首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
The goal of this study was to determine the role of tyrosine phosphorylation in transducing deformation-stimulated vascular smooth muscle growth. Rat aorta-derived vascular smooth muscle cells were cultured on flexible silicone elastomer membranes and subjected to cyclic deformation (15 cycles per minute, deformed 2 seconds, relaxed 2 seconds). Deformation significantly increased proto-oncogene expression, [3H]thymidine incorporation, [3H]leucine incorporation, and cell number. Time course studies showed an 8-hour lag between initiation of cell deformation and onset of [3H]thymidine incorporation, with peak levels achieved after 18 to 24 hours. Western analysis of protein blots from deformed cells (10 minutes) demonstrated increased levels of phosphotyrosine-containing proteins having molecular weights of 110 to 130 and 70 to 80 kD. Deformation-stimulated tyrosine phosphorylation was prevented by the tyrosine kinase inhibitor Herbimycin A. Tyrosine kinase inhibition also prevented deformation-stimulated vascular smooth muscle cell growth as measured by [3H]thymidine incorporation. Cyclic deformation stimulates vascular smooth muscle proliferation through activation of tyrosine kinases. Inhibition of tyrosine phosphorylation is an effective means of preventing deformation-induced vascular smooth muscle growth in vitro.  相似文献   

2.
An increase in myofibroblast number may be necessary for wound healing but may also lead to postinflammatory scarring. We have, therefore, studied the role of mediators important in inflammatory bowel disease in regulating proliferation of human colonic myofibroblasts. Using primary cultures of these cells, we have shown increases in [3H]thymidine incorporation in response to platelet-derived growth factor (EC50 = 14 ng/ml), basic fibroblast growth factor (EC50 = 2.2 ng/ml), and epidermal growth factor (EC50 = 1.1 ng/ml). Coulter counting of cell suspensions demonstrated increases in cell number with these growth factors along with insulin-like growth factor-I and -II. In addition the proinflammatory cytokines IL-1beta and TNF-alpha produced increases in [3H]thymidine incorporation. IL-1beta and platelet-derived growth factor together produced an increase in [3H]thymidine greater than either agonist alone; this effect was not, however, seen when we examined changes in cell numbers. Finally, we demonstrate a mechanism whereby these responses may be downregulated: vasoactive intestinal peptide (1 microM) elevates cyclic AwMP in these cells 4. 2-fold over control and produces a dose-related inhibition of platelet-derived growth factor-driven proliferation with a maximum inhibition of 33% at 1 microM.  相似文献   

3.
While prolonged exposure of vascular smooth muscle cells (VSMC) to glucocorticoid has been shown to inhibit cell proliferation, the effect of a brief pulse exposure is not known. We studied the short-term effects of pulse exposure to dexamethasone (DEX) on DNA synthesis in cultured VSMC. VSMC were pulsed with DEx for varying time intervals and [3H]thymidine incorporation into cells after 24 h was measured. Exposure to DEX for 24 h decreased [3H]thymidine incorporation, while pulse treatments with DEX from 2 min to 6 h significantly increased [3H]thymidine incorporation. Maximal proliferative effect was observed with a 20-min exposure. The effect of a 20-min pulse was dose-dependent, with the half-maximal dose of DEX being approximately 10(-7) M. A selective glucocorticoid receptor antagonist, RU486, inhibited the proliferative effect of DEx. Concentrated conditioned medium from cells exposed to 10(-6) M DEX increased [3H]thymidine incorporation by other VSMC in a dose-dependent manner. These results suggest that short-term pulse DEX exposure is capable of producing one or more autocrine growth factors in VSMC via a glucocorticoid receptor action. This effect of glucocorticoid pulses may contribute to the pathogenesis of arteriosclerosis and hypertension.  相似文献   

