首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
Cine displacement encoding with stimulated echoes (DENSE) is a magnetic resonance (MR) method that directly encodes tissue displacement into MR phase images. This technique has successfully interrogated many forms of tissue motion, but is most commonly used to evaluate cardiac mechanics. Currently, motion analysis from cine DENSE images requires manually delineated anatomical structures. An automated analysis would improve measurement throughput, simplify data interpretation, and potentially access important physiological information during the MR exam. In this paper, we present the first fully automated solution for the estimation of tissue motion and strain from 2-D cine DENSE data. Results using both simulated and human cardiac cine DENSE data indicate good agreement between the automated algorithm and the standard semi-manual analysis method.  相似文献   

2.
Imaging heart motion using harmonic phase MRI   总被引:13,自引:0,他引:13  
This paper describes a new image processing technique for rapid analysis and visualization of tagged cardiac magnetic resonance (MR) images. The method is based on the use of isolated spectral peaks in spatial modulation of magnetization (SPAMM)-tagged magnetic resonance images. We call the calculated angle of the complex image corresponding to one of these peaks a harmonic phase (HARP) image and show that HARP images can be used to synthesize conventional tag lines, reconstruct displacement fields for small motions, and calculate two-dimensional (2-D) strain. The performance of this new approach is demonstrated using both real and simulated tagged MR images. Potential for use of HARP images in fast imaging techniques and three-dimensional (3-D) analyses are discussed.  相似文献   

3.
Magnetic resonance (MR) tagging has shown great potential for noninvasive measurement of the motion of a beating heart. In MR tagged images, the heart appears with a spatially encoded pattern that moves with the tissue. The position of the tag pattern in each frame of the image sequence can be used to obtain a measurement of the 3-D displacement field of the myocardium. The measurements are sparse, however, and interpolation is required to reconstruct a dense displacement field from which measures of local contractile performance such as strain can be computed. Here, the authors propose a method for estimating a dense displacement field from sparse displacement measurements. Their approach is based on a multidimensional stochastic model for the smoothness and divergence of the displacement field and the Fisher estimation framework. The main feature of this method is that both the displacement field model and the resulting estimate equation are defined only on the irregular domain of the myocardium. The authors' methods are validated on both simulated and in vivo heart data.  相似文献   

4.
Magnetic resonance (MR) tagging is a technique for measuring heart deformations through creation of a stripe grid pattern on cardiac images. In this paper, we present a maximum a posteriori (MAP) framework for detecting tag lines using a Markov random field (MRF) defined on the lattice generated by three-dimensional (3-D) and four-dimensional (4-D) (3-D + t) uniform sampling of B-spline models. In the 3-D case, MAP estimation is cast for detecting present tag features in the current image given an initial solid from the previous frame (the initial undeformed solid is manually positioned by clicking on corner points of a cube). The method also allows the parameters of the solid model, including the number of knots and the spline order, to be adjusted within the same framework. Fitting can start with a solid with less knots and lower spline order and proceed to one with more knots and/or higher order so as to achieve more accuracy and/or higher order of smoothness. In the 4-D case, the initial model is considered to be the linear interpolation of a sequence of optimal solids obtained from 3-D tracking. The same framework proposed for the 3-D case can once again be applied to arrive at a 4-D B-spline model with a higher temporal order.  相似文献   

5.
In this paper, we present a novel technique based on nonrigid image registration for myocardial motion estimation using both untagged and 3-D tagged MR images. The novel aspect of our technique is its simultaneous usage of complementary information from both untagged and 3-D tagged MR images. To estimate the motion within the myocardium, we register a sequence of tagged and untagged MR images during the cardiac cycle to a set of reference tagged and untagged MR images at end-diastole. The similarity measure is spatially weighted to maximize the utility of information from both images. In addition, the proposed approach integrates a valve plane tracker and adaptive incompressibility into the framework. We have evaluated the proposed approach on 12 subjects. Our results show a clear improvement in terms of accuracy compared to approaches that use either 3-D tagged or untagged MR image information alone. The relative error compared to manually tracked landmarks is less than 15% throughout the cardiac cycle. Finally, we demonstrate the automatic analysis of cardiac function from the myocardial deformation fields.  相似文献   

