首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 208 毫秒
1.
 针对现有地震被动土压力计算方法的局限性与不足,在平面滑裂面假设下,提出采用拟动力法计算填土表面有均布荷载作用下的地震被动土压力,同时得到被动土压力沿墙高的分布曲线。通过分析墙土摩擦角、填土内摩擦角、水平向和竖向地震加速度系数对被动土压力值及其分布的影响,得出地震被动土压力随墙土摩擦角及填土内摩擦角的增大而增大,随水平向及竖向地震加速度的增大而减小。拟动力法计算得到的地震被动土压力值大于Mononobe-Okabe理论的计算值,且所得的地震被动土压力沿墙高呈非线性分布。  相似文献   

2.
传统的Mononobe-Okabe法在实际工程中有着广泛应用,但它仅适用于无黏性土的极限土压力计算,且不能给出土压力分布。基于极限平衡理论,视墙后填土为服从Mohr-Coulomb屈服准则的理想弹塑性材料,假定墙后塑性区的一簇滑移线为直线即平面滑裂面,考虑墙背倾角、地面倾角、土黏聚力和内摩擦角、墙土之间黏结力和外摩擦角、地面均布超载、塑性临界深度以及水平和竖向地震系数等因素的影响,建立较为完善的塑性滑楔分析模型,进而采用极限平衡法求解挡土墙地震主动土压力、滑裂面土反力及其分布,并且通过量纲一化的分析首次提出几何力学相似原理。研究结果表明,总地震主动土压力随水平地震系数代数值的增大而增大;但随竖向地震系数代数值的增大并非总是减小,当水平地震系数较大时,可能出现先减后增的情况。  相似文献   

3.
根据平移模式下的微元滑裂体水平面上的剪力为零的条件和土拱效应,获得受填土内摩擦角和墙土摩擦角影响的非极限滑裂面倾角和非极限主动土压力系数,其中,非极限填土内摩擦角和墙土摩擦角是墙体位移的函数。根据非极限水平微元滑裂体的静力平衡,得到平移模式下考虑土拱效应和位移影响的非极限主动土压力计算式。参数影响分析表明:非极限滑裂面倾角和非极限主动土压力系数均随非极限墙土摩擦角的增大而增大;非极限主动土压力系数和非极限主动土压力均随侧向位移比的增大而减小;非极限主动土压力分别随着非极限填土内摩擦角、非极限墙土摩擦角的增大而减小。理论值及试验值的对比结果显示:相较于其他方法,本文方法的非极限主动土压力理论值与试验值吻合更好。  相似文献   

4.
实践证明锚杆对边坡加固效果明显,但目前对地震作用下岩质边坡的锚固机制研究还不够深入,因此研究锚固边坡的抗震性能对于边坡锚固的优化设计具有重要意义。采用拟动力法模拟地震加速度时程曲线的输入,并基于极限分析上限定理推导地震作用下顺层岩质边坡临界无量纲总锚固力及锚固边坡稳定安全系数的表达式。通过算例对比分析锚杆倾角、节理面倾角、地震加速度影响系数、地震加速度放大系数、节理黏聚力与内摩擦角对边坡临界状态下总锚固力的影响。研究结果表明:边坡临界状态下锚固力与锚杆倾角、节理内摩擦角、水平向地震加速度影响系数及地震加速度放大系数正相关,与节理面倾角、竖向地震加速度影响系数及节理黏聚力负相关;随着节理内摩擦角的增大,水平向地震加速度影响系数及地震加速度放大系数对边坡临界状态下锚固力的影响越明显,而锚杆倾角、节理面倾角、竖向地震加速度影响系数及节理黏聚力的影响则逐渐减弱。  相似文献   

5.
彭晓钢  王寰宇  李有志 《建筑施工》2021,43(6):1135-1140
大量试验研究和工程实践表明岩土体强度通常是非线性的.在极限分析上限理论的基础上,采用广义切线技术和拟动力法,对挡土墙的地震主动土压力上限进行分析.同时,采用离散法生成破坏机构来满足惯性力随空间位置变化的要求.对比和研究表明,水平地震系数、周期、波速、土体放大系数、垂直地震系数的增大均导致主动土压力的增大.此外,初始黏聚力的增大有利于墙后填土的稳定,而非线性系数和单轴抗拉强度的增大均不利于墙后填土的稳定.研究结果可为工程设计与施工提供参考.  相似文献   