4.
Since endogenous vasoconstrictors promote mesangial cell growth and increase the biosynthesis of antiproliferative prostaglandins, the effects of cyclooxygenase inhibition on mesangial cell proliferation should be strongly dependent on the prevailing levels of neuroendocrine vasoconstrictors. We compared the effects of indomethacin (10(-6) M), a cyclooxygenase inhibitor, on [3H]thymidine incorporation by cultured rat mesangial cells in the presence of various combinations of angiotensin II (10(-10) M), [Arg8]vasopressin (10(-11) M), (-)-norepinephrine (10(-8) M) and endothelin-1 (10(-11) M). Indomethacin did not enhance [3H]thymidine incorporation in cells treated with each individual vasoconstrictor, or in cells treated with two-way combinations with the exception of modestly increased [3H]thymidine incorporation in cells treated with angiotensin II + (-)-norepinephrine or [Arg8]vasopressin + (-)-norepinephrine. In contrast, in cells treated with any three-way or the four-way combination, indomethacin markedly increased [3H]thymidine incorporation. Importantly, a highly significant interaction (P<0.0001) was observed for thymidine incorporation between the number of vasoconstrictors present and indomethacin treatment, thus demonstrating that cyclooxygenase inhibition reveals a synergistic action of vasoconstrictors on the DNA synthesis in mesangial cells.  相似文献   

5.
The secondary bile acid deoxycholic acid is believed to be a promoter of large bowel cancer, in part by inducing colonic epithelial proliferation. The effects of deoxycholic acid on [3H]thymidine incorporation by the human colon cancer cell line HT29 and two differentiated subclones were measured and compared. The subclone HT29-C1 has features of mature absorptive cells and HT29-N2 cells secrete mucus under cholinergic control. The three cell lines were treated with deoxycholic acid (DCA) at concentrations of 0, 5, 10, 50, 100, 150, and 300 microM for 3, 6, 9, 15, 24, and 48 hr. A significant increase in proliferation was noted in HT29 cells only at 6 hr with 5 and 10 microM deoxycholic acid. Neither the subclone HT29-C1, nor HT29-N2 cells exhibited significant change in [3H]thymidine incorporation with DCA at these concentrations or time points. Higher doses of deoxycholic acid above 50 microM and duration of exposure greater than 24 hr were cytotoxic to all three cell lines. The proliferative effects of DCA in HT29 cells were not paralleled by changes in protein kinase C activity or protein kinase C isoform expression. Quantitative and qualitative differences in PKC isoform expression were not noted in the three cell lines used in this study. The proliferative effects of DCA on HT29 cells appear to be independent of the PKC signal transduction pathway.  相似文献   

6.
The effect of human interferon (IFN)-beta1b (Betaseron) on the proliferation of cultured human vascular smooth muscle and endothelial cells was tested in vitro. IFN-beta1b inhibited thymidine incorporation and growth of primary cultures of human aortic and coronary artery smooth muscle in a concentration-dependent manner. The same concentrations of IFN-beta1b did not inhibit thymidine incorporation or growth of primary cultures of human aortic or coronary artery endothelial cells. IFN-beta1b induced the expression of MxA (an antiviral protein induced by type I IFNs) in both smooth muscle and endothelial cells, suggesting that both cell types express receptors for type I IFNs. The growth-inhibitory effect of IFN-beta1b could be mimicked by commercially available human IFN-beta, but not by IFN-alpha2 or IFN-alpha8. The effect of IFN-beta1b was species specific, as it did not inhibit thymidine incorporation in aortic smooth muscle cells derived from pig, rabbit, rat, or mouse. The action of IFN-beta1b on smooth muscle cells persisted for at least 4 days following a 24 h preincubation with IFN-beta1b. Human vascular smooth muscle cells treated with IFN-beta1b did not release lactate dehydrogenase, nor did they show any morphologic change, suggesting that IFN-beta1b was not toxic to the human vascular smooth muscle cells. IFN-beta1b inhibited vascular smooth muscle growth while having no growth-inhibitory effect on endothelial cells obtained from the same blood vessel, making it a potential candidate for treating pathologic conditions where abnormal vascular smooth muscle proliferation is implicated, such as restenosis following balloon angioplasty or smooth muscle proliferation following vascular stenting.  相似文献   

