首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Molecules that can target duplex DNA with sequence selectivity have the potential to be useful tools in genomic research and also as therapeutic agents. Homopurine-homopyrimidine stretches in duplex DNA can be recognized by homopurine or homopyrimidine TFOs (triplex-forming oligonucleotides) through the formation of triplex DNA. We have previously developed bicyclic nucleoside analogues (WNAs) for the formation of stable triplexes in the formation of stable antiparallel triplexes containing a TA or a CG interrupting site. In this study, we investigated the effects on triplex DNA formation of ortho-, meta-, and para-methyl substituent groups on the aromatic ring of the WNA analogue. It was found that the homopurine TFO containing meta- and para-methyl-substituted WNA-βT (mMe-WNA-βT, pMe-WNA-βT) stabilized triplexes containing a TA interrupting site or a GC site, respectively. Interestingly, the ortho-methyl-substituted WNA-βT (oMe-WNA-βT) efficiently promoted DNA strand displacement to form the TFO/pyrimidine duplex. A detailed investigation showed that the duplex was in the antiparallel orientation and that its formation took place prior to triplex formation with the need for a magnesium cation. NOESY measurements indicated a significant difference in the rotation flexibilities of the phenyl rings of WNA-βTs: that is, the conformation of the ortho-methylated phenyl ring was stable in a temperature-independent manner. It was speculated that the initial formation of a ternary complex was followed by strand displacement and then the formation of the TFO/pyrimidine duplex together with the TFO(2)/pyrimidine triplex formation during the early stage, and that the equilibrium shifted to the triplex during the later stage. Although the detailed role is still uncertain, the fixed phenyl ring of oMe-WNA-βT might play a role in the displacement reaction.  相似文献   

2.
Aromatic amines are strongly carcinogenic. They are activated in the liver to give reactive nitrenium ions that react with nucleobases within the DNA duplex. The reaction occurs predominantly at the C8 position of the dG base, thereby giving C8‐acetyl‐aryl‐ or C8‐aryl‐dG adducts in an electrophilic aromatic substitution reaction. Alternatively, reaction with the exocyclic 2‐NH2 group is observed. Although the C8 adducts retain base‐pairing properties, base pairing is strongly compromised in the case of the N2 adducts. Here we show crystal structures of two DNA lesions, N2‐acetylnaphthyl‐dG and C8‐fluorenyl‐dG, within a DNA duplex recognized by the repair protein Rad14. The structures confirm that two molecules of the repair protein recognize the lesion and induce a 72 or 78° kink at the site of the damage. Importantly, the same overall kinked structure is induced by binding of the repair proteins, although the structurally different lesions result in distinct stacking interactions of the lesions within the duplex. The results suggest that the repair protein XPA/Rad14 is a sensor that recognizes flexibility. The protein converts the information that structurally different lesions are present in the duplex into a unifying sharply kinked recognition motif.  相似文献   

3.
Anthraquinone and pyrene analogues attached to the 3′ and/or 5′ termini of triplex‐forming oligonucleotides (TFOs) by various linkers increased the stability of parallel triple helices. The modifications are simple to synthesize and can be introduced during standard solid‐phase oligonucleotide synthesis. Potent triplex stability was achieved by using doubly modified TFOs, which in the most favourable cases gave an increase in melting temperature of 30 °C over the unmodified counterparts and maintained their selectivity for the correct target duplex. Such TFOs can produce triplexes with melting temperatures of 40 °C at pH 7 even though they do not contain any triplexstabilizing base analogues. These studies have implications for the design of triplex‐forming oligonucleotides for use in biology and nanotechnology.  相似文献   

