首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The source system covering a working frequency range of 24 MHz to 70 MHz with a total maximum output power of 12 MW has already been fabricated for Ion Cyclotron Range of Frequency(ICRF) heating in EAST from 2012. There are two continuous wave(CW) antennas consisting of four launching elements each fed by a separate 1.5 MW transmitter. Due to the strong mutual coupling among the launching elements, the injection power for launching elements should be imbalance to keep the k||(parallel wave number) spectrum of the launcher symmetric for ICRF heating. Cross power induced by the mutual coupling will also induce many significant issues,such as an uncontrollable phase of currents in launching elements, high voltage standing wave ratio(VSWR), and impedance mismatching. It is necessary to develop a power compensation system for antennas to keep the power balance between the feed points. The power balance system consists of two significant parts: a decoupler and phase control. The decoupler helps to achieve ports isolation to make the differential phase controllable and compensate partly cross power. After that, the differential phase of 0 or π will keep the power balance of two feed points completely. The first power compensation system consisting of four decouplers was assembled and tested for the port B antenna at the working frequency of 35 MHz. With the application of the power compensation system, the power balance, phase feedback control, and voltage standing wave ratio(VSWR) had obviously been improved in the 2015 EAST campaign.  相似文献   

2.
Inward energy transport (pinch phenomenon) in the electron channel is observed in HT-7 plasmas using off-axis ion cyclotron resonance frequency (ICRF) heating. Experimental results and power balance transport analysis by TRANSP code are presented in this article. With the aids of GLF23 and Chang-Hinton transport models, which predict energy diffusivity in experimental conditions, the estimated electron pinch velocity is obtained by experimental data and is found reasonably comparable to the results in the previous study, such as Song on Tore Supra. Density scanning shows that the energy convective velocity in the electron channel has a close relation to density scale length~ which is qualitatively in agreement with Wang's theoretical prediction. The parametric dependence of electron energy convective velocity on plasma current is still ambiguous and is worthy of future research on EAST.  相似文献   

3.
在EAST装置内离子回旋共振加热(ICRF)系统中,天线与液态调配器之间传输线上的驻波电压幅值会因为负载阻抗的变化而变得很大,为此设计了ICRF功率传输预匹配支节。本设计采用解析法和Smith圆图法相结合的分析方式,在ICRF系统中安装了预匹配支节,并对其降压效果进行了测试。测试结果表明,安装预匹配支节之后,预匹配支节与液态调配器之间传输线上的驻波电压幅值得到有效降低,可作为优化ICRF功率传输系统功率传输性能的候选者。  相似文献   

4.
Radio frequency (RF) heating in the ion cyclotron range of frequencies (ICRF) is one of the primary auxiliary heating methods for EAST. The ICRF system provides 6 MW power in primary phase and will be capable of 10 MW later. Three 1.5 MW ICRF systems in a frequency range of 25 to 70 MHz have already been in operation. The ICRF heating launchers are designed to have two current straps with each driven by a RF power source of 1.5 MW. In this paper a brief introduction of the ICRF heating system capability in EAST and the preliminary results in EAST are presented.  相似文献   

5.
离子回旋波加热是EAST装置最重要的辅助加热方法,在实验中获得了明显的加热效果。射频功率源与天线负载之间阻抗匹配才能保证最大的加热功率输出。在射频加热实验中,等离子体参数的改变将会引起天线负载阻抗的快速变化,为应对这一情况研制出了快速阻抗匹配系统。本文采用解析法和计算机仿真相结合的分析方式,研制了该阻抗匹配系统的铁氧体匹配支节,并对其性能进行了测试。测试结果表明,快速阻抗匹配系统的时间响应速度明显优于传统匹配方式的,可作为实时匹配的候选者。  相似文献   

