首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Homogeneous coagulant of poly(p-phenylene terephthalamide) (PPTA) and ABS resin was obtained by pouring the dimethylsulfoxide solution of N-sodium PPTA and ABS into acidic water. Transmission electron microscopic observation proved that PPTA was dispersed in the matrix in a form of microfibril with a diameter of 10–30 nm. The Tg of the resin component in ABS shifted to higher temperatures with increasing fraction of PPTA. Stress-strain behavior of the polymer composite showed increased tensile modulus and strength with addition of PPTA. The transition temperature from brittle to ductile fracture, however, shifted to higher temperature resulting in lower extensibility. Incorporation of the block copolymer of PPTA and polybutadiene into ABS improved the ultimate extensibility, i.e., increased toughness was provided compared with the simple composite systems of ABS and PPTA microfibrils. Scanning electron microscopic observation showed that the polymer composite made with the block copolymer generated many crazes upon deformation, while the composite with PPTA homopolymer fractured without remarkable craze formation. Thus, a new type of thermoplastic with improved mechanical properties was obtained by use of PPTA block copolymer as compatibilizer.  相似文献   

2.
In this article, we report on the preparation and characterization of novel poly(vinyl chloride) (PVC)–carbon fiber (CF) composites. We achieved the reinforcement of PVC matrices with different plasticizer contents using unidirectional continuous CFs by applying a warm press and a cylinder press for the preparation of the PVC–CF composites. We achieved considerable reinforcement of PVC even at a relatively low CF content; for example, the maximum stress (σmax) of the PVC–CF composite at a 3% CF content was found to be 1.5–2 times higher than that of the PVC matrix. There were great differences among the Young's modulus values of the pure PVC and PVC–CF composites matrices. The absolute Young's modulus values were in the range 1100–1300 MPa at a 3% CF content; these values were almost independent of the plasticizer content. In addition, we found a linear relationship between σmax and the CF content and also recognized a linear variation of the Young's modulus with the CF content. The adhesion of CF to the PVC matrix was strong in each case, as concluded from the strain–stress curves and the light microscopy and scanning electron microscopy investigations. The mechanical properties of the PVC–CF composites with randomly oriented short (10 mm) fibers were also investigated. At low deformations, the stiffness of the composites improved with increasing CF content. Dynamic mechanical analysis (DMA) was used to determine the glass‐transition temperature (Tg) of the PVC–CF composites. The high increase in the Young's modulus entailed only a mild Tg increase. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

3.
Summary Nitrile rubber (NBR) was reinforced by poly(p-phenylene terephthalamide) (PPTA) with a coprecipitation method from a common solvent of them. PPTA was converted to N-sodium PPTA with sodium hydride in DMSO, forming homogeneous solution. DMF dissolves NBR. Both solutions were blended to form an isotropic solution. The precipitant was NBR reinforced by PPTA which was regenerated from N-sodium PPTA at coagulation as reported previously. The molecular composite thus obtained was mill-blended with poly(vinyl chloride) (PVC) in order to enhance solvent resistant property. The vulcanized composite of NBR/PVC reinforced by PPTA showed higher modulus, higher strength and more improved solvent resistance than the gum stock and the black stock of NBR/PVC. The properties of the molecular composite containing 5phr PPTA found approximately comparable to those of the black stock of NBR/PVC with 30–40phr ISAF carbon black.On Leave from Japan synthetic Rubber Co., Ltd., Higashi-yurigaoka, Assao-ku, Kawasaki 215, Japan  相似文献   

4.
In situ microfibrillar reinforced composites with ethylene-vinyl acetate (EVA) as matrix and isotactic polypropylene (iPP) as dispersed fibrils were successfully fabricated by multistage stretching extrusion with an assembly of laminating-multiplying elements (LMEs). Four types of EVA with different apparent viscosity were utilized to study the influence of viscosity ratio on the morphology and mechanical properties of EVA/iPP in situ microfibrillar blends. The scanning electron micrographs revealed that the dividing–multiplying processes in LMEs could effectively transform the morphology of iPP phase into microfibrils and the morphology of iPP microfibrils strongly depended on the viscosity ratio. Higher viscosity ratio was favorable for formation of finer microfibrils with narrower diameter distribution. The morphology development of iPP with different viscosity ratio greatly affected the rheological and mechanical properties of EVA/iPP blends. The dynamic rheological results shown that the iPP microfibrils were helpful to increase the storage modulus and loss modulus. The tensile test indicated that the mechanical properties of EVA/iPP blends were controlled by the morphology of iPP phase and the polarity of EVA matrix. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47557.  相似文献   