7.
These experiments were performed in an attempt to determine whether chronic stimulation of glomerular endothelial cells with recombinant human erythropoietin would alter mesangial cell proliferation. Glomerular endothelial cells in culture incubated with various concentrations of erythropoietin for up to 4 days exhibited dose-dependent endothelin-1 production. Moreover, the conditioned medium from erythropoietin-stimulated glomerular endothelial cells enhanced [3H]thymidine incorporation into mesangial cells. This enhancement was significantly attenuated in the presence of a endothelin A receptor antagonist, BQ-123. These results suggest that endothelin-1 mediates erythropoietin-stimulated glomerular endothelial cell-dependent mesangial cell proliferation, resulting in the progression of glomerulonephritis.  相似文献   

8.
The purpose of this study was to investigate in vitro the potential effect of type 1 collagen gel containing alpha-elastin on the proliferation of vascular smooth muscle cells and vascular endothelial cells, and on smooth muscle cell migration. Vascular smooth muscle cell and endothelial cell were cultured in 12-well plates precoated with collagen gels and alpha-elastin. Cell proliferation rates were measured by monitoring [3H]-thymidine incorporation. After 2, 3 or 4 days of culture, the proliferation rate of both smooth muscle cells and endothelial cells was significantly decreased on collagen gel containing 10 mg/ml alpha-elastin compared with collagen gel only as control. Smooth muscle cell proliferation on collagen gel containing alpha-elastin on the 4th day of culture was decreased dose-dependently, e.g. 1 mg/ml of alpha-elastin (74.8(2.3)% of control, P=n.s.); 5 mg/ml (56.7(2.1)%; P<0.05); 10 mg/ml (30.3(3.1)%; P<0.005). In the case of cultured endothelial cells, however, [3H]-thymidine incorporation was not decreased significantly in the presence of 5 mg/ml alpha-elastin (83.1(7.9)%, P=n.s.). After stimulation by platelet-derived growth factor, the smooth muscle cell migration rate on collagen gel containing alpha-elastin (5 mg/ml) was decreased over time. The area of migration on the 6th day of culture was also significantly decreased dose-dependently in the presence of alpha-elastin, e.g. 1 mg/ml (72.6(3.4)% of control, P<0.05), 5 mg/ml (56.9%(1.5)%; P<0.05); 10 mg/ml (37.3(2.7)%; P<0.0005). In conclusion, alpha-elastin inhibited the proliferation and migration of smooth muscle cell in a dose-dependent manner on collagen gel culture, however, at high concentrations of alpha-elastin (10 mg/ml), the endothelial cell proliferation rate was also inhibited. At 5 mg/ml, alpha-elastin significantly inhibited smooth muscle cell proliferation and migration but did not significantly inhibit endothelial cell proliferation. Incorporation of collagen gel containing alpha-elastin into the structure of arterial prosthesis offers the possibility of inhibiting smooth muscle cell hyperplasia without significant effect on endothelial cell formation.  相似文献   

9.
We have used in vivo balloon catheterization in combination with in vitro organ culture to develop a model system for vascular neointima formation. A Fogarty balloon catheter was used to deendothelialize and rupture the internal elastic lamina of aortae in adult rabbits. After three d of recovery, aortae were harvested, divided into segments, and placed into organ culture. We obtained a daily index of cell proliferation in cultured vessels using [3H]thymidine incorporation into DNA. Also, segments were collected and processed for routine histology or immunohistochemistry. Aortic segments that had undergone ballooning 3 d before harvest and then cultured exhibited diffuse neointimal growth after several d in vitro, whereas those from sham-operated (nonballooned) rabbits showed generally only a single endothelial cell layer that is characteristic of normal intima. Aortae that were harvested, balloon-damaged in vitro, and then cultured exhibited no neointimal growth. The neointima that developed in cultured segments from in vivo ballooned rabbits was primarily of smooth muscle cell origin as determined by positive immunostaining for alpha-smooth muscle actin. The intima:media thickness ratios were significantly higher in aortic segments from ballooned rabbits at harvest and after 4 or 7 d in culture compared with those from nonballooned rabbits. Also, the [3H]thymidine index was higher in the in vivo ballooned aorta compared to non-ballooned or in vitro ballooned vessel. We conclude that ballooning in vivo followed by exposure to blood-borne elements produces an enhanced proliferative response in cultured vessels that is distinct from other in vitro models of neointimal growth.  相似文献   