6.
A concept of a single tube high RF power amplifier was developed for ion cyclotron range of frequency (ICRF) plasma heating system. In the concept, a tetrode was used with a grounded cathode and input power to drive a control grid of the tetrode was provided by a switching circuit. As the new amplifier arrangement can eliminate a low power (10 kW level) and an intermediate power (100 kW level) tetrode amplifiers, their high voltage DC (HVDC) power supplies, and control and monitor system for these amplifiers and HVDC power supplies in a conventional high RF power source of the ICRF heating system, this new high RF power source is more flexible on frequency change and more mechanically reliable than the conventional one. A test amplifier composed of the tetrode and a field effect transistor (FET) switching circuit was constructed. The FET switching circuit was so compact that it could be mounted close to the tetrode socket. The maximum output RF power of 8.5 kW was obtained with a plate efficiency of 82% at 70 MHz. The feasibility of the single tube high RF power amplifier was experimentally proved. The plate efficiency of 82% could not be explained by the standard class-C amplification but by high efficiency amplification under assumptions of a flat-topped plate current pattern and double resonance of an output cavity at the fundamental frequency and the third higher harmonic frequency.  相似文献   

7.
1. IntroductionThe tokamak is a magnetically confined fusion device, Which demands ultra-vacuum and low impuritylevel for the plasma discharge. At the same time, therecycling of the working gas including its isotopesmust be decreased in favor of long pulse plasma discharge. For a larger superconducting tokamak of thefuture with a high power and a long pulse plasmadischarge, the recycling must be very low and theimpurity needs to be removed quickly.For decreasing the impurity content in the de…  相似文献   

8.
A new ICRF antenna originating from the prototype antenna was constructed for the KSTAR tokamak in 2002. The performance of the antenna was experimentally estimated at the RF test stand without a plasma. Recently three series of RF tests were performed at a frequency of 30 MHz; without any cooling, with a water-cooling for only the antenna, and with a water-cooling of the antenna and the transmission line connected to the antenna. In the tests, a half of the current strap was connected to a RF source via a matching circuit with the other half one connected to an open terminated coaxial line, and the other three straps were shorted at the input ports. During the RF pulse, the temperatures at several positions of the antenna cavity wall were measured by embedded thermocouples and the temperature profile of the front face of the antenna was measured by an IR camera. The line voltage, forward and reflected powers, and the RFTC pressure were also measured. The water-cooled antenna showed several enhanced performances in a comparison with the non-cooled case, and the standoff voltage was significantly increased. By utilizing a water-cooling of the antenna and the transmission line, we achieved a standoff voltage of 41.3 kVp for a pulse length of 300 s, and we could extend the pulse length up to 600 s at a maximum voltage of 35.0 kVp without encountering any problems, which considerably exceeds the design requirements.  相似文献   

9.
A method of current drive with Ion Cyclotron Range of Frequency (ICRF) on Experimental Advanced Superconducting Tokomak (EAST) is described. A variety of liquid silicon oil heights in the phase shifter will bring the phase difference to the current drive. It is found that the current drive can be achieved by using the phase shifter. The liquid phase shifter is one of the impedance matching systems too.  相似文献   

10.
Modulation of lower hybrid current drive was used successfully to suppress MHD activity. This was achieved in discharges with MHD m = 2 tearing modes during the discharge conditions Ip = 110 kA, Bt = 1.75 T, ne0 - 1.1 ×1013 cm-3. The delivering time of LHCD pulse is less then 30 μs. The amplitude, interval and the period of LHCD modulation pulse can be adjusted very conveniently. The modulation LHCD can be delivered very fast at any time during the discharge. The modulation LHCD period was always much shorter than the plasma resistive time (Tη≈100 ms). So the profile of plasma current is changed much faster than the plasma resistive time. The different forms of LHCD modulating can be proved.  相似文献   