6.
Current research investigating the modeling of left ventricular dynamics for accurate clinical assessment of cardiac function is extensive. Magnetic resonance (MR) tagging is a functional imaging method which allows for encoding of a grid of signal voids on cardiac MR images, providing a mechanism for noninvasive measurement of intramural tissue deformations, in vivo. We present a novel technique of employing a four-dimensional (4-D) B-spline model which permits concurrent determination of myocardial beads and myocardial strains. The method entails fitting the knot planes of the 4-D B-spline model for fixed times to a sequence of triplets of orthogonal sets of tag surfaces for all imaged volumetric frames within the constraints of the model's spatio-temporal internal energy. From a three-dimensional (3-D) displacement field, the corresponding long and short-axis Lagrangian normal, shear, and principal strain maps are produced. As an important byproduct, the points defined by the 3-D intersections of the triplets of orthogonal tag planes, which we refer to as myocardial beads, can easily be determined by our model. Displaying the beads as a movie loop allows for the visualization of the nonrigid movement of the left ventricle in 3-D.  相似文献   

7.
Measuring the 3D motion of muscular tissues, e.g., the heart or the tongue, using magnetic resonance (MR) tagging is typically carried out by interpolating the 2D motion information measured on orthogonal stacks of images. The incompressibility of muscle tissue is an important constraint on the reconstructed motion field and can significantly help to counter the sparsity and incompleteness of the available motion information. Previous methods utilizing this fact produced incompressible motions with limited accuracy. In this paper, we present an incompressible deformation estimation algorithm (IDEA) that reconstructs a dense representation of the 3D displacement field from tagged MR images and the estimated motion field is incompressible to high precision. At each imaged time frame, the tagged images are first processed to determine components of the displacement vector at each pixel relative to the reference time. IDEA then applies a smoothing, divergence-free, vector spline to interpolate velocity fields at intermediate discrete times such that the collection of velocity fields integrate over time to match the observed displacement components. Through this process, IDEA yields a dense estimate of a 3D displacement field that matches our observations and also corresponds to an incompressible motion. The method was validated with both numerical simulation and in vivo human experiments on the heart and the tongue.  相似文献   

8.
Dynamic cardiac magnetic resonance imaging (MR) and computed tomography (CT) provide cardiologists and cardiac surgeons with high-quality 4-D images for diagnosis and therapy, yet the effective use of these high-quality anatomical models remains a challenge. Ultrasound (US) is a flexible imaging tool, but the US images produced are often difficult to interpret unless they are placed within their proper 3-D anatomical context. The ability to correlate real-time 3-D US volumes (RT3D US) with dynamic MR/CT images would offer a significant contribution to improve the quality of cardiac procedures. In this paper, we present a rapid two-step method for registering RT3D US to high-quality dynamic 3-D MR/CT images of the beating heart. This technique overcomes some major limitations of image registration (such as the correct registration result not necessarily occurring at the maximum of the mutual information (MI) metric) using the MI metric. We demonstrate the effectiveness of our method in a dynamic heart phantom (DHP) study and a human subject study. The achieved mean target registration error of CT+US images in the phantom study is 2.59 mm. Validation using human MR/US volumes shows a target registration error of 1.76 mm. We anticipate that this technique will substantially improve the quality of cardiac diagnosis and therapies.   相似文献   