10.
BACKGROUND: Recombinant human basic fibroblast growth factor (rHu-bFGF) is known to stimulate proliferation in some tumor cells and to modulate tumor vascularization. PURPOSE: The purpose of this study was to examine the possible role of this agent in the development of tumors. The study was designed to determine the effects of modulating bFGF activity in vivo in tumor models from cell lines with different responses to bFGF and with different content and receptor levels of bFGF. METHODS: Two tumor cell lines (human DLD-2 colon carcinoma and rat C6 glioma) were characterized for bFGF content and bFGF receptor levels by Western blot analysis in cultured cells and by studies of [125I]rHu-bFGF binding to sections from xenografts grown in nude mice. Tumor cell proliferation was monitored after treatment with rHu-bFGF or the DG2 or DE6 IgG monoclonal antibody to rHu-bFGF in culture and in vivo. RESULTS: C6 cells exhibited 7800 high-affinity receptors for rHu-bFGF per cell (dissociation constant [Kd] = 46 pM), while DLD-2 cells lacked high-affinity receptors. rHu-bFGF stimulated [3H]thymidine uptake by C6 cells, but the addition of DG2 IgG prevented this stimulation; rHu-bFGF had no effect on [3H]thymidine incorporation by DLD-2 cells. C6 cells had higher levels of immunoreactive bFGF than did DLD-2 cells. The xenografts from both cell lines exhibited high-affinity [125I]rHu-bFGF binding that was concentrated on vascular-like structures. rHu-bFGF at a dosage of 0.25 mg/kg given intraperitoneally daily for 18 days caused a twofold increase in DLD-2 tumor weight but had little effect on the growth of C6 xenografts. In contrast, daily intravenous injections of DG2 IgG given to mice had no effect on DLD-2 tumor growth but reduced growth of C6 tumors by approximately 30%--a statistically significant difference. CONCLUSIONS: The addition of exogenous rHu-bFGF or of a neutralizing antibody resulted in significant alterations in tumor growth in vivo, which were specific for tumor type and bFGF characteristics. While some of these effects may be mediated by the bFGF-responsive endothelial cells of the tumor vasculature (DLD-2 colon carcinoma), others may result from inhibition of bFGF-dependent tumor cell proliferation (C6 glioma). IMPLICATIONS: Studies that measure tumor blood flow are necessary to confirm that these effects are mediated by changes in tumor vasculature.  相似文献   

11.
To investigate the effects of adenosine A1 receptor activation on energy metabolism and RNA and protein biosynthesis in central neurons, cultured neurons from the rat forebrain were exposed for 1 hr to 72 hr to various concentrations (10 nM-100 microM) of the selective A1 receptor agonist 2-chloro-N6-cyclopentyladenosine (CCPA) or the A1 receptor antagonist 8-cyclopentyltheophylline (CPT). At all concentrations tested, the adenosinergic compounds did not affect cell viability within 72 hr of treatment, except for CPT, which reduced viability by 19.7% when used at the concentration of 100 microM. Energy metabolism was analysed by studying the specific uptake of 2-D-[3H]deoxyglucose ([3H]2DG). Rates of RNA and protein biosynthesis were assessed by the measurement of [3H]uridine and [3H]leucine incorporation, respectively. Neuronal [3H]2DG uptake was increased by 16% (P < 0.01) after 8 hr in the presence of 100 microM CCPA, whereas 100 microM CPT for 24 hr also increased [3H]2DG uptake (8%, P < 0.01). At these concentrations, both ligands inhibited [3H]uridine incorporation after a 3-hr treatment by 92% and 30%, respectively. CCPA never altered [3H]leucine incorporation when compared to controls, and CPT significantly inhibited protein synthesis only at 10-100 microM. Additional experiments to analyse the influence of A1 ligands on the transport of [3H]2DG, [3H]leucine and [3H]uridine suggested that CCPA and CPT, which interact functionally with adenosine receptors by regulating cyclic AMP production in this model, are able to alter energy metabolism and RNA synthesis in central neurons in a nonspecific manner by interacting with glucose and uridine transporters.  相似文献   