11.
Design of a New Type of Stub Tuner in ICRF Experiment   总被引:2,自引:0,他引:2  
In the Ion Cyclotron Range of Frequency(ICRF) heating experiment,impedance matching is of great practical significance,because wide variations in antenna loading are observed within the discharge,in tokamaks operating in H-mode.A sudden decrease in antenna loading accompanying the L-mode to H-mode transition typically occurs on a timescale of a few millisec onds,as does the increase in loading at the H- to L-mode transition.Therefore,it is necessary to match dynamically in the transmission line between the generator output and the antenna input connections[1].A new type of stub tuner being developed utilizes the difference in radio-frequency wavelengths between gas and liquid due to different relative dielectric constants.The impedance matching can be adjusted in realtime in an attempt to track the variations in the antenna loading.Since there are no mechanically moving parts in the short ends of stub,the change can be more convenient and safe,moreover,it can withstand higher voltage without breakdown.this system device will be applied in the HT-7 superconductor Tokamak ICRF experiment.  相似文献   

12.
Ion Cyclotron Resonance Heating is one of the most important auxiliary heating systems in most plasma confinement experiments. Because of this, the need for very accurate design of ion cyclotron (IC) launchers has dramatically grown in recent years. Furthermore, a reliable simulation tool is a crucial request in the successful design of these antennas, since full testing is impossible outside experiments. One of the most advanced and validated simulation codes is TOPICA, which offers the possibility to handle the geometrical level of detail of a real antenna in front of an accurately described plasma scenario. Adopting this essential tool made possible to reach a refined design of ion cyclotron radio frequency antenna for the FAST (Fusion Advanced Studies Torus) experiment [1]. Starting from a streamlined antenna model and then following well-defined refinement procedures, an optimized launcher design in terms of power delivered to plasma has been finally achieved. The computer-assisted geometry refinements allowed an increase in the performances of the antenna and notably in power handling: the extent of the gained improvements were not experienced in the past, essentially due to the absence of predictive tools capable of analyzing the detailed effects of antenna geometry in plasma facing conditions. Thus, with the help of TOPICA code, it has been possible to comply with the FAST experiment requirements in terms of vacuum chamber constraints and power delivered to plasma. Once an antenna geometry was optimized with a reference plasma profile, the analysis of the performances of the launcher has been extended with respect to two plasma scenarios. Exploiting all TOPICA features, it has been possible to predict the behavior of the launcher in real operating conditions, for instance varying the position of the separatrix surface. In order to fulfil the analysis of the FAST IC antenna, the study of the RF potentials, which depend on the parallel electric field computation, has been carried out with an exceptional level of detail. Finally, in order to provide a more general overview of the antenna performances, two IC launchers have been simulated to determine their mutual influence, achieving an optimum degree of knowledge about the relevant features of the ion cyclotron heating system inside the FAST tokamak.  相似文献   

13.
Target plasmas, on which the formation of the electrostatic potentials and the improvement of the confinement are studied, are produced with ICRF in the GAMMA 10 tandem mirror. The ion temperature of more than 10 keV has been achieved in relatively low density plasmas. When the strong ICRF heating is applied, it is observed that the high frequency and the low frequency fluctuations are excited and suppress the increase of the plasma parameters. Recently, a new high power gyrotron system has been constructed and the ECRH power in plug extends up to 370 kW. The improvement of the confinement due to the formation of the potential in the axial direction and the strong radial electric field shear has been observed.  相似文献   

14.
A real-time ion cyclotron range of frequencies (ICRF) antenna matching system has been successfully implemented on Alcator C-Mod. This is a triple-stub tuning system working at 80 MHz, where one stub acts as a pre-matching stub and the other two stubs use fast ferrite tuners (FFTs) to accomplish fast tuning. It utilizes a digital controller for feedback control (200 μs per iteration) using real-time antenna loading measurements as inputs and the coil currents to the FFT as outputs. The system has achieved and maintained matching for a large range of plasma parameters, including L-mode, H-mode, and plasmas with edge localized modes. It has succeeded in delivering up to 1.85 MW net rf power into H-mode plasmas at maximum voltage of 37 kV on the unmatched side of the matching system.  相似文献   

