首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The ac electrical properties of some lithium silicate glasses and glass-ceramics containing varying proportions of Y2O3 and/or Fe2O3 were measured to investigate their electronic hopping mechanism. There is a clear variation of these properties with composition. The obtained results were related to the concentration and role of Y2O3 and/or Fe2O3 in the lithium silicate glass structure. In crystalline solids the electrical properties data obtained were correlated to the type and content of the mineral phases formed as indicated by X-ray diffraction analysis (XRD). The conductivity, dielectric constant and dielectric loss of the studied glasses were studied using the frequency response in the interval 30 Hz–100 KHz and the effect of compositional changes on the measured properties was investigated. The measurements revealed that the electrical responses of the samples were different and complex. The addition of Y2O3 generally, decreased the ac conductivity, dielectric constant and dielectric losses of the lithium silicate glasses. The addition of Fe2O3 in Y2O3-containing glasses increases the conductivity, while, the dielectric constant and dielectric losses were found to be decreased. However, the addition of Fe2O3 instead of Y2O3 led to decrease the ac conductivity and increased their dielectric constant and dielectric losses. The obtained data were argued to the internal structure of the lithium silicate glass and the nature or role-played by weakness or rigidity of the structure of the sample. Lithium disilicate-Li2Si2O5, lithium metasilicate-Li2SiO3, two forms of yttrium silicate Y2Si2O7 & Y2SiO5, iron yttrium oxide-YFeO3, lithium iron silicate-LiFeSi2O6 and α-quartz phases were mostly developed in the crystallized glasses. The conductivity of the crystalline materials was found to be relatively lower than those of the glass. At low frequency, as the Y2O3 content increased the ac conductivity, dielectric constant and dielectric loss data of the glass-ceramics decreased. However, the addition of Fe2O3 to the Y2O3 containing glass-ceramic led to increase the conductivity. The addition of high content of Fe2O3 instead of Y2O3 in the glass ceramic led to increase the ac conductivity.  相似文献   

2.
A simple and quick microwave method to prepare high performance magnetite nanoparticles (Fe3O4 NPs) directly from Fe has been developed. The as-prepared Fe3O4 NPs product was fully characterized by X-ray diffraction, transmission electron microscopy and scanning electron microscopy. The results show that the as-prepared Fe3O4 NPs are quite monodisperse with an average core size of 80 × 5 nm. The microwave synthesis technique can be easily modified to prepare Fe3O4/Ag NPs and these NPs possess good magnetic properties. The formation mechanisms of the NPs are also discussed. Our proposed synthesis procedure is quick and simple, and shows potential for large-scale production and applications for catalysis and biomedical/biological uses.  相似文献   

3.
A novel sandwich-type CNTs/Fe3O4/RGO composite with Fe3O4 as a bridge was successfully prepared through a simple solvent-thermal and ultrasonic method. The structure and morphology of the composite have been characterized by Fourier-transform infrared spectroscopy, X-ray diffraction and scanning electron microscopy. This new structure can effectively prevent the agglomeration of GO and the combination of CNTs/Fe3O4 and RGO shows a strong reflection loss (RL) (?50 dB) at 8.7 GHz with absorber thickness of 2.5 mm. Moreover, compared with CNTs/Fe3O4/GO composite, it is found that the thermal treating process is beneficial to enhance the microwave absorption properties, which may be attributed to high conductivity of RGO. On this basis, the microwave absorbing mechanism is systematically discussed. All the data show that the CNTs/Fe3O4/RGO composite exhibits excellent microwave absorption properties with light density and is expected to have potential applications in microwave absorption.  相似文献   

4.
The study of electrical conductivity of 30Li2O: (70 − x) B2O3: xV2O5 glass samples has been carried out. The results have been explained by dividing the temperature range into two regions. In region I, conductivity shows Arrhenius behaviour for all the samples. The conductivity increases with addition of V2O5. The results have been explained in the light of Anderson and Stuart Model. In region II, an anomalous enhancement in the conductivity is observed for all the samples up to certain temperature beyond which the conductivity decreases. The enhancement in the conductivity in the annealed glass sample has been attributed to nanocrystallization.  相似文献   