4.
In a functioning genetic system, the information‐encoding molecule must form a regular self‐complementary complex (for example, the base‐paired double helix of DNA) and it must be able to encode information and pass it on to new generations. Here we study a benzo‐widened DNA‐like molecule (yDNA) as a candidate for an alternative genetic set, and we explicitly test these two structural and functional requirements. The solution structure of a 10 bp yDNA duplex is measured by using 2D‐NMR methods for a simple sequence composed of T–yA/yA–T pairs. The data confirm an antiparallel, right‐handed, hydrogen‐bonded helix resembling B‐DNA but with a wider diameter and enlarged base‐pair size. In addition to this, the abilities of two different polymerase enzymes (Klenow fragment of DNA pol I (Kf) and the repair enzyme Dpo4) to synthesize and extend the yDNA pairs T–yA, A–yT, and G–yC are measured by steady‐state kinetics studies. Not surprisingly, insertion of complementary bases opposite yDNA bases is inefficient due to the larger base‐pair size. We find that correct pairing occurs in several cases by both enzymes, but that common and relatively efficient mispairing involving T–yT and T–yC pairs interferes with fully correct formation and extension of pairs by these polymerases. Interestingly, the data show that extension of the large pairs is considerably more efficient with the flexible repair enzyme (Dpo4) than with the more rigid Kf enzyme. The results shed light on the properties of yDNA as a candidate for an alternative genetic information‐encoding molecule and as a tool for application in basic science and biomedicine.  相似文献   

5.
The majority of studies on DNA triple helices have been focused on pH‐sensitive parallel triplexes with Hoogsteen CT‐containing third strands that require protonation of cytosines. Reverse Hoogsteen GT/GA‐containing antiparallel triplex‐forming oligonucleotides (TFOs) do not require an acidic pH but their applicability in triplex technology is limited because of their tendency to form undesired highly stable aggregates such as G‐quadruplexes. In this study, G‐rich oligonucleotides containing 2–4 insertions of twisted intercalating nucleic acid (TINA) monomers are demonstrated to disrupt the formation of G‐quadruplexes and form stable antiparallel triplexes with target DNA duplexes. The structure of TINA‐incorporated oligonucleotides was optimized, the rules of their design were established and the optimal triplex‐forming oligonucleotides were selected. These oligonucleotides show high affinity towards a 16 bp homopurine model sequence from the HIV‐1 genome; dissociation constants as low as 160 nM are observed whereas the unmodified TFO does not show any triplex formation and instead forms an intermolecular G‐quadruplex with Tm exceeding 90 °C in the presence of 50 mM NaCl. Here we present a set of rules that help to reach the full potential of TINA‐TFOs and demonstrate the effect of TINA on the formation and stability of triple helical DNA.  相似文献   

6.
Locked nucleic acids (LNAs) can greatly enhance duplex DNA stability, and are therefore creating opportunities to improve therapeutics, as well as PCR‐based disease and pathogen diagnostics. Realizing the full potential of LNAs will require better understanding of their contributions to duplex stability, and the ability to predict their hydridization thermodynamics. Melting thermodynamics data for a large set of diverse duplexes containing LNAs in one or both strands are presented. Those data reveal that LNAs, when present on both strands, can stabilize a duplex not only through direct interaction with their base‐pair partner, but also through nonlocal hyperstablization effects created by LNA:LNA base pairs and/or specific patterns of oppositely oriented LNA:DNA base pairs. The data are, therefore, used to extend a thermodynamic model previously developed in our lab to permit accurate prediction of melting temperatures for duplexes bearing LNA substitutions within both strands using a classic group‐contribution approach. © 2015 American Institute of Chemical Engineers AIChE J, 61: 2711–2731, 2015  相似文献   