12.
13.
BACKGROUND: Catecholamines have been shown to aggravate atherosclerosis in animals and humans, and abnormal proliferation of vascular smooth muscle cells (VSMC) is a key event in the early stage of atherosclerosis. Catecholamines may be involved in such cell growth. Therefore, a series of experiments using cultured VSMC was performed to elucidate their possible mitogenic effect. METHODS AND RESULTS: We examined the mitogenic effect of catecholamines using rat aortic smooth muscle cells (VSMC) by measuring [3H]thymidine incorporation, checking with flow cytometry, and counting the cell number directly. Furthermore, the catecholamine-activated signal transduction pathway was assessed by measurement of the formation of inositol 1, 4, 5-triphosphate, intracellular Ca2+ concentration, mitogen-activated protein kinase (MAPK) activity, and mitogenic gene expression. Norepinephrine (NE) and phenylephrine stimulated [3H]thymidine incorporation and cell growth. Clonidine and isoproterenol showed little of such effects. Prazosin was more effective than either yohimbine or propranolol in suppressing the mitogenic effect of NE, indicating that catecholamine-induced VSMC proliferation is mediated by alpha 1-adrenoceptors. The alpha 1-adrenoceptor activation was coupled to pertussis toxin-insensitive Gq-protein and triggered phosphoinositide hydrolysis with subsequent activation of protein kinase C and MAPK in VSMC. In response to NE, both 42- and 44-kD MAPK were activated and tyrosine was phosphorylated. alpha 1-Adrenoceptor stimulation with NE also caused accumulation of c-fos, c-jun, and c-myc mRNA. Chloroethylclonidine completely blocked the alpha 1-adrenoceptor-mediated mitogenesis. CONCLUSIONS: The effect of catecholamines appears to be mediated via the activation of the chloroethylclonidine-sensitive alpha 1-adrenoceptors that triggers the phosphoinositide hydrolysis and activates the MAPK pathway, leading to DNA synthesis and cell proliferation.  相似文献   

14.
The purpose of this study was to investigate the effects of cytokines and retinoic acid in human thyroid cancer cell growth. Cellular proliferation studies of the CGTH W-1 and SW 579 cell lines were performed with various cytokines and all-trans retinoic acid (RA). Cell number was determined by cell counting and incorporation of [3H]thymidine into DNA. Inhibitory effects of tumour necrosis factor alpha (TNF-alpha) were found in both cell lines. SW 579 was more sensitive to TNF-alpha. The SW 579 cell line revealed gradually decreased cell proliferation in [3H]thymidine incorporation studies as TNF-alpha concentration increased. In contrast, the CGTH W-1 cell line revealed prominent suppressive effects when the TNF-alpha concentrations increased over 1 ng/ml. An inhibitory effect of interleukin 1 beta (IL-1 beta) on CGTH W-1 cells was noted at the concentration of 1 ng/ml, however, IL-1 beta failed to demonstrate an inhibitory effect in SW 579 cells.  相似文献   

15.
In adult domestic fowl, angiotensin (ANG) receptors are present in the vascular smooth muscles (VSM) and in the endothelium, mediating vasorelaxation via endothelium-derived relaxing factor/cGMP. ANG II-induced relaxation is minor in chicks and becomes more marked as they mature but diminishes in adult birds, whereas ANG II neither relaxes nor contracts endothelium-denuded aortae from mature chickens. The present study examines in cultured fowl aortic SM cells whether (1) ANG II stimulates or inhibits VSM cell growth and, if so, whether this growth-stimulatory or -inhibitory effect changes with maturation/aging, and (2) S-nitroso-N-acetylpenicillamine (SNAP), a nitric oxide donor, and cGMP attenuate the basal or stimulated VSM cell growth. [Asp1, Val5]ANG II (native fowl ANG II, 10(-6) M) markedly increased (increase from vehicle control, 226.5%; P < 0.01) [3H]thymidine (Thd) incorporation into DNA of quiescent VSM cells (first subculture) from 6-week-old chicks. This growth-stimulating effect was reduced with age (41.4, 29.6, and 3.2% at 9, 19, and 43 weeks of age, respectively). In contrast, platelet-derived growth factor (PDGF, 20 ng/ml) increased [3H]Thd incorporation similarly in chicks, pullets, and hens. Furthermore, ANG II significantly (45.9%, P < 0.01) attenuated the growth-promoting effect of fetal calf serum in cultured VSM cells from 6-week-old chicks. This inhibitory effect also decreased in older birds. ANG II showed neither a growth-stimulatory nor -inhibitory effect in cultured neointimal cells. SNAP attenuated dose dependently (20-60 microM) the basal and PDGF-induced VSM cell growth, whereas cGMP inhibited basal growth only at a high dose (100 microM). These results indicate that in fowl VSM cells, ANG II is mitogenic and antimitogenic in chicks but not in mature birds, suggesting that phenotypic modulation occurs in the ANG receptors/signaling mechanism with maturation/age or in neointimal cells, whereas the mitogenic mechanism via PDGF remains in both young and mature birds.  相似文献   