5.
Microfibrillar reinforced composites (MFC) comprising an isotropic matrix from a lower melting polymer reinforced by microfibrils of a higher melting polymer were manufactured under industrially relevant conditions and processed via injection molding. Low density polyethylene (LDPE) (matrix) and recycled poly(ethylene terephthalate) (PET) (reinforcing material) from bottles were melt blended (in 30/70 and 50/50 PET/LDPE wt ratio) and extruded, followed by continuous drawing, pelletizing and injection molding of dogbone samples. Samples of each stage of MFC manufacturing and processing were characterized by means of scanning electron microscopy (SEM), wide‐angle X‐ray scattering (WAXS), dynamic mechanical thermal analysis (DMTA), and mechanical testing. SEM and WAXS showed that the extruded blend is isotropic but becomes highly oriented after drawing, being converted into a polymer‐polymer composite upon injection molding at temperatures below the melting temperature of PET. This MFC is characterized by an isotropic LDPE matrix reinforced by randomly distributed PET microfibrils, as concluded from the WAXS patterns and SEM observations. The MFC dogbone samples show impressive mechanical properties—the elastic modulus is about 10 times higher than that of LDPE and about three times higher than reinforced LDPE with glass spheres, approaching the modulus of LDPE reinforced with 30 wt% short‐glass fibers (GF). The tensile strength is at least two times higher than that of LDPE or of reinforced LDPE with glass spheres, approaching that of reinforced LDPE with 30 wt% GF. The impact strength of LDPE increases by 50% after reinforcement with PET. It is concluded that: (i) the MFC approach can be applied in industrially relevant conditions using various blend partners, and (ii) the MFC concept represents an attractive alternative for recycling of PET as well as other polymers.  相似文献   

6.
Liquid crystalline polymer reinforced plastics were prepared by compounding (PHB/PEN/PET) blends. A fibrillar PHB structure was formed in situ in the PEN/PET matrix under a high elongational flow field during melt‐spinning of the composite fibers. The formation of PHB microfibrils in the composite fiber with different PHB contents and winding speeds was observed. The PHB microfibril reinforced PEN/PET composite fibers exhibited an unexpectedly low tensile modulus. We have evaluated the tensile modulus of the fibers using the non‐modified 22 and a modified 23 Halpin–Tsai model. From the analysis of both models, large differences were found between the theoretical and experimental values of the tensile modulus, and the low value of the tensile modulus of the composite fiber could not adequately be explained by either model. Thus, we analyzed the observed modulus values using the Takayanagi model, 24 which describes the concept of mechanical discontinuities in semi‐crystalline polymers. Using the Takayanagi model, the effective fraction of continuous or discontinuous microfibrils was evaluated. Consequently, we could successfully explain the very low modulus of the PHB/PEN/PET composite fiber, having a large number of PHB microfibrils, using the Takayanagi model. Copyright © 2003 Society of Chemical Industry  相似文献   