7.
Janus‐type nucleosides are heterocycles with two faces, each of which is designed to complement the H‐bonding interactions of natural nucleosides comprising a canonical Watson–Crick base pair. By intercepting all of the hydrogen bonds contained within the base pair, oligomeric Janus nucleosides are expected to achieve sequence‐specific DNA recognition through the formation of J‐loops that will be more stable than D‐loops, which simply replaces one base‐pair with another. Herein, we report the synthesis of a novel Janus‐AT nucleoside analogue, JAT, affixed on a carbocyclic analogue of deoxyribose that was converted to the corresponding phosphoramidite. A single JAT was successfully incorporated into a DNA strand by solid phase for targeting both A and T bases, and characterized through biophysical and computational methods. Experimental UV‐melting and circular dichroism data demonstrated that within the context of a standard duplex, JAT associates preferentially with T over A, and much more poorly with C and G. Density functional theory calculations confirm that the JAT structure is well suited to associate only with A and T thereby highlighting the importance of the electronic structure in terms of H‐bonding. Finally, molecular dynamics simulations validated the observation that JAT can substitute more effectively as an A‐analogue than as a T‐analogue without substantial distortion of the B‐helix. Overall, this new Janus nucleotide is a promising tool for the targeting of A–T base pairs in DNA, and will lead to the development of oligo‐Janus‐nucleotide strands for sequence‐specific DNA recognition.  相似文献   

8.
The fluorescent 8‐aza‐2′‐deoxyisoguanosine ( 4 ) as well as the parent 2′‐deoxyisoguanosine ( 1 ) were used as protonated dCH+ surrogates in the third strand of oligonucleotide triplexes. Stable triplexes were formed by Hoogsteen base pairing. In contrast to dC, triplexes containing nucleoside 1 or 4 in place of dCH+ are already formed under neutral conditions or even at alkaline pH values. Triplex melting can be monitored separately from duplex dissociation in cases in which the third strand contains the fluorescent nucleoside 4 . Third‐strand binding of oligonucleotides with 4 , opposite to dG, was selective as demonstrated by hybridisation experiments studying mismatch discrimination. Third‐strand binding is more efficient when the stability of the DNA duplex is reduced by mismatches, giving third‐strand binding more flexibility.  相似文献   

9.
Expansion of GAA triplet repeats in intron 1 of the FXN gene reduces frataxin expression and causes Friedreich's ataxia. (GAA)n repeats form non‐B‐DNA structures, including triple helix H‐DNA and higher‐order structures (sticky DNA). In the proposed mechanisms of frataxin gene silencing, central unanswered questions involve the characterization of non‐B‐DNA structure(s) that are strongly suggested to play a role in frataxin expression. Here we examined (GAA)n binding by triplex‐stabilizing benzoquinoquinoxaline (BQQ) and the corresponding triplex‐DNA‐cleaving BQQ‐1,10‐phenanthroline (BQQ‐OP) compounds. We also examined the ability of these compounds to act as structural probes for H‐DNA formation within higher‐order structures at pathological frataxin sequences in plasmids. DNA‐complex‐formation analyses with a gel‐mobility‐shift assay and sequence‐specific probing of H‐DNA‐forming (GAA)n sequences by single‐strand oligonucleotides and triplex‐directed cleavage demonstrated that a parallel pyrimidine (rather than purine) triplex is the more stable motif formed at (GAA)n repeats under physiologically relevant conditions.  相似文献   

10.
DNA minor groove binding polyamides have been extensively developed to control abnormal gene expression. The establishment of novel, inherently fluorescent 2‐(p‐anisyl)benzimidazole (Hx) amides has provided an alternative path for studying DNA binding in cells by direct observation of cell localization. Because of the 2:1 antiparallel stacking homodimer binding mode of these molecules to DNA, modification of Hx amides to 2‐(p‐anisyl)‐4‐azabenzimidazole (AzaHx) amides has successfully extended the DNA‐recognition repertoire from central CG [recognized by Hx‐I (I=N‐methylimidazole)] to central GC [recognized by AzaHx‐P (P=N‐methylpyrrole)] recognition. For potential targeting of two consecutive GG bases, modification of the AzaHx moiety to 2‐ and 3‐pyridyl‐aza‐benzimidazole (Pyr‐AzaHx) moieties was explored. The newly designed molecules are also small‐sized, fluorescent amides with the Pyr‐AzaHx moiety connected to two conventional five‐membered heterocycles. Complementary biophysical methods were performed to investigate the DNA‐binding properties of these molecules. The results showed that neither 3‐Pyr‐AzaHx nor 2‐Pyr‐AzaHx was able to mimic I‐I=N‐methylimidazole–N‐methylimidazole to target GG dinucleotides specifically. Rather, 3‐Pyr‐AzaHx was found to function like AzaHx, f‐I (f=formamide), or P‐I as an antiparallel stacked dimer. 3‐Pyr‐AzaHx‐PI ( 2 ) binds 5′‐ACGCGT′‐3′ with improved binding affinity and high sequence specificity in comparison to its parent molecule AzaHx‐PI ( 1 ). However, 2‐Pyr‐AzaHx is detrimental to DNA binding because of an unfavorable steric clash upon stacking in the minor groove.  相似文献   