16.
The responses of lymphocytes cultured with various stimulants were analysed with respect to DNA synthesis and cell division. Autoradiographic labelling with [3H]thymidine indicated that similar proportions of cells had incorporated this labelled precursor for DNA synthesis during both short and long periods of exposure to this specific precursor for DNA synthesis. Changes in labelling index (LI) after pulsing these cells with [3H]thymidine showed that exchange of labelled material, which could not be chased out with unlabelled thymidine, was responsible for the increases of LI seen. Failure to prevent this increase with excess unlabelled thymidine indicated that direct incorporation of [3H]thymidine did not account for this exchange. Using hydroxyurea and colcemid arrest to analyse cell cycle events in these cultures, it was shown that approximately 70 per cent of the responding cells in cultures of stimulated lymphocytes, while actively synthesizing DNA, were not in cell cycle for division. It was concluded that DNA turnover, involving synthesis and exchange of newly synthesized material, possibly DNA, was occurring in these cells.  相似文献   

17.
Culture of endothelial cells started two decades ago and is now a useful tool in understanding endothelial physiology and the study of the interaction of endothelial cells with blood cells and various mediators. In vitro proliferation can be measured by [3H]thymidine incorporation in defined conditions and gives reproducible results. Endothelial cells can be activated by several stimuli, including cytokines such as tumor necrosis factor-alpha and interleukin-1. Part of endothelial cell activation is defined by expression or overexpression of leukocyte adhesion molecules. Intracellular adhesion molecule (ICAM), E-selection and vascular adhesion molecule (VCAM) are receptor molecules for leukocyte adhesion. Leukocyte adhesion to endothelium can be measured in static but also in rheologically defined flow conditions. Normal red blood cells (RBCs) do not adhere to endothelium, while RBC from patients with sickle cell anemia, diabetes mellitus, and malaria have an increased adhesion to endothelium which is mediated by specific VCAM, receptor for advanced glycated end-products (RAGE), and ICAM, respectively. Binding of blood cells or activation by cytokine is followed by a series of reactions in endothelial cells associated with the modulation of prostacyclin, nitric oxide, tissue factor, and cytokine production. Modification of endothelial cell functions in culture is correlated to in vivo alteration of vascular wall properties, further supporting these cells in culture as a relevant experimental model.  相似文献   

18.
It is well documented that 3-hydroxy-3-methylglutaryl-CoA reductase inhibitors prevent cultured mammalian cells from progressing through the cell cycle, suggesting a critical role for a mevalonate-derived product. Recently, it has been shown that free geranylgeraniol (GG-OH) and farnesol (F-OH) can be utilized by C6 glioma cells for protein isoprenylation. The ability of GG-OH and F-OH to restore protein geranylgeranylation or farnesylation selectively has enabled us to examine the possibility that mevalonate is essential for cell proliferation because it is a precursor of farnesyl pyrophosphate or geranylgeranyl pyrophosphate, the isoprenyl donors involved in the posttranslational modification of key regulatory proteins. In this study we report that GG-OH, as well as mevalonate, overcomes the arrest of cell proliferation of C6 glioma cells treated with lovastatin, as assessed by increased cell numbers and a stimulation in [3H]thymidine incorporation. The increase in cell number and [3H]thymidine incorporation were significantly lower when F-OH was added. Under these conditions [3H]mevalonate and [3H]GG-OH are actively incorporated into a set of isoprenylated proteins in the size range of small, GTP-binding proteins (19-27 kDa) and a polypeptide with the molecular size (46 kDa) of the smaller isoform of 2 ',3'-cyclic nucleotide 3'-phosphodiesterase. Analysis of the proteins metabolically labeled by [3H]mevalonate and [3H]GG-OH reveals the presence of labeled proteins containing geranylgeranylated cysteinyl residues. Consistent with geranylgeranylated proteins playing a critical role in the entry of C6 cells into the cell cycle, a (phosphonoacetamido)oxy derivative of GG-OH, a drug previously shown to interfere with protein geranylgeranylation, prevented the increase in cell number when mevalonate or GG-OH was added to lovastatin-treated cells. These results strongly suggest that geranylgeranylated proteins are essential for progression of C6 cells into the S phase of the cell cycle and provide the first evidence that the "salvage" pathway for the utilization of the free isoprenols is physiologically significant in the CNS.  相似文献   