7.
This article investigates the mechanical, morphological, and thermal properties of poly(vinyl chloride) (PVC) and low‐density polyethylene (LDPE) blends, at three different concentrations: 20, 50, and 80 wt% of LDPE. Besides, composite samples that were prepared from PVC/LDPE blend reinforced with different date palm leaf fiber (DPLF) content, 10, 20, and 30 wt%, were also studied. The sample in which PVC/LDPE (20 wt%/80 wt%) had the greatest tensile strength, elongation at break, and modulus. The good thermal stability of this sample can be seen that T10% and T20% occurred at higher temperatures compared to others blends. DPLF slightly improved the tensile strength of the polymer blend matrix at 10 wt% (C10). The modulus of the composites increased significantly with increasing filler content. Ageing conditions at 80°C for 168 h slightly improved the mechanical properties of composites. Scanning electron microscopic micrographs showed that morphological properties of tensile fracture surface are in accordance with the tensile properties of these blends and composites. Thermogravimetric analysis and derivative thermogravimetry show that the thermal degradation of PVC/LDPE (20 wt%/80 wt%) blend and PVC/LDPE/DPLF (10 and 30 wt%) composites took place in two steps: in the first step, the blend was more stable than the composites. In the second step, the composites showed a slightly better stability than the PVC/LDPE (20 wt%/80 wt%) blend. Based on the above investigation, these new green composites (PVC/LDPE/DPLF) can be used in several applications. J. VINYL ADDIT. TECHNOL., 25:E88–E93, 2019. © 2018 Society of Plastics Engineers  相似文献   

8.
Nanosilica particles are functionalized by in situ surface‐modification with trimethyl silane and vinyl silane. Resultant reactive nanosilica (coded as RNS) contains double bonds and possesses good compatibility with vinyl chloride (VC) and polyvinyl chloride (PVC). This makes it feasible for RNS to copolymerize with VC generating RNS/PVC composites via in situ suspension polymerization. As‐prepared RNS/PVC composite resins are analyzed by means of FTIR. The tensile strength and impact strength of compression‐molded RNS/PVC composites are measured and compared with that of compression‐molded PVC composites doped with dispersible nano‐SiO2 particles (abridged as DNS) surface‐modified with trimethyl silane alone. Moreover, the thermal stability of compression‐molded RNS/PVC and DNS/PVC composites is evaluated by thermogravimetric analysis. It has been found that RNS/PVC composites possess greatly increased impact strength and tensile strength than PVC matrix, while DNS/PVC composites possess higher impact strength than PVC matrix but almost the same tensile strength as the PVC matrix. This implies that DNS is less effective than RNS in improving the mechanical strength of PVC matrix. Particularly, RNS/PVC composites prepared by in situ suspension polymerization have much higher mechanical strength than RNS/PVC composites prepared by melt‐blending, even when their nanosilica content is only 1/10 of that of the melt‐blended ones. Besides, in situ polymerized RNS/PVC and DNS/PVC composites have better thermal stability than melt‐blended nanosilica/PVC composites. Hopefully, this strategy, may be extended to fabricating various novel high‐performance polymer‐matrix composites doped with organically functionalized nanoparticles like RNS. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

9.
Thermal and dynamic mechanical behaviors of wood plastic composites made of poly vinyl chloride (PVC) and surface treated, untreated wood flour were characterized by using differential scanning calorimetry and dynamic mechanical analysis. Glass transition temperature (Tg) of PVC was slightly increased by the addition of wood flour and by wood flour surface treatments. Heat capacity differences (ΔCp) of composites before and after glass transition were markedly reduced. PVC/wood composites exhibited smaller tan δ peaks than PVC alone, suggesting that less energy was dissipated for coordinated movements and disentanglements of PVC polymer chains in the composites. The rubbery plateaus of storage modulus (E′) curves almost disappeared for PVC/wood composites in contrast to a well defined plateau range for pure PVC. It is proposed that wood flour particles act as “physical crosslinking points” or “pinning centers” inside the PVC matrix, resulting in the absence of the rubbery plateau and high E′ above Tg. The mobility of PVC chain segments were further retarded by the presence of surface modified wood flour. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

10.
Pristine diatomite was first purified by acid treatment and then modified with γ‐methacryloxy propyl trimethoxysilane molecule (KH570) to introduce hydrophobic chains on the surface of acid‐treated diatomite. Fourier‐transform infrared spectroscopy and thermogravimetric analysis (TGA) indicated that the silane coupling agent (KH570) was successfully grafted on the diatomite through covalent bonding. The digital photos showed that the silanization process changed the surface property of the diatomite. The poly(vinyl chloride) (PVC)/pristine diatomite and PVC/modified diatomite composites were prepared via two‐roll mill. The thermal stability and mechanical properties of PVC composites were investigated by TGA, mechanical properties tests, and dynamic mechanical analysis. The results showed that the thermal stability of the composites improved and maximum weight loss temperature (Tmax) of the PVC composite with 1 phr modified diatomite was about 20°C higher than that of PVC composite without diatomite. The PVC/modified diatomite composites exhibited better mechanical properties owing to the stronger interfacial interaction between PVC matrix and modified diatomite. But the impact strength reduced sharply when the addition of diatomite was more than 1 phr. The reason of the phenomenon is that the diatomite plays the role of defects in PVC and it works against the absorption of impact strength energy. It was proved by the results of scanning electron microscopy. J. VINYL ADDIT. TECHNOL., 25:E39–E47, 2019. © 2018 Society of Plastics Engineers  相似文献   

