A novel dynamic mathematical model based on spatially distributed approach has been developed and validated in this paper. This model gives good agreement in predicting the system COP and other parameters. The validated model has been used to enhance the prediction of the micro variations of superheat and sub-cooling. The novel spatial distributed model for the condenser and evaporator in refrigeration system, calculates the two-phase region in gas and liquid field separately since the gas and liquid in the two-phase region have different velocities. Previous researchers have used a pre-defined function of the void fraction in their spatially distributed model, based on experimental results. This approach results in the separate solution of the mass and energy equations, and less calculation is required. However, it is recognized that the mass and energy equations should be coupled during solving for more accurate solution. Based on the energy and mass balance, the spatial distribution model constructed here solves the velocity, pressure, refrigerant temperature, and wall temperature functions in heat exchangers simultaneously. A novel iteration method is developed and reduces the intensive calculations required. Furthermore, the condenser and evaporator models have shown a parametric distribution along the heat exchanger surface, therefore, the spatial distribution parameters in the two heat exchangers can be visualised numerically with a two-phase moving interface clearly shown.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号