19.
We examined the binding properties and mitogenic effects of U46619, using cultured vascular smooth muscle cells (VSMCs), by ligand-binding assay, measuring [3H]thymidine and [3H]leucine incorporation, checking with flow cytometry, and counting the cell number. The U46619-activated mitogenic signal-transduction pathway was assessed by measuring formation of inositol monophosphate (IP); [Ca2+]i; mitogen-activated protein kinase (MAPK), MAPK kinase (MAPKK), and p74raf-1 activities; and GTP-bound Ras. [3H]U46619 bound to cultured VSMCs from Wistar-Kyoto (WKY) rats at a single class of site (Kd: 15.5 +/- 2.6 nmol/L). However, it bound to VSMCs from spontaneously hypertensive rats (SHRs) at two classes of sites (Kd: 2.3 +/- 0.6 nmol/L and 1.4 +/- 0.5 mumol/L). U46619 increased DNA and protein synthesis, cell number, IP formation, [Ca2+]i, and MAPK and MAPKK activities, with EC50 values close to its Kd value for the low-affinity binding site in VSMCs from SHR. Prostaglandin (PG) E2 and PGF2 alpha showed little of such mitogenic effects. All these effects of U46619 were inhibited by SQ29548, staurosporine, or pretreatment of VSMCs with phorbol 12-myristate 13-acetate for 24 hours. However, U46619 stimulation did not lead to a significant increase in the Ras-GTP complex or p74raf-1 activity. In conclusion, the mitogenic effect of U46619 appears to be mediated via the activation of low-affinity thromboxane binding sites that trigger phosphoinositide hydrolysis and activate the MAPK pathway, leading to DNA synthesis and cell proliferation.  相似文献   

20.
OBJECTIVE: Amino acid transport and its regulation in vascular endothelial cells remains a largely unexplored area. In this study, we evaluated alanine transport in bovine aortic endothelial cells to assess possible mechanisms of regulation. METHODS: Alanine transport into confluent monolayers of endothelial cells was measured using 100 microM [3H]alanine in the presence and absence of external Na+, in cells deprived of serum for 24 hr (SD), and in SD cells exposed to 10% serum (S) for 3 hr (SD + S cells). RESULTS: Our results indicate that although SD did not significantly affect the Na(+)-independent transport of alanine when compared to normal cells, serum addition to serum-deprived cells markedly stimulated the Na(+)-dependent uptake of this amino acid through system A. The stimulation of alanine transport pathway(s) by serum was totally abolished by pretreatment of endothelial cells with 10 microM cycloheximide, suggesting a role of protein synthesis. Serum also induced a marked increase in calcium recycling at the cell membrane, suggesting that calcium is a key element of the serum signaling pathway. Indeed, both BAPTA (20 microM), a cellular calcium chelator, and thapsigargin (1 microM), an agent that depletes intracellular calcium stores, prevented the stimulation of alanine uptake by serum. Finally, pertussis toxin (400 ng/ml), an agent known to inactivate certain G-protein-dependent pathways, significantly reduced the serum-dependent 45Ca uptake and [3H]alanine entry. However, the protein kinase C activator PMA (100 nM), significantly reduced the stimulation of alanine uptake by serum but did not affect the stimulation of calcium uptake. CONCLUSIONS: Altogether these findings suggest that cell calcium is involved in the regulation of system A by serum in vascular endothelial cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号