11.
Microfibrillar blends were prepared from polypropylene and poly (ethylene terephthalate) by extrusion followed by cold drawing. The draw ratio employed had a prominent effect on the aspect ratio of the microfibrils produced, as revealed by scanning electron microscopy. The subsequent isotropization step between the Tm of the polymers created microfibrillar composites with randomly oriented short microfibrils of poly (ethylene terephthalate). The X ray diffraction patterns of the microfibrillar blends were different from those of corresponding composites although the polypropylene phase in both exhibited predominantly the presence of α crystallites. The crystallization of the polypropylene phase was affected by the orientation and diameter of the poly (ethylene terephthalate) microfibrils. The short microfibrils in the microfibrillar composites were not effectual in hastening the crystallization of polypropylene. The thermal decomposition studies revealed the capability of microfibrillar blends to delay the degradation better than the microfibrillar composites.  相似文献   

12.
We have established that the PP/PA6/CB composite with 3D microfibrillar conducting network can be prepared in situ using melt spinning process. CB particles preferably were localized at the interface between polypropylene as the matrix and PA6 microfibrils, which act as the conducting paths inside the matrix. The percolation threshold of the system reduced when aspect ratio of the conducting phase was increased by developing microfibrillar morphology. The effect of annealing process on the conductivity of PP/PA6/CB composite with co‐ continuous and microfibrillar morphologies was studied. It was observed that, annealing process forces CB particles towards the interface (2D space) of PP and PA6 co‐continuous phases, and percolation threshold and critical exponent of classical percolation theory will be decreased, while the conductivity of conducting composite with microfibrillar morphology was not affected considerably by annealing process at temperatures either higher or lower than the melting point of the PA6 microfibrils. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

13.
Composite fibers of poly(p-phenylene benzobisthiazole) (PBT) with nylons were spun from dilute acid solutions. The effects of wet-stretching, heat treatment time, tension, and temperature on the tensile properties are reported. Nylon 6,6 and nylon 6 at several molecular weights were studied. Moduli of 40 GPa and tensile strengths of 375 MPa were achieved for 30/70 PBT/nylon composites. Heat treatment of the nylon/PBT fibers at 160–225°C for 12–19 h increased the tensile modulus by 20–50% and the tensile strength by a smaller amount. At the same time, the intrinsic viscosity of the nylons increased as much as 100%, indicating the solid-state polymerization of the nylon. The largest tensile modulus attained is less than half the theoretical value predicted by a linear “rule of mixtures” as might be expected for an oriented molecular composite. Although differential scanning calorimetry shows a melting transition at temperatures 5–10°C higher than the pure nylons, the composite does not flow at temperatures above this transition. Sulfuric acid dissolves most of the nylon, but does not destroy the mechanical integrity of the fibers; differential scanning calorimetry indicates that the remaining fiber contains little or no nylon. The results are consistent with a microstructure consisting of a microfibrillar network of PBT, surrounded by a separate nylon phase.  相似文献   