5.
Transparent glasses of CaBi2B2O7 (CBBO) were fabricated via the conventional melt-quenching technique. The amorphous and the glassy nature of the as-quenched samples were, respectively, confirmed by X-ray powder diffraction (XRD) and differential scanning calorimetry (DSC). The glass transition (T g) and the crystallization parameters (crystallization activation energy (E cr) and Avrami exponent (n)) were evaluated under non-isothermal conditions using DSC. The heating rate dependent glass transition and the crystallization temperatures were rationalized by Lasocka equation for the as-quenched CBBO glasses. There was a close agreement between the activation energies for the crystallization process determined by Augis and Bennet and Kissinger methods. The variation of local activation energy (E c(x)) that was determined by Ozawa method increased with the fraction of crystallization (x). The Avrami exponent (n(x)) decreased with the increase in fraction of crystallization (x), suggesting that there was a changeover in the crystallization process from the bulk to the surface.  相似文献   

6.
A series of glass comprising of SiO2–MgO–B2O3–Y2O3–Al2O3 in different mole ratio has been synthesized. The crystallization kinetics of these glasses was investigated using various characterization techniques such as differential thermal analysis (DTA), thermo gravimetric analysis (TGA), X-ray diffraction (XRD), and scanning electron microscopy (SEM). Crystallization behavior of these glasses was markedly influenced by the addition of Y2O3 instead of Al2O3. Addition of Y2O3 increases the transition temperature, T g, crystallization temperature, T c and stability of the glasses. Also, it suppresses the formation of cordierite phase, which is very prominent and detrimental in MgO-based glasses. The results are discussed on the basis of the structural and chemical role of Y3+ and Al3+ ions in the present glasses.  相似文献   

7.
An efficient,controllable,and facile two-step synthetic strategy to prepare graphene-based nanocomposites is proposed.A series of Fe3O4-decorated reduced graphene oxide (Fe3O4@RGO) nanocomposites incorporating Fe3O4 nanocrystals of various sizes were prepared by an ethanothermal method using graphene oxide (GO) and monodisperse Fe3O4 nanocrystals with diameters ranging from 4 to 10 nm.The morphologies and microstructures of the as-prepared composites were characterized by X-ray diffraction,Raman spectroscopy,nitrogen adsorption measurements,and transmission electron microscopy.The results show that GO can be reduced to graphene during the ethanothermal process,and that the Fe3O4 nanocrystals are well dispersed on the graphene sheets generated in the process.The analysis of the electrochemical properties of the Fe3O4@RGO materials shows that nanocomposites prepared with Fe3O4 nanocrystals of different sizes exhibit different electrochemical performances.Among all samples,Fe3O4@RGO prepared with Fe3O4 nanocrystals of 6 nm diameter possessed the highest specific capacitance of 481 F/g at 1 A/g,highlighting the excellent capability of this material.This work illustrates a promising route to develop graphene-based nanocomposite materials with a wide range of potential applications.  相似文献   

8.
This paper examines the effect of doping level on the X-ray luminescence of TbO2-doped polycrystalline lithium tetraborate. It is shown that, when interpreting such spectra, it is convenient to proceed from the terms of free activator and constituent ions. We demonstrate that the emission lines of Tb3+ in doped polycrystalline lithium tetraborate are effectively excited in the band between 350 and 650 nm, which is predominantly due to electron transitions from the 5 D 3 and 5 D 4 excited states to spin-orbital levels of the 7 F J ground multiplet. The emission lines of lithium and boron in single-crystal and polycrystalline undoped lithium tetraborate are effectively excited in the band between 274 and 550 nm.  相似文献   

9.
We have prepared europium-doped BaO-Bi2O3-B2O3 glasses and investigated the doping effect on the main physicochemical properties and local structure of the glasses. Using Judd-Ofelt analysis, we calculated intensity parameters (Ω2, Ω4, and Ω6), spontaneous emission probabilities, the radiative lifetime, luminescence branching factors, the quantum yield of luminescence, and the stimulated emission cross sections for 5 D 07 F J transitions.  相似文献   

10.
Al-doped Fe3O4 nanoparticles were synthesized for the first time via the Composite-Hydroxide-Mediated (CHM) method from Fe3O4 and Al2O3 without using any capping agent. The synthesis technique was one-step and cost effective. The obtained products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersion spectroscopy (EDS). Samples with a tunable size of 500–1500 nm, 200–800 nm, and 100–700 nm could be obtained by adjusting the reaction time and temperature. Magnetic property of the as-synthesized Al-doped Fe3O4 nanoparticles was investigated. Magnetic hysteresis loops measured in the field range of −10 kOe<H<10 kOe, indicated the ferromagnetic behavior with coercivity (H c) of 470 and 110 Oe and remanence magnetization (M r) of 13 and 6.4 emu/g at the temperature of 5 and 300 K, respectively. The saturation intensity (M s) was 46.1 emu/g at 5 K, while it was about 43.6 emu/g at 300 K.  相似文献   