9.
Semi-automatic tracking of myocardial motion in MR tagged images   总被引:3,自引:0,他引:3  
Tissue tagging using magnetic resonance (MR) imaging has enabled quantitative noninvasive analysis of motion and deformation in vivo. One method for MR tissue tagging is Spatial Modulation of Magnetization (SPAMM). Manual detection and tracking of tissue tags by visual inspection remains a time-consuming and tedious process. The authors have developed an interactively guided semi-automated method of detecting and tracking tag intersections in cardiac MR images. A template matching approach combined with a novel adaptation of active contour modeling permits rapid analysis of MR images. The authors have validated their technique using MR SPAMM images of a silicone gel phantom with controlled deformations. Average discrepancy between theoretically predicted and semi-automatically selected tag intersections was 0.30 mm+/-0.17 [mean+/-SD, NS (P<0.05)]. Cardiac SPAMM images of normal volunteers and diseased patients also have been evaluated using the authors' technique.  相似文献   

10.
Tagged magnetic resonance imaging (MRI) is unique in its ability to noninvasively image the motion and deformation of the heart in vivo, but one of the fundamental reasons limiting its use in the clinical environment is the absence of automated tools to derive clinically useful information from tagged MR images. In this paper, we present a novel and fully automated technique based on nonrigid image registration using multilevel free-form deformations (MFFDs) for the analysis of myocardial motion using tagged MRI. The novel aspect of our technique is its integrated nature for tag localization and deformation field reconstruction using image registration and voxel based similarity measures. To extract the motion field within the myocardium during systole we register a sequence of images taken during systole to a set of reference images taken at end-diastole, maximizing the normalized mutual information between the images. We use both short-axis and long-axis images of the heart to estimate the full four-dimensional motion field within the myocardium. We also present validation results from data acquired from twelve volunteers.  相似文献   

11.
This paper presents a novel method for validation of nonrigid medical image registration. This method is based on the simulation of physically plausible, biomechanical tissue deformations using finite-element methods. Applying a range of displacements to finite-element models of different patient anatomies generates model solutions which simulate gold standard deformations. From these solutions, deformed images are generated with a range of deformations typical of those likely to occur in vivo. The registration accuracy with respect to the finite-element simulations is quantified by co-registering the deformed images with the original images and comparing the recovered voxel displacements with the biomechanically simulated ones. The functionality of the validation method is demonstrated for a previously described nonrigid image registration technique based on free-form deformations using B-splines and normalized mutual information as a voxel similarity measure, with an application to contrast-enhanced magnetic resonance mammography image pairs. The exemplar nonrigid registration technique is shown to be of subvoxel accuracy on average for this particular application. The validation method presented here is an important step toward more generic simulations of biomechanically plausible tissue deformations and quantification of tissue motion recovery using nonrigid image registration. It will provide a basis for improving and comparing different nonrigid registration techniques for a diversity of medical applications, such as intrasubject tissue deformation or motion correction in the brain, liver or heart.  相似文献   

12.
Mechanical factors such as deformation and strain are thought to play important roles in the maintenance, repair, and degeneration of soft tissues. Determination of soft tissue static deformation has traditionally only been possible at a tissue's surface, utilizing external markers or instrumentation. Texture correlation is a displacement field measurement technique which relies on unique image patterns within a pair of digital images to track displacement. The technique has recently been applied to MR images, indicating the possibility of high-resolution displacement and strain field determination within the mid-substance of soft tissues. However, the utility of MR texture correlation analysis may vary amongst tissue types depending on their underlying structure, composition, and contrast mechanism, which give rise to variations in texture with MRI. In this study, we investigate the utility of a texture correlation algorithm with first-order displacement mapping terms for use with MR images, and suggest a novel index of image "roughness" as a way to decrease errors associated with the use of texture correlation for intra-tissue strain measurement with MRI. We find that a first-order algorithm can significantly reduce strain measurement error, and that an image "roughness" index correlates with displacement measurement error for a variety of imaging conditions and tissue types.  相似文献   