14.
Carbon black (CB) loading greatly affects the in-situ fibrillation of CB/poly (ethylene terephthalate) (PET) compound in a polyethylene (PE) matrix during melt mixing, slit die extrusion and hot stretching. CB/PET/PE composites with lower CB loadings display well-defined CB/PET microfibrils in which all the CB particles are localized. The surface microstructure (mainly amount and distribution of CB particles) of in-situ CB/PET microfibrils is a key factor determining the electrical conductivity of the microfibrillar composite, and is dominated by the CB content in the in-situ CB/PET microfibrils. With low CB content, there are hardly any CB particles on the surface of the CB/PET microfibril. The volume resistivity of in-situ microfibrillar composite remains high. With higher CB loading, the number of CB particles on the surfaces of the microfibrils increases significantly. Above a critical value (maximum packing fraction), the microfibril network was connected by electrically conductive contact points and thus was able to sustain electron transmission in the whole system. As a result, the volume resistivity of in-situ microfibrillar CB/PET/PE composite dropped sharply and percolation occurred.  相似文献   

15.
Rigid and conductive poly(vinyl chloride) (PVC)/carbon black (CB) composites were prepared in a Haake torque rheometer. The results illustrate that the fusion torque of the PVC/CB composite is increased as the amount of CB is increased. Both the fusion percolation threshold and the fusion time of PVC/CB composites are decreased when the amount of CB is increased. Two major weight loss stages are observed in the TGA curve of PVC/CB composite. The first thermal degradation onset temperature (Tonset1) of PVC/CB composite is decreased as the amount of CB is increased. Both the first and second weight loss stages (ΔY1 and ΔY2) of PVC/CB composites are decreased as the amount of CB is increased. The surface resistivity of PVC/CB composite remains almost constant up to 6 parts per hundred unit weight of resin (phr) CB. When the amount of CB in PVC/CB composite is increased from 6 to 15 phr, the surface resistivity of PVC/CB composite is dramatically decreased from 1010 Ω/sq to 104 Ω/sq. Because of the addition of CB, the rigidity of PVC/CB composite is increased and thus the mechanical properties, such as yield strength, tensile strength, and the Young's modulus, are improved. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci, 2006  相似文献   

16.
In situ microfibrillar composites (PP/mPA66) of modified polyamide66 (mPA66) with polypropylene (PP) were prepared by using a “post‐compatibilization” technique. The mPA66 was firstly obtained by reactive extrusion of PA66 resin with a specially designed compatibilizer, which was then blended with PP through extrusion combined with a hot stretching and subsequently quenching process. The PP/mPA66 in situ microfibrillar composites were comparatively studied with simply blended samples of PP/PA66 that were prepared by blending PA66 and PP together with (or without) the same compatibilizer through extrusion. PA66‐g‐PP (and/or elastomers) graft copolymer formation in mPA66 was identified by dissolution test and infrared spectroscopy measurement, the compatibilizer is unevenly dispersed with large domains in PA66 as observed by scanning electron microscope (SEM). In PP/mPA66 composites, the in situ generated PA66 microfibrils have a rather nonuniform diameter distribution and a very rough surface. SEM observations for the fractured surface illustrated that PP/mPA66 composites have structural characteristics of stronger adhesion and moderate flexibility of the interface. Enhanced compatibilization between the PA66 microfibrils with the PP matrix resulted in improved mechanical properties of the PP/mPA66 composites. With optimized composition, the PP/mPA66 composite has notched Izod impact strength, flexural modulus, and tensile yield stress of 1.49, 1.16, and 0.99 times as those of the neat PP, respectively. Such enhanced mechanical properties balance and improved interface adhesion were not found in the simply blended samples of PP/PA66 with or without the specially designed compatibilizer. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

