首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 218 毫秒
1.
磁控溅射制备TiCN复合膜的微结构与性能   总被引:1,自引:0,他引:1  
通过磁控溅射技术制备一系列不同石墨靶功率的TiCN复合膜。分别利用X射线衍射仪、纳米压痕仪和高温摩擦磨损仪研究薄膜的微观结构、力学性能及室温和高温摩擦磨损性能。结果表明:随着石墨靶功率的增加,TiCN(111)峰逐渐宽化,晶粒尺寸逐渐减小,薄膜最后接近非晶结构。薄膜的硬度与弹性模量呈先增大后减小的趋势,在石墨靶功率为90 W时薄膜的硬度和弹性模量最大,分别为28.2和230 GPa。随着石墨靶功率的增加,室温下TiCN复合膜的摩擦因数逐渐减小,TiCN复合膜的耐磨性能明显提高。当环境温度升高到300~500℃时,TiCN薄膜的摩擦因数明显增大。TiCN复合膜的摩擦磨损性能受薄膜微观结构、空气中的水蒸气和氧气及环境温度等一系列因素的影响。  相似文献   

2.
采用磁控溅射仪制备了一系列不同C含量的Ti WCN复合膜.利用XRD,SEM,纳米压痕仪和高温摩擦磨损仪等对Ti WCN复合膜的微结构、力学性能和摩擦磨损性能进行了表征.结果表明:Ti WCN复合膜由fcc结构的Ti WCN相和六方结构的Ti2N相组成;随着C含量增加,薄膜硬度先升高后降低,室温摩擦系数逐渐减小,而磨损率先减小后增大.当C含量为11.25%时,硬度达到最大值,为35.97 GPa;磨损率获得最小值,为1.26×10-5mm3·N-1·m-1.当C含量为13.68%时,摩擦系数最小,为0.32.当温度低于370℃时,Ti WCN复合膜的摩擦系数和磨损率小于Ti WN薄膜;当温度超过370℃时,Ti WCN复合膜的摩擦系数和磨损率大于Ti WN薄膜.C添加到Ti WN薄膜中提高了薄膜的力学性能和常温摩擦磨损性能,而薄膜的高温摩擦磨损性能并未得到改善.  相似文献   

3.
TaMoN复合膜的微结构、力学性能与摩擦性能   总被引:1,自引:0,他引:1  
采用多靶磁控溅射技术,根据不同Mo靶功率制备一系列不同Mo含量的TaMoN复合膜。利用X射线衍射仪、纳米压痕仪、高温摩擦磨损仪、扫描电子显微镜及其配套的能谱仪研究复合膜的相组成、力学性能、室温和高温下的摩擦性能。结果表明,TaMoN复合膜的微结构是由面心立方、密排六方与底心斜方组成的多相结构;TaMoN复合膜的硬度比TaN单层膜的硬度高,且随着Mo含量的增加先升高后降低,在Mo含量为52.68 at%时达到最大值,为33.9 GPa;Mo元素的添加可以有效改善TaN薄膜在常温和高温下的摩擦性能,通过对磨痕的分析,详细解释了TaMoN复合膜具有优异的减摩性能的原因。  相似文献   

4.
通过非平衡磁控溅射的方法制备了不同C含量的ZrCN复合薄膜,采用XPS,XRD,SEM,AFM,纳米压痕仪和摩擦磨损仪等对薄膜的化学成分、微结构、表面形貌、力学性能及摩擦磨损性能进行了研究.结果表明,ZrCN薄膜中(C+N)/Zr原子比对薄膜的相组成、微结构和力学性能都有很大的影响.当(C+N)/Zr原子比小于1时,C进入ZrN的晶格间隙并形成Zr(C,N)固溶体.而当(C+N)/Zr原子比大于1时,多余的C形成非晶态的CN或单质C,ZrCN复合膜呈fcc结构.随着C含量升高,ZrCN复合膜的硬度先增大后减小,而摩擦系数逐渐减小,磨损所产生的磨痕逐渐变窄、变浅.C的加入使得ZrCN复合膜的摩擦磨损形式发生改变,摩擦磨损性能得到提高.含C量为13.2%的ZrCN薄膜硬度达到31 GPa,摩擦系数仅为0.26,综合具备了硬度高、摩擦磨损性能好的优良特点.  相似文献   