6.
地震条件下倾斜挡土墙被动土压力研究   总被引:8,自引:0,他引:8       下载免费PDF全文
挡土墙的抗震设计是减小地震灾害的一项重要措施。在Mononobe-Okabe平面滑裂面假设的基础上,将随机出现的地震力按最不利工况下的静力考虑,利用水平层分析法得到了地震加速度沿墙高均匀分布时不同挡土墙倾角、填土摩擦角、墙背摩擦角下的地震被动土压力系数、被动土压力强度、被动土压力合力和被动土压力合力作用点的理论公式。分析了地震加速度系数、挡土墙倾角、填土内摩擦角对被动土压力系数和土压力分布的影响,结果表明,地震被动土压力合力与Mononobe-Okabe理论相同,地震土压力强度为非线性分布。在最不利工况下,地震力的出现大大减小了被动土压力,减小的程度随地震加速度的增加而增加。  相似文献   

7.
为了完善支挡结构的抗震稳定性计算方法,基于拟静力法和水平层分析法,以部分浸水条件下的临水加筋土挡墙为研究对象,考虑填土中存在直线型和折线型2种滑裂面形式,推导地震作用下加筋条拉力系数的计算表达式。该法根据填土的渗透性差异分为水土分算和水土合算2种情况,包含了水平地震惯性力、竖向地震惯性力、地震超静孔压以及动水压力的影响。相比于干填土情况,浸水条件会显著增大加筋土挡墙的加筋条拉力,在工程设计中需要合理考虑其影响。参数分析表明,直线型滑裂面的加筋条拉力系数大于折线型滑裂面的结果;水土分算的系数大于水土合算的系数;地震超静孔压和浸水水位高度对加筋条拉力系数有显著的增大作用,其增大幅度与滑裂面的形式和水土压力的计算模式有关;填土内摩擦角和墙土外摩擦角对拉力系数都有减小作用,但内摩擦角的影响幅度更明显。  相似文献   

8.
强地震荷载作用下临水挡土墙的拟动力法稳定性分析   总被引:1,自引:1,他引:0  
 假设墙后填土破坏面为曲面,用正弦波模拟地震加速度时程曲线,采用拟动力法对临水挡土墙进行稳定性分析,确定了挡土墙和墙后填土所受的阻尼力和惯性力,获得地震荷载作用下挡土墙的被动土压力、抗滑和抗倾覆稳定性系数的封闭形式解析解。定量分析地震加速度、放大系数、墙后填土的物理力学参数和动水压力对挡土墙的滑动位移、挡土墙的抗滑和抗倾覆稳定性系数的影响,得出当地震加速度、放大系数越大,水位越高,内摩擦角越小,临水挡土墙的稳定性越差。  相似文献   

9.
重力式挡土墙在地震作用下的稳定性一直是岩土工程研究的热点问题。将墙前填土、墙后填土、挡墙三者看作统一体系,假设无黏性填土材料服从莫尔库仑破坏准则,根据极限分析上限理论,研究了重力式挡墙在地震作用下的纯转动稳定性。基于纯转动破坏假设,得到考虑墙前填土作用下地震屈服加速度及破裂面倾角的计算公式,并得到了屈服加速度系数的最优解。计算结果与Mononobe-Okabe法的计算结果一致,验证了该方法的合理性。地震屈服加速度系数k随挡墙前后填土高度比(H /H)的增大而增大,特别是当高度比大于0.15后,k随H /H增大呈较快速地增加。故适当增加墙前填土高度,可有效地提高挡墙地震作用下的转动稳定性。  相似文献   

10.
由土拱效应原理得到滑裂土体的墙面和滑裂面上的应力,然后根据拟静力法和滑裂土体的整体受力平衡,得到平移模式下非垂直刚性挡土墙的地震主动破裂角计算式。进一步根据水平层分法获得墙背地震主动土压力及其系数、地震主动土压力合力及其作用点高度等的计算式。此外,分别讨论墙背倾角、填土内摩擦角、墙土摩擦角、地震系数和填土表面荷载等对地震主动破裂角、法向地震主动土压力分析、地震主动土压力合力系数、地震主动土压力合力及其作用点相对高度等的影响。  相似文献   