11.
Oligonucleotides containing various adducts, including ethyl, benzyl, 4‐hydroxybutyl and 7‐hydroxyheptyl groups, at the O4 atom of 5‐fluoro‐O4‐alkyl‐2′‐deoxyuridine were prepared by solid‐phase synthesis. UV thermal denaturation studies demonstrated that these modifications destabilised the duplex by approximately 10 °C, relative to the control containing 5‐fluoro‐2′‐deoxyuridine. Circular dichroism spectroscopy revealed that these modified duplexes all adopted a B‐form DNA structure. O6‐Alkylguanine DNA alkyltransferase (AGT) from humans (hAGT) was most efficient at repair of the 5‐fluoro‐O4‐benzyl‐2′‐deoxyuridine adduct, whereas the thymidine analogue was refractory to repair. The Escherichia coli AGT variant (OGT) was also efficient at removing O4‐ethyl and benzyl adducts of 5‐fluoro‐2‐deoxyuridine. Computational assessment of N1‐methyl analogues of the O4‐alkylated nucleobases revealed that the C5‐fluorine modification had an influence on reducing the electron density of the O4?Cα bond, relative to thymine (C5‐methyl) and uracil (C5‐hydrogen). These results reveal the positive influence of the C5‐fluorine atom on the repair of larger O4‐alkyl adducts to expand knowledge of the range of substrates able to be repaired by AGT.  相似文献   

12.
The copper(I)‐mediated azide–alkyne cycloaddition (CuAAC) of 3′‐propargyl ether and 5′‐azide oligonucleotides is a particularly promising ligation system because it results in triazole linkages that effectively mimic the phosphate–sugar backbone of DNA, leading to unprecedented tolerance of the ligated strands by polymerases. However, for a chemical ligation strategy to be a viable alternative to enzymatic systems, it must be equally as rapid, as discriminating, and as easy to use. We found that the DNA‐templated reaction with these modifications was rapid under aerobic conditions, with nearly quantitative conversion in 5 min, resulting in a kobs value of 1.1 min?1, comparable with that measured in an enzymatic ligation system by using the highest commercially available concentration of T4 DNA ligase. Moreover, the CuAAC reaction also exhibited greater selectivity in discriminating C:A or C:T mismatches from the C:G match than that of T4 DNA ligase at 29 °C; a temperature slightly below the perfect nicked duplex dissociation temperature, but above that of the mismatched duplexes. These results suggest that the CuAAC reaction of 3′‐propargyl ether and 5′‐azide‐terminated oligonucleotides represents a complementary alternative to T4 DNA ligase, with similar reaction rates, ease of setup and even enhanced selectivity for certain mismatches.  相似文献   