5.
目的 提高(WMoTaNb)ZrxN薄膜的硬度与弹性模量、膜基结合力、摩擦磨损及抗烧蚀性能。方法 采用反应磁控溅射技术,通过对Zr靶功率的调控,在单晶Si和M2高速钢基体上制备不同Zr含量的(WMoTaNb)ZrxN薄膜。采用FESEM对薄膜的表面及截面形貌进行观察,利用XRD对薄膜的物相组成进行分析,采用纳米压痕仪、划痕仪和摩擦磨损试验机分别对薄膜的硬度、膜基结合力及摩擦磨损性能进行表征,通过氧–乙炔烧蚀试验对薄膜的抗烧蚀性能进行测定。结果 (WMoTaNb)ZrxN薄膜主要由FCC和BCC固溶体结构组成,Zr元素引入后,薄膜FCC(200)晶面衍射峰消失,FCC(111)与(311)晶面衍射峰强度增强。随着Zr靶功率的增加,薄膜中Zr元素含量逐渐增加,薄膜的硬度与弹性模量先增大、后减小,膜基结合力呈现不规律变化,薄膜的抗烧蚀性能逐渐提升。薄膜的摩擦系数随着Zr靶功率的增加而增大,但维持在0.65~0.95。当Zr靶功率为40 W时,制备的薄膜硬度、弹性模量及膜基结合力均达到最大,分别为27.9 GPa、291.3 GPa、84 N,此时薄膜的磨痕深度最小为227 nm。结论 Zr靶功率为40 W时制备的薄膜硬度、弹性模量、膜基结合力、摩擦磨损与抗烧蚀性能最佳。  相似文献   

6.
通过非平衡磁控溅射的方法制备了不同C含量的ZrCN复合薄膜,采用XPS,XRD,SEM,AFM,纳米压痕仅和摩擦磨损仅等对薄膜的化学成分、微结构、表面形貌、力学性能及摩擦磨损性能进行了研究.结果表明,ZrCN薄膜中(C+N)/Zr原子比对薄膜的相组成、微结构和力学性能都有很大的影响.当(C+N)/Zr原子比小于1时,C进入ZrN的晶格间隙并形成Zr(C,N)固溶体.而当(C+N)/Zr原子比大于1时,多余的C形成非晶态的CN或单质C,ZrCN复合膜呈fcc结构.随着C含量升高,ZrCN复合膜的硬度先增大后减小,而摩擦系数逐渐减小,磨损所产生的磨痕逐渐变窄、变浅.C的加入使得ZrCN复合膜的摩擦磨损形式发生改变,摩擦磨损性能得到提高.含C量为13.2%的ZrCN薄膜硬度达到31 GPa,摩擦系数仅为0.26,综合具备了硬度高、摩擦磨损性能好的优良特点.  相似文献   

7.
采用多靶磁控溅射仪,制备不同Al含量的(V,W,Al)N复合膜。利用X射线衍射仪、纳米压痕仪和热处理炉及热失重分析仪对(V,W,Al)N复合膜的微观组织、力学性能及高温抗氧化性能进行表征。结果表明:当Al含量低于14.86 at%时,(V,W,Al)N复合膜存在面心立方结构(V,W)N、WN相及六方结构V2N相,当Al含量高于14.86 at%时,薄膜存在面心立方结构(V,W)N、WN相及六方结构V2N和AlN相;随Al原子百分含量的增加,复合膜的硬度呈先增大后减小的趋势,当Al原子百分含量达到14.86 at%时,其硬度最大值为35.5 GPa;随Al含量的增加,(V,W,Al)N复合膜抗氧化性能提高了至少200℃。讨论Al含量对(V,W,Al)N复合膜性能的影响。  相似文献   