11.
Present study estimates seismic active earth pressure on the reinforced retaining wall by combining the lower bound finite element limit analysis and the modified Pseudo-dynamic method. A series of parametric analyses are performed by varying seismic acceleration coefficient, time period of seismic loading, soil friction and dilation angles, reinforcement spacing, length of reinforcement, soil-reinforcement interface, damping ratio of soil, soil-wall interface, wall inclination, and ground inclination. Maximum active earth pressure is exerted when natural time period of reinforced soil matches with the time period of an earthquake. Reinforcement is found to be effective in terms of reducing active earth pressure significantly on the wall subjected to seismic loading. Effectiveness of reinforcement depends upon two factors, namely vertical spacing and soil-reinforcement interface friction angle. For relatively smaller reinforcement spacing, soil-reinforcement behaves like a composite block, which helps to constraint stresses within a small area behind the wall. Maximum tensile resistance is developed when fully rough interface condition is assumed between soil and reinforcement layer. Failure patterns are provided to understand the behaviour of reinforced retaining wall under different time of seismic loading.  相似文献   

12.
工程实践已证明基坑倾斜桩无支撑支护具有良好的变形和稳定控制性能.然而,倾斜支护桩稳定特性和分析方法尚缺乏研究.通过数值模拟研究了倾斜支护桩在基坑开挖过程中变形到破坏的全过程,分析了倾斜角、插入比以及土体强度对安全系数的影响.推导了基坑倾斜桩支护的抗倾覆与整体稳定安全系数计算方法,并与离心机试验结果进行了对比分析.结果 ...  相似文献   

13.
 预测地震作用下重力式挡土结构的位移是基于位移抗震设计方法的关键。基于Newmark滑动理论、超孔隙水压力应力模型和累积损伤原理,建立饱和回填砂土中超孔压比时程计算模型,以及墙体滑动和转动临界加速度时程计算模型。基于所建立的模型,提出用于计算饱和回填砂土重力式挡土结构滑动和转动位移的计算方法。采用该方法,分析土体参数和地震动参数对墙体滑动及转动位移的影响,并对墙体滑动与转动的耦合作用进行研究。结果表明,填土不发生液化的情况下,滑动位移对土体相对密度和墙体与地基土间的摩擦角十分敏感;转动位移对输入地震的震级、水平加速度和竖向加速度、填土的内摩擦角、墙背摩擦角和相对密度均较为敏感。超孔隙水压力对墙体滑动和转动位移的影响不可忽视。在地震作用下墙体与墙后填土破坏土楔体共同运动的假设条件下,墙体滑动与墙体转动相互抑制。  相似文献   

14.
《Soils and Foundations》2023,63(1):101247
In this paper, a general solution for evaluating the Coulomb-type seismic active earth pressure that acts on a rigid retaining wall from the cohesive backfill soil is shown together with its derivation process. In the proposed solution, the mobilization of the cohesion on the failure plane in the backfill soil of the retaining wall and the associated increase in shear strength are considered in the pseudo-static limit equilibrium approach under the assumption that the cohesion is uniformly distributed in the backfill soil. The angle of the failure plane and the seismic active earth pressure calculated by the proposed equation completely agree with the calculation results by the trial wedge method, which shows the validity of the proposed solution. In addition, by combining the concept of the Modified Mononobe-Okabe method and the proposed equation, a calculation method for the seismic active earth pressure is proposed. It can consider the effect of backfill cohesion and can be applied even under a large seismic load. Furthermore, a series of trial analyses on the effect of backfill cohesion on the seismic performance of the retaining wall is also conducted using the proposed equation. A series of analyses using the case of a retaining wall damaged during the 1995 Hyogo-ken Nanbu earthquake shows that the effect of backfill cohesion is significant in the seismic performance evaluation and the design of aseismic reinforcements.  相似文献   