13.
We describe a registration and tracking technique to integrate cardiac X-ray images and cardiac magnetic resonance (MR) images acquired from a combined X-ray and MR interventional suite (XMR). Optical tracking is used to determine the transformation matrices relating MR image coordinates and X-ray image coordinates. Calibration of X-ray projection geometry and tracking of the X-ray C-arm and table enable three-dimensional (3-D) reconstruction of vessel centerlines and catheters from bi-plane X-ray views. We can, therefore, combine single X-ray projection images with registered projection MR images from a volume acquisition, and we can also display 3-D reconstructions of catheters within a 3-D or multi-slice MR volume. Registration errors were assessed using phantom experiments. Errors in the combined projection images (two-dimensional target registration error--TRE) were found to be 2.4 to 4.2 mm, and the errors in the integrated volume representation (3-D TRE) were found to be 4.6 to 5.1 mm. These errors are clinically acceptable for alignment of images of the great vessels and the chambers of the heart. Results are shown for two patients. The first involves overlay of a catheter used for invasive pressure measurements on an MR volume that provides anatomical context. The second involves overlay of invasive electrode catheters (including a basket catheter) on a tagged MR volume in order to relate electrophysiology to myocardial motion in a patient with an arrhythmia. Visual assessment of these results suggests the errors were of a similar magnitude to those obtained in the phantom measurements.  相似文献   

14.
Validation of an optical flow method for tag displacementestimation   总被引:1,自引:0,他引:1  
We present a validation study of an optical-flow method for the rapid estimation of myocardial displacement in magnetic resonance tagged cardiac images. This registration and change visualization (RCV) software uses a hierarchical estimation technique to compute the flow field that describes the warping of an image of one cardiac phase into alignment with the next. This method overcomes the requirement of constant pixel intensity in standard optical-flow methods by preprocessing the input images to reduce any intensity bias which results from the reduction in stripe contrast throughout the cardiac cycle. To validate the method, SPAMM-tagged images were acquired of a silicon gel phantom with simulated rotational motion. The pixel displacement was estimated with the RCV method and the error in pixel tracking was <4% 1000 ms after application of the tags, and after 30 degrees of rotation. An additional study was performed using a SPAMM-tagged multiphase slice of a canine left ventricle. The true displacement was determined using a previously validated active contour model (snakes). The error between methods was 6.7% at end systole. The RCV method has the advantage of tracking all pixels in the image in a substantially shorter period than the snakes method.  相似文献   

15.
Measuring the local mechanical activity of the heart has lagged behind the measurement of electrical activity due to a lack of measurement tools. Myocardial wall motion abnormalities have been studied for years in the context of regional ischemia. Implanted beads and screws have been used to measure the mechanical activity of the heart in a few isolated regions. Over the past decade, precise and accurate methods for measuring local three-dimensional (3-D) myocardial motion with magnetic resonance imaging (MRI) have been developed using presaturation tagging patterns, velocity encoded phase maps, and displacement encoded phase maps. Concurrently, the quality of cardiac MRI images improved greatly with the use of customized receiver coils and the speed of acquisition has increased dramatically with the advent of undersampling techniques and new generations of MR machines with faster switching gradient coils. The use of these cardiac MRI techniques to produce an image of the local deformation of the heart in the form of a myocardial strain image is described. Using these images, the “mechanical activation” of the heart are defined, that is, the time of onset of contraction. A map of the mechanical activation over the heart is a direct analogy to an electrical activation map of the heart  相似文献   

16.
In the current practice of ultrasound elastography, only the axial component of the displacement vector is estimated and used to produce strain images. A method was recently proposed by our group to estimate both the axial and lateral components of a displacement vector using RF echo signal data acquired along multiple angular insonification directions of the ultrasound beam. Previous work has demonstrated that it is important to choose appropriate values for the maximum beam angle and angular increment to achieve optimal performance with this technique. In this paper, we present error propagation analysis using the least-square fitting process for the optimization of the angular increment and the maximum beam steered angle. Ultrasound simulations are performed to corroborate the theoretical prediction of the optimal values for the maximum beam angle and angular increment. Selection of the optimal parameters depends on system parameters, such as center frequency and aperture size. For typical system parameters, the optimal maximum beam angle is around 10deg for axial strain estimation and around 15deg for lateral strain estimation. The optimal angular increment is around 4deg -6deg, which indicates that only five to seven beam angles are required for this strain-tensor estimation technique.  相似文献   