8.
Zr掺杂类金刚石薄膜摩擦性能及耐腐蚀性能的影响   总被引:1,自引:1,他引:0  
目的改善不锈钢摩擦性能及耐腐蚀性能。方法通过线性阳极层离子源辅助非平衡磁控溅射法,制备了不同Zr含量的类金刚石(DLC)薄膜,采用扫描电子显微镜、拉曼光谱仪、纳米硬度仪、高温销盘磨损仪、电化学工作站,对薄膜的化学成分、显微结构、纳米硬度、薄膜摩擦性能及耐腐蚀性能进行测试研究。结果随着Zr靶功率的增大,Zr含量线性增加。Zr含量从4.9%增加至16.3%时,I_D/I_G增大,薄膜硬度从12.1 GPa逐渐下降至8.4 GPa;Zr含量增大至21.2%时,I_D/I_G减小,薄膜硬度增大至11.4 GPa。涂镀类金刚石薄膜的不锈钢基体比无涂层的不锈钢基体有更低的摩擦系数,更好的耐磨损性能。Zr掺杂DLC薄膜的最小摩擦系数为0.07。Zr含量从4.9%增加至16.3%,DLC薄膜的耐腐蚀性能减弱;Zr含量继续增加,DLC薄膜的耐腐蚀性能增强。当Zr含量不大于11.9%时,沉积Zr掺杂DLC膜的不锈钢基体的耐腐蚀性能比不锈钢基体的更强。结论 Zr含量不大于11.9%时,Zr掺杂类金刚石薄膜既可以有效地改善不锈钢基体的摩擦磨损性能,又可以大幅提高耐腐蚀性能。  相似文献   

9.
采用多靶反应磁控溅射设备制备了一系列不同基体负偏压的W-C-N复合膜.采用X射线衍射仪、扫描电镜、能量色散谱仪、纳米压痕仪和摩擦磨损仪对薄膜进行表征.结果表明:当负偏压小于等于80 V时,薄膜表现出六方α-WCN相结构,增加到120 V时,转变为立方β-WCN相,薄膜硬度、弹性模量和膜基结合力出现对应最佳性能点的峰值;随着负偏压的增大,薄膜质量得到改善,磨损率和摩擦系数明显降低,负偏压达到200 V时,磨损率和摩擦系数分别出现最低值4.22×10-6 mm3·N-1 ·m-1和0.27;薄膜的磨损机制主要是磨粒磨损.  相似文献   

10.
反应磁控溅射制备Ti-Si-N薄膜的摩擦磨损性能   总被引:6,自引:0,他引:6  
用反应磁控溅射方法,在不锈钢表面沉积Ti-Si-N薄膜.用原子力显微镜观察薄膜的表面形貌,Ti-Si-N颗粒尺寸小于0.1 μm,用亚微压入仪测试薄膜硬度,当硅的摩尔分数为9.6%时,薄膜硬度出现最大值47 GPa.球-盘式摩擦磨损结果表明,Ti-Si-N薄膜的耐磨性能明显优于TiN薄膜,加入少量硅元素后,TiN薄膜的抗磨损性能有显著提高,但Ti-Si-N薄膜的室温摩擦系数较高(0.6~0.8),高温下摩擦系数也仅轻微降低(550℃,0.5~0.6).由于Ti-Si-N薄膜的摩擦系数可能与磨损中氧化物生成量的增加有关,常温下Ti-Si-N薄膜的摩擦系数随硅摩尔分数的增加而增大,而高温下Ti-Si-N薄膜的摩擦系数随硅含量上升而降低.  相似文献   