13.
Cellular DNA continuously suffers various types of damage, and unrepaired damage increases disease progression risk. 8‐Oxo‐2′‐deoxyguanine (8‐oxo‐dG) is excised by repair enzymes, and their analogues are of interest as inhibitors and as bioprobes for study of these enzymes. We have developed 8‐halogenated‐7‐deaza‐2′‐deoxyguanosine derivatives that resemble 8‐oxo‐dG in that they adopt the syn conformation. In this study, we investigated their effects on Fpg (formamidopyrimidine DNA glycosylase) and hOGG1 (human 8‐oxoguanine DNA N‐glycosylase 1). Relative to 8‐oxo‐dG, Cl‐ and Br‐deaza‐dG were good substrates for Fpg, whereas they were less efficient substrates for hOGG1. Kinetics and binding experiments indicated that, although hOGG1 effectively binds Cl‐ and Br‐deaza‐dG analogues with low Km values, their lower kcat values result in low glycosylase activities. The benefits of the high binding affinities and low reactivities of 8‐oxo‐dG analogues with hOGG1 have been successfully applied to the competitive inhibition of the excision of 8‐oxoguanine from duplex DNA by hOGG1.  相似文献   

14.
The binding behavior of green fluorescent ligands, derivatives of 7‐nitrobenzo‐2‐oxa‐1,3‐diazole (NBD), with DNA duplexes containing an abasic (AP) site is studied by thermal denaturation and fluorescence experiments. Among NBD derivatives, N1‐(7‐nitrobenzo[c][1,2,5]oxadiazol‐4‐yl)propane‐1,3‐diamine (NBD‐NH2) is found to bind selectively to the thymine base opposite an AP site in a DNA duplex with a binding affinity of 1.52×106 M ?1. From molecular modeling studies, it is suggested that the NBD moiety binds to thymine at the AP site and a protonated amino group tethered to the NBD moiety interacts with the guanine base flanking the AP site. Green fluorescent NBD‐NH2 is successfully applied for simultaneous G>T genotyping of PCR amplification products in a single cuvette in combination with a blue fluorescent ligand, 2‐amino‐6,7‐dimethyl‐4‐hydroxypteridine (diMe‐pteridine).  相似文献   

15.
Novel indolocarbazole derivative 12‐(α‐L ‐arabinopyranosyl)indolo[2,3‐α]pyrrolo[3,4‐c]carbazole‐5,7‐dione (AIC) demonstrated high potency (at submicromolar concentrations) against the NCI panel of human tumor cell lines and transplanted tumors in vivo. In search of tentative targets for AIC, we found that the drug formed high affinity intercalative complexes with d(AT)20, d(GC)20 and calf thymus DNA (binding constants (1.6×106) M ?1Ka≤(3.3×106) M ?1). The drug intercalated preferentially into GC pairs of the duplex. Importantly, the concentrations at which AIC formed the intercalative complexes with DNA (C≤1 μM ) were identical to the concentrations that triggered p53‐dependent gene reporter transactivation, the replication block, the inhibition of topoisomerase I‐mediated DNA relaxation and death of HCT116 human colon carcinoma cells. We conclude that the formation of high affinity intercalative complexes with DNA is an important factor for anticancer efficacy of AIC.  相似文献   

16.
Previous studies of polymerase synthesis of base‐modified DNAs and their cleavage by restriction enzymes have mostly related only to 5‐substituted pyrimidine and 7‐substituted 7‐deazaadenine nucleotides. Here we report the synthesis of a series of 7‐substituted 7‐deazaguanine 2′‐deoxyribonucleoside 5′‐O‐triphosphates (dGRTPs), their use as substrates for polymerase synthesis of modified DNA and the influence of the modification on their cleavage by type II restriction endonucleases (REs). The dGRTPs were generally good substrates for polymerases but the PCR products could not be visualised on agarose gels by intercalator staining, due to fluorescence quenching. The presence of 7‐substituted 7‐deazaguanine residues in recognition sequences of REs in most cases completely blocked the cleavage.  相似文献   

17.
We developed fluorescent turn‐on probes containing a fluorescent nucleoside, 5‐(benzofuran‐2‐yl)deoxyuridine (dUBF) or 5‐(3‐methylbenzofuran‐2‐yl)deoxyuridine (dUMBF), for the detection of single‐stranded DNA or RNA by utilizing DNA triplex formation. Fluorescence measurements revealed that the probe containing dUMBF achieved superior fluorescence enhancement than that containing dUBF. NMR and fluorescence analyses indicated that the fluorescence intensity increased upon triplex formation partly as a consequence of a conformational change at the bond between the 3‐methylbenzofuran and uracil rings. In addition, it is suggested that the microenvironment around the 3‐methylbenzofuran ring contributed to the fluorescence enhancement. Further, we developed a method for detecting RNA by rolling circular amplification in combination with triplex‐induced fluorescence enhancement of the oligonucleotide probe containing dUMBF.  相似文献   