15.
The assessment of the internal stability of geosynthetic-reinforced earth retaining walls has historically been investigated in previous studies assuming dry backfills. However, the majority of the failures of these structures are caused by the water presence. The studies including the water presence in the backfill are scarce and often consider saturated backfills. In reality, most soils are unsaturated in nature and the matric suction plays an important role in the wall's stability. This paper investigates the internal seismic stability of geosynthetic-reinforced unsaturated earth retaining walls. The groundwater level can be located at any reinforced backfill depth. Several nonlinear equations relating the unsaturated soil shear strength to the matric suction and different backfill type of soils are considered in this study. The log-spiral failure mechanism generated by the point-to-point method is considered. The upper-bound theorem of the limit analysis is used to evaluate the strength required to maintain the reinforced soil walls stability and the seismic loading are represented by the pseudo-dynamic approach. A parametric study showed that the required reinforcement strength is influenced by several parameters such as the soil friction angle, the horizontal seismic coefficient, the water table level, the matric suction distribution as well as the soil types and the unsaturated soils shear strength.  相似文献   

16.
《Soils and Foundations》2021,61(5):1251-1272
The effects of backfill cohesion on the seismic behavior of a retaining wall are discussed on the basis of a series of 1 g shaking table model tests. The model test results show that a retaining wall having cohesive backfill soil is more stable than a wall without it. The following aspects are observed in the cases of cohesive backfill soil from a detailed analysis using the measured seismic active earth pressure acting on the retaining wall: 1) the existence of a stable region at the top part of the backfill soil, 2) the increase in shear force acting on the boundary between the back face of the wall and the backfill soil, and 3) the mobilization of cohesion along the failure plane in the backfill soil.The existence of a stable region results in reductions in both the driving force and the overturning moment, while it tends to disappear under a high seismic load. The increase in shear force acting on the back face of the wall contributes to an increase in the resistant moment against the overturning of the wall with respect to the base of the footing, and it mobilizes even under a high seismic load. Mobilized cohesion along the failure plane contributes to the support of the soil wedge, resulting in a decrease in the seismic active earth pressure. It also continuously mobilizes even under a high seismic load.These observations indicate that giving consideration to the backfill cohesion when calculating the seismic active earth pressure leads to the rationalization of the evaluation of the seismic performance of the retaining wall even though further study is required, namely, carrying out the validation in the prototype scale and setting the applicable conditions for the seismic design.  相似文献   

17.
Rankine classic earth pressure solution has been expanded to predict the seismic active earth pressure behind rigid walls supporting c–φ backfill considering both wall inclination and backfill slope. The proposed formulation is based on Rankine's conjugate stress concept, without employing any additional assumptions. The developed expressions can be used for the static and pseudo-static seismic analyses of c–φ backfill. The results based on the proposed formulations are found to be identical to those computed with the Mononobe–Okabe method for cohesionless soils, provided the same wall friction angle is employed. For c–φ soils, the formulation yields comparable results to available solutions for cases where a comparison is feasible. Design charts are presented for calculating the net active horizontal thrust behind a rigid wall for a variety of horizontal pseudo-static accelerations, values of cohesion, soil internal friction angles, wall inclinations, and backfill slope combinations. The effects of the vertical pseudo-static acceleration on the active earth pressure and the depth of tension cracks have also been explored. In addition, examples are provided to illustrate the application of the proposed method.  相似文献   

18.
刘忠玉  陈捷 《岩土工程学报》2016,38(12):2254-2261
以墙后为无黏性填土的刚性挡土墙为研究对象,假定破裂面为通过墙踵的平面,且墙后土体中形成圆弧形土拱,考虑滑动土楔内水平土层间的平均剪应力,修正水平层分析法,得到平动模式下主动土压力的表达式。通过与文献中模型试验结果和现有理论成果的对比分析证明了修正方法的合理性。参数分析表明,水平土层间的平均剪应力和主动土压力一样,沿墙高为非线性分布,主要受墙背倾角、墙土摩擦角、填土内摩擦角等因素的影响。对于墙背竖直或墙背较陡且比较粗糙的挡土墙,考虑水平土层间平均剪应力作用算得的主动土压力合力作用点位置高于库仑解且低于不考虑剪应力作用的理论解答,而对墙背较缓且比较光滑的挡土墙,情况则正好相反。而且,不论是否考虑水平土层间的平均剪应力,主动土压力合力作用点位置都会随墙背变缓而降低。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号