11.
Amorphous hydrogen-free silicon carbide (a-SiC) coatings demonstrate good adhesion to different steel substrates, low intrinsic stress and high hardness however show quite high coefficient of friction in comparison with carbon-based coatings. Some addition of carbon to SiC can promote the decrease of friction coefficient.In the present work the amorphous hydrogenated silicon-carbide (a-SiC:H) films with different C/Si ratio were prepared at room temperature using DC magnetron sputtering in two ways: (i) sputtering of silicon target; (ii) sputtering of SiC target, both in the gas mixture of Ar and CH4. In the latter case the films contained less hydrogen at the same C/Si ratio. The mechanical and tribological properties of these films were studied to find their optimum combination.The hardness, elastic modulus (nanoindentation), intrinsic stress (Stoney's formula) and coefficient of friction (pin on disc tribometer) were examined in dependence on the technological parameters, film structure and composition (Raman spectra, electron probe microanalysis). An increase of carbon in the films from 50 to 70 at.% resulted in decrease of hardness and friction coefficient. In the first case (i) the hardness decreased from 13 to10 GPa and in the second case (ii) from 23 to 16 GPa. Thus sputtering of SiC target in the gas mixture of Ar and CH4 allows obtaining at room temperature the films with C/Si > 1 in which relatively high hardness (16-18 GPa) and low friction coefficient (~ 0.15) are combined.  相似文献   

12.
目的通过调节偏压,改善无氢DLC薄膜的微观结构,提高其力学性能和减摩抗磨性能。方法采用离子束辅助增强磁控溅射系统,沉积不同偏压工艺的DLC薄膜。采用原子力显微镜(AFM)观察薄膜表面形貌,采用拉曼光谱仪对薄膜的微观结构进行分析,采用纳米压痕仪测试薄膜硬度及弹性模量,采用表面轮廓仪测定薄膜沉积前/后基体曲率变化,并计算薄膜的残余应力,采用大载荷划痕仪分析薄膜与不锈钢基体的结合力,采用TRB球-盘摩擦磨损试验机评价薄膜的摩擦学性能,采用白光共聚焦显微镜测量薄膜磨痕轮廓,并计算薄膜的磨损率。结果偏压对DLC薄膜表面形貌、微观结构、力学性能、摩擦学性能都有不同程度的影响。偏压升高导致碳离子能量升高,表面粗糙度呈现先减小后增加的趋势,-400V的薄膜表面具有最小的表面粗糙度且C─C sp^3键含量最多,这也导致了此偏压下薄膜的硬度最大。薄膜的结合性能与碳离子能量大小呈正相关,-800 V时具有3.98 N的最优结合性能。不同偏压工艺制备的薄膜摩擦系数随湿度的增加,均呈现减小的趋势,偏压为-400V时,薄膜在不同湿度环境中均显示出最优的摩擦学性能。结论偏压为-400 V时,DLC薄膜综合性能最优,其表面粗糙度、硬度、结合力和摩擦系数分别为2.5 nm、17.1 GPa、2.81 N和0.11。  相似文献   

13.
目的 设计制备用于高速切削难加工材料的长寿命刀具涂层.方法 采用三靶磁控共溅射技术,通过改变石墨靶材的溅射功率,调控不同润滑相的配比,制备具有不同C含量的V-Al-C-N纳米复合涂层.利用纳米压痕仪和高温摩擦试验机,对涂层的力学性能和摩擦学性能进行检测.采用透射电镜和扫描电镜观察涂层的显微结构和摩擦磨损表面形貌,并分析...  相似文献   

14.
目的研究离子源功率对a-C:H(Al)薄膜结构及性能的影响。方法采用阳极离子源离化CH_4气体,中频磁控溅射Al靶,通过改变离子源功率,在n(100)型单晶硅及16Mn Cr5钢基体上沉积a-C:H(Al)薄膜。利用扫描电镜、维氏显微硬度计、摩擦磨损试验机和表面轮廓仪等设备对a-C:H(Al)薄膜的结构及性能进行表征。结果薄膜的硬度均在1000HV以上。摩擦系数较低,为0.05~0.15。离子源功率为450 W时,薄膜摩擦系数和结合力均出现了最优值,分别为0.05和21.46 N。离子源功率在550 W时,磨损率达到最低值,为3.59×10~(-7) mm~3/(N·m)。结论离子源功率较低时,薄膜表面较疏松,随着离子源功率的增加,薄膜逐渐趋于平整致密。随离子源功率的增加,薄膜的硬度增大,薄膜的结合力先增大后减小,而薄膜的摩擦系数先减小后增大,磨损宽度减小,磨损深度降低,磨损率减小。  相似文献   