18.
We describe the development of templated fluorogenic chemistry for detection of specific sequences of duplex DNA in solution. In this approach, two modified homopyrimidine oligodeoxynucleotide probes are designed to bind by triple‐helix formation at adjacent positions on a specific purine‐rich target sequence of duplex DNA. One fluorescein‐labeled probe contains an α‐azidoether linker to a fluorescence quencher; the second (trigger) probe carries a triarylphosphine group that is designed to reduce the azide and cleave the linker. The data showed that at pH 5.6 these probes yielded a strong fluorescence signal within minutes on addition to a complementary homopurine duplex DNA target. The signal increased by a factor of about 60, and was completely dependent on the presence of the target DNA. Replacement of cytosine in the probes with pseudoisocytosine allowed the templated chemistry to proceed readily at pH 7. Single nucleotide mismatches in the target oligonucleotide slowed the templated reaction considerably; this demonstrated high sequence selectivity. The use of templated fluorogenic chemistry for detection of duplex DNAs has not been previously reported and could allow detection of double‐stranded DNA, at least for homopurine–homopyrimidine target sites, under native and nondenaturing conditions.  相似文献   

19.
O6‐Alkylguanine‐DNA alkyltransferases (AGTs) are responsible for the removal of O6‐alkyl 2′‐deoxyguanosine (dG) and O4‐alkyl thymidine (dT) adducts from the genome. Unlike the E. coli OGT (O6‐alkylguanine‐DNA‐alkyltransferase) protein, which can repair a range of O4‐alkyl dT lesions, human AGT (hAGT) only removes methyl groups poorly. To uncover the influence of the C5 methyl group of dT on AGT repair, oligonucleotides containing O4‐alkyl 2′‐deoxyuridines (dU) were prepared. The ability of E. coli AGTs (Ada‐C and OGT), human AGT, and an OGT/hAGT chimera to remove O4‐methyl and larger adducts (4‐hydroxybutyl and 7‐hydroxyheptyl) from dU were examined and compared to those relating to the corresponding dT species. The absence of the C5 methyl group resulted in an increase in repair observed for the O4‐methyl adducts by hAGT and the chimera. The chimera was proficient at repairing larger adducts at the O4 atom of dU. There was no observed correlation between the binding affinities of the AGT homologues to adduct‐containing oligonucleotides and the amounts of repair measured.  相似文献   

20.
Single‐stranded model oligodeoxyribonucleotides, each containing a single protonatable base—cytosine, adenine, guanine, or 5‐methylcytosine—centrally located in a background of non‐protonatable thymine residues, were acid‐titrated in aqueous solution, with UV monitoring. The basicity of the central base was shown to depend on the type of the central base and its nearest neighbours and to rise with increasing oligonucleotide length and decreasing ionic strength of the solution. More complex model oligonucleotides, each containing a centrally located 5‐methylcytosine base, were comparatively evaluated in single‐stranded and double‐stranded form, by UV spectroscopy and high‐field NMR. The N3 protonation of the 5‐methylcytosine moiety in the double‐stranded case occurred at much lower pH, at which the duplex was already experiencing general dissociation, than in the single‐stranded case. The central guanine:5‐methylcytosine base pair remained intact up to this point, possibly due to an unusual alternative protonation on O2 of the 5‐methylcytosine moiety, already taking place at neutral or weakly basic pH, as indicated by UV spectroscopy, thus suggesting that 5‐methylcytosine sites in double‐stranded DNA might be protonated to a significant extent under physiological conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号