17.
The quantitative estimation of regional cardiac deformation from three-dimensional (3-D) image sequences has important clinical implications for the assessment of viability in the heart wall. We present here a generic methodology for estimating soft tissue deformation which integrates image-derived information with biomechanical models, and apply it to the problem of cardiac deformation estimation. The method is image modality independent. The images are segmented interactively and then initial correspondence is established using a shape-tracking approach. A dense motion field is then estimated using a transversely isotropic, linear-elastic model, which accounts for the muscle fiber directions in the left ventricle. The dense motion field is in turn used to calculate the deformation of the heart wall in terms of strain in cardiac specific directions. The strains obtained using this approach in open-chest dogs before and after coronary occlusion, exhibit a high correlation with strains produced in the same animals using implanted markers. Further, they show good agreement with previously published results in the literature. This proposed method provides quantitative regional 3-D estimates of heart deformation.  相似文献   

18.
The authors describe a new fully automatic algorithm for left ventricular (LV) volume change measurement and assessment from both 2-chamber and 4-chamber apical views of echocardiographic images based on the American Society of Echocardiography (ASE) recommendations. The method identifies the left ventricular endocardium (LVE) in a `centre-based' approach. In this approach the left ventricular centre point (LVCP) is firstly approximated using a robust fuzzy based technique. The LVE edge points are then searched for on nonuniform distributed radial lines emanating from the LVCP using a multiresolution edge detection technique based on the global maximum of the wavelet transform (GMWT). The extracted edge points are then spatially/temporally processed to identify the final smooth boundary using cubic-B-splines. The extracted LVEs in a complete cardiac cycle, together with the standard approximating formula, are then used to compute the LV volume evolution in a cardiac cycle. Experiments with real two-dimensional echocardiographic images are presented. The accuracy of the GMWT edge detection technique, which is the heart of the system, is compared to the conventional Sobel and Laplace edge operators  相似文献   

19.
The temporal comparison of mammograms is complex; a wide variety of factors can cause changes in image appearance. Mammogram registration is proposed as a method to reduce the effects of these changes and potentially to emphasize genuine alterations in breast tissue. Evaluation of such registration techniques is difficult since ground truth regarding breast deformations is not available in clinical mammograms. In this paper, we propose a systematic approach to evaluate sensitivity of registration methods to various types of changes in mammograms using synthetic breast images with known deformations. As a first step, images of the same simulated breasts with various amounts of simulated physical compression have been used to evaluate a previously described nonrigid mammogram registration technique. Registration performance is measured by calculating the average displacement error over a set of evaluation points identified in mammogram pairs. Applying appropriate thickness compensation and using a preferred order of the registered images, we obtained an average displacement error of 1.6 mm for mammograms with compression differences of 1-3 cm. The proposed methodology is applicable to analysis of other sources of mammogram differences and can be extended to the registration of multimodality breast data.  相似文献   

20.
State of the art cardiac computed tomography (CT) enables the acquisition of imaging data of the heart over the entire cardiac cycle at concurrent high spatial and temporal resolution. However, in clinical practice, acquisition is increasingly limited to 3-D images. Estimating the shape of the cardiac structures throughout the entire cardiac cycle from a 3-D image is therefore useful in applications such as the alignment of preoperative computed tomography angiography (CTA) to intra-operative X-ray images for improved guidance in coronary interventions. We hypothesize that the motion of the heart is partially explained by its shape and therefore investigate the use of three regression methods for motion estimation from single-phase shape information. Quantitative evaluation on 150 4-D CTA images showed a small, but statistically significant, increase in the accuracy of the predicted shape sequences when using any of the regression methods, compared to shape-independent motion prediction by application of the mean motion. The best results were achieved using principal component regression resulting in point-to-point errors of 2.3±0.5 mm, compared to values of 2.7±0.6 mm for shape-independent motion estimation. Finally, we showed that this significant difference withstands small variations in important parameter settings of the landmarking procedure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号