15.
The influences of chemical composition and deposition power on the electrical, mechanical, and tribological properties of sputtered chromium nitride (Cr-N) thin films that can be used for development of cryogenic temperature sensor are investigated. Cr-N thin films were deposited by DC reactive magnetron sputtering technique under various nitrogen gas flows (5-20 sccm) and deposition powers (200 and 250 W). Results of chemical composition showed that films produced with 5 and 10 sccm flow of nitrogen gas were substoichiometric, while at higher flows they were overstoichiometric. The surface morphology investigation showed that grains size and surface roughness increase with nitrogen gas flow, whereas deposition power has an inverse effect on both of these parameters. The electrical results demonstrated that the substoichiometric films had a positive temperature coefficient of resistivity, and the overstoichiometric films showed a negative temperature coefficient of resistivity. The films produced at higher deposition power of 250 W showed higher hardness and lower friction coefficient and scratch volume, while variation of nitrogen gas flow in the range of 5-20 sccm did not affect these properties, significantly.  相似文献   

16.
黄珂  刘文军  谭科  罗书径 《表面技术》2019,48(9):287-292
目的 改善CrC薄膜的制备工艺,提高薄膜的结合强度。方法 采用射频偏压辅助磁控溅射技术,以Cr和石墨为靶材,C2H2为反应气体,在M42高速钢表面制备梯度Cr/CrC膜。利用扫描电子显微镜(SEM)、能谱仪(EDS)、Raman光谱仪分析薄膜的微观形貌、成分组成、键结构,用纳米压痕仪、洛氏硬度计对薄膜的结合性能进行评价。结果 成功制备了表面致密均匀的梯度Cr/CrC薄膜,薄膜中sp3键含量随石墨靶射频功率的增加而呈现先增大后减小的趋势。薄膜的结合强度随射频功率的增大而先增大后减小,射频功率为250 W时,薄膜中含有最多的sp3键,并且有最高的硬度,硬度值为21 GPa。结论 纯Cr过渡层能有效吸收薄膜中的内应力,改善膜/基结合性能,对Cr/CrC薄膜结合强度有明显增强作用。石墨靶的射频功率大小对梯度Cr/CrC膜的结构和结合强度有显著影响,射频功率为250 W时,制备出的薄膜具有最高的硬度和结合强度。  相似文献   

17.
CrN/W2N multilayer films with various bilayer periods of 15-85 nm were deposited on high speed steel (W18Cr4V) substrates by means of DC closed field unbalanced magnetron sputtering. The morphology and microstructure of the multilayer films were investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD) and high resolution transmission electron microscopy (HRTEM). The mechanical and tribological properties were evaluated using a nanoindentor, Rockwell and scratch tests and a conventional ball-on-disk tribometer, respectively. There were some transverse grains at the layer interface and the interface between the CrN and W2N layers was not so sharp owing to atom diffusion through the interface. In the bilayer period range, the microhardness, elastic modulus and adhesive strength of the CrN/W2N multilayer films increased with the decrease of bilayer period. The CrN/W2N multilayer film with a bilayer period of 15 nm showed the highest hardness (29.2 GPa), elastic modulus (376 GPa) and best adhesion strength, it also had the highest wear resistance and lowest friction coefficient.  相似文献   

18.
Because high density DLC (HD-DLC) films prepared using filtered arc deposition (FAD) systems possess high hardness, low friction coefficients, and a smooth surface, they have been good candidates for use in tribological applications. The aim of present work is the investigation of the mechanical and structural properties of HD-DLC films.The experimental conditions were the following: arc current, 50 A; base pressure, less than 3 × 10− 3 Pa; substrate bias, DC-100 V; substrate temperature, less than 100 °C. The HD-DLC films were formed on silicon wafers and tungsten carbide (WC) substrates. The film properties of hardness, composition, structure, and friction were analyzed.The film hardness is high, 80-90 GPa, with a low friction coefficient of less than 0.1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号