17.
Kun Dai 《Polymer》2007,48(3):849-859
In the present study, it was attempted to fabricate a new conductive carbon black (CB) filled poly(ethylene terephthalate) (PET)/polyethylene (PE) in situ microfibrillar composite with a lower percolation threshold through selectively localizing CB particles in the surfaces of the PET microfibrils. The CB particles were first mixed with PE matrix, and then PET was added into CB/PE compound. Subsequently, the CB/PET/PE composite was subjected to a slit die extrusion, hot stretch and quenching process to generate in situ PET microfibrils, in which CB particles moved to the surfaces of the PET microfibrils simultaneously. The morphological observation showed that the PET phases formed well-defined microfibrils, and CB particles did overwhelmingly localize in the surfaces of the PET microfibrils, which led to a very low percolation threshold, i.e., 3.8 vol%, and a good conductivity. The conductive network was built by the contact and overlapping of the CB particles coated PET microfibrils. In addition, the CB particles remaining in the PE matrix also contributed to the conductive paths, especially for the high CB loading filled microfibrillar composites. Because of the complexity of the distribution of CB particles, a high critical resistance exponent t (t = 6.4) exists in this conductive composite. To reveal the possibility of the migration of CB particles from PE to PET, the morphology of the CB/PET/PE composite mixed for different times was examined. It was found that, depending on the mixing time, the CB particles gradually migrated from the PE matrix to the surfaces at first, and then to the center of the PET phases. The preferable distribution of CB particles was originated from several factors including interfacial tension, viscosity, molecule polarity, and mixing process. Furthermore, during the mixing process of the CB/PET/PE composite, the migration of CB particles to PET phase from PE matrix led to the increase of both the viscosity ratio of the dispersed phase to the matrix and the volume of the dispersed phases, thus resulting in larger dispersed CB/PET composite phase particles.  相似文献   

18.
This article focuses on the preparation and mechanical properties of silica/poly(vinyl chloride) (PVC) composites enriched with 60% mass ratio of 130 nm and 30 nm silica sphere fillers. Silica particles were pre‐treated with silane, IO7 T7(OH)3 (trisilanol isooctyl polyhedral‐oligomeric silsesquioxane) to prevent agglomeration. The dispersion and interfacial compatibility of silica particles in a PVC matrix were investigated by scanning electron microscopy. The composite mechanical properties were characterized by tensile test, revealing improved Young modulus and tensile strength. Compared to pure PVC, the stiffness of 30 nm and 130 nm silica/PVC composites is on average increased by 30–40%, respectively. Similar trend was observed for the composite tensile strength on the change of the silica size. In contrast, elongation at break decreased for both composites compared to pure PVC, for 15% in 30 nm and for 30% in 130 nm silica/PVC composite. POLYM. ENG. SCI., 2013. © 2012 Society of Plastics Engineers  相似文献   

19.
Microfibrillar polymer–polymer composites (MFCs) based on low-density polyethylene (LDPE) and polyethylene terephthalate (PET) were prepared by cold drawing-isotropization technique. The weight percentage of PET was varied from 5 to 45 %. Microfibrils with uniform diameter distribution were obtained at 15 to 25 wt% of PET as evident from the scanning electron microscopy (SEM) results. Dynamic mechanical properties such as storage modulus (E′), loss modulus (E″) damping behavior (tan δ) were examined as a function of blend composition. The E′ values were found to be increasing up to 25 wt% of PET. An effort was made to model the storage modulus and damping characteristics of the MFCs using the classical equations used for short-fiber reinforced composites. The presence of PET microfibrils influenced the damping characteristics of the composite. The peak height at the β-transitions of loss modulus was lower for MFCs with 25 % PET, showing that they had superior damping characteristics. This phenomenon could be correlated with the PET microfibrils morphology. The thermal degradation characteristics of LDPE, neat blends and microfibrillar blends (MFBs) were compared. The determination of activation energy for thermal degradation was carried out using the Horowitz and Metzger method. The activation energy for thermal degradation of microfibrillar blends was found to be higher than that for the corresponding neat blends and MFCs. The long PET microfibrils present in MFBs could prevent the degradation and enhance the activation energy.  相似文献   

20.
The surface of poly(p-phenylene terephthalamide) (PPTA) fiber was modified by the polymer reaction via the metalation reaction in demethyl sulfoxide to provide the fiber surface with several functional groups such as the n-octadecyl group, carboxymethyl group, and acrylonitrile. The discontinuous fibers thus modified could be isotropically dispersed in polyethylene and ionomer. The composite of ionomer and random-in-plane oriented discontinuous PPTA fibers with the surface modified by carboxymethyl groups was remarkably improved in its mechanical properties, and the fiber efficiency factors of about 0.4 for both strength and modulus are comparable to the values in the composite of unidirectionally oriented discontinuous PPTA fibers and ionomer. The heat resistance of ionomer was also greatly improved by the presence of this surface modified PPTA fibers, even with volume fractions as low as 2.2%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号