15.
KSTAR (Korea Superconducting Tokamak Advanced Research) is a national tokamak aiming at the high beta operation based on AT (Advanced Tokamak) scenarios in Korea and ICRF (Ion Cyclotron Ranges of Frequency) is one of the essential heating and current drive tools to achieve this goal. The ICRF heating and current drive scenario requires 4 units of 2 MW transmitters with a frequency range from 25 to 60 MHz. The first KSTAR transmitter is a modified FMIT (Fusion Material Irradiation Test) transmitter consisting of four amplifier stages. An amplitude-modulated 1 mW frequency source drives a 500 W solid state wideband amplifier, which in turn drives three tuned triode/tetrode amplifier stages. The tube employed in the final power amplifier is a 4CM2500KG tetrode fabricated by CPI (Communications & Power Industries). After the fabrication of the cavity and power supply was completed in 2004, several failures of the tube during a factory and a site acceptance test occurred before eventually achieving 1.9 MW for 300 s at 33 MHz in 2007. The electrical efficiency of the FPA (Final Power Amplifier) is about 70%. Although this is a very encouraging result for the development of an ICRF transmitter for ITER (International Thermonuclear Experimental Reactor), continued efforts for a reliable operation are required to achieve the final goals of the KSTAR and ITER ICRF system.  相似文献   

16.
EAST搭建了铁氧体快速匹配系统来保证离子回旋波加热的功率输出。为了提高匹配系统的响应速度,通过理论计算与仿真分析相结合的方法,提出改善措施,实现了10 ms以内的系统响应时间。为搭建配备闭环控制的实时阻抗匹配系统奠定了基础。  相似文献   

17.
在托卡马克等离子体中,相同的等离子体电流条件下,若在较低的等离子体密度条件下发生反常多普勒共振,将会导致逃逸电子快螺旋角散射(FPAS)的发生;若在较高的等离子体密度条件下发生反常多普勒共振,则会导致逃逸电子正常螺旋角散射(NPAS)的发生。通过研究FPAS和NPAS条件下的逃逸电子行为,发现FPAS和NPAS均可一定程度增加逃逸电子的螺旋角,增加逃逸电子的同步辐射损失,减小逃逸电子的能量;且NPAS和FPAS对逃逸电子的影响主要集中在高能部分,对低能逃逸电子的影响较小。  相似文献   

18.
在开展离子回旋波加热实验时,高驻波电压是高功率射频传输过程中需要解决的主要问题之一。论文基于传输线理论,详细介绍了利用同轴短路或开路支节进行优化射频传输系统的方法,分析计算了支节的接入位置、支节长度、以及支节接入后的传输线电压分布。分析结果表明:传输线射频电压在支节接入后得以大幅降低,系统传输能力得到有效提高,降低了打火的概率。  相似文献   

19.
Core plasma rotation of both L-mode and H-mode discharges with ion cyclotron range of frequency(ICRF) minority heating(MH) scheme was measured with a tangential X-ray imaging crystal spectrometer on EAST(Experimental Advanced Superconducting Tokamak).Cocurrent central impurity toroidal rotation change was observed in ICRF-heated L-and H-mode plasmas.Rotation increment as high as 30 km/s was generated at ~1.7 MW ICRF power.Scaling results showed similar trend as the Rice scaling but with significant scattering,especially in L-mode plasmas.We varied the plasma current,toroidal field and magnetic configuration individually to study their effect on L-mode plasma rotation,while keeping the other major plasma parameters and heating unchanged during the scanning.It was found that larger plasma current could induce plasma rotation more efficiently.A scan of the toroidal magnetic field indicated that the largest rotation was obtained for on-axis ICRF heating.A comparison between lower-single-null(LSN)and double-null(DN) configurations showed that LSN discharges rendered a larger rotation change for the same power input and plasma parameters.  相似文献   

20.
Detailed design of the vacuum feedthrough for the Ion Cyclotron Radio Frequency (ICRF) antenna in EAST, along with an electro-analysis and thermal structural analysis, is presented. The electric field, the voltage stand wave ratio (VSWR) and the stresses in the vacuum feedthrough are studied. A method using the rings of oxygen-free copper as the cushion and macro-beam plasma arc welding is applied in the assembly to protect the ceramic from being damaged during welding. The vacuum leak test on the prototype of vacuum feedthrough is introduced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号