11.
In a Bi2O3–B2O3–ZnO glass system, glass structure change, sintering behavior and resultant physical characteristics of the glass were examined when various amounts of Bi2O3 and ZnO mixture were added. When the total amount of Bi2O3 and ZnO was below 30 mol%, a phase separation occurred and homogeneous glass was not obtained. The fraction of four-coordinated borons (BO4) was highest when the total amount of Bi2O3 and ZnO was 50mol%. Further addition over 50 mol% induced a borate anomaly phenomenon in the glass, which resulted in the decrease in BO4 fraction. The sintering temperature and glass transition temperature decreased as the amount of Bi2O3 and ZnO increased. The thermal expansion coefficient and dielectric constant of the specimens were also examined.  相似文献   

12.
13.
We gave studied the crystallization behavior of 30BaO · 25Bi2O3 · 45B2O3 glasses doped with Eu2O3 to different levels. At a Eu2O3 content of 7 mol % or higher, the glasses undergo volume crystallization. The only precipitating phase is a solid solution between europium and bismuth oxides. With increasing europium concentration in the glass, the structure of the crystallites changes from cubic to rhombohedral. We have investigated the morphology, physicochemical properties, and luminescence spectra of the glasses and glass-ceramics.  相似文献   

14.
This article describes the solution combustion synthesis technique as applicable to iron oxide powder production using urea as fuel and ferric nitrate as an oxidizer. It focuses on the thermodynamic modeling of the combustion reaction under different fuel-to-oxidant ratios. X-ray diffraction showed magnetite (Fe3O4) and hematite (α-Fe2O3) phase formations for the as-synthesized powders. The smallest crystallite size was obtained by stoichiometric chemical reaction. The magnetic properties of the samples are also carefully discussed as superparamagnetic behavior.  相似文献   

15.
Bifunctional magnetic-luminescent dansylated Fe3O4@SiO2 (Fe3O4@SiO2-DNS) nanoparticles were fabricated by the nucleophilic substitution of dansyl chloride with primary amines of aminosilane-modified Fe3O4@SiO2 core–shell nanostructures. The morphology and properties of the resultant Fe3O4@SiO2-DNS nanoparticles were investigated by transmission electron microscopy, FT–IR spectra, UV–vis spectra, photoluminescence spectra, and vibrating sample magnetometry. The Fe3O4@SiO2-DNS nanocomposites exhibit superparamagnetic behavior at room temperature, and can emit strong green light under the excitation of UV light. They show very low cytotoxicity against HeLa cells and negligible hemolysis activity. The T 2 relaxivity of Fe3O4@SiO2-DNS in water was determined to be 114.6 Fe mM−1 s−1. Magnetic resonance (MR) imaging analysis coupled with confocal microscopy shows that Fe3O4@SiO2-DNS can be uptaken by the cancer cells effectively. All these positive attributes make Fe3O4@SiO2-DNS a promising candidate for both MR and fluorescent imaging applications.  相似文献   

16.
The microwave dielectric properties and the microstructures of Sm(Co1/2Ti1/2)O3 ceramics with B2O3 additions (0.25 and 0.5 wt%) prepared by conventional solid-state route have been investigated. The prepared Sm(Co1/2Ti1/2)O3 exhibited a mixture of Co and Ti showing 1:1 order in the B-site. Doping with B2O3 (up to 0.5 wt%) can effectively promote the densification of Sm(Co1/2Ti1/2)O3 ceramics with low sintering temperature. It is found that Sm(Co1/2Ti1/2)O3 ceramics can be sintered at 1,260 °C due to the grain boundary phase effect of B2O3 addition. At 1,290 °C, Sm(Co1/2Ti1/2)O3 ceramics with 0.5 wt% B2O3 addition possess a dielectric constant (ε r) of 27.7, a Q × f value of 33,600 (at 9 GHz) and a temperature coefficient of resonant frequency (τf) of −11.4 ppm/ °C. The B2O3-doped Sm(Co1/2Ti1/2)O3 ceramics can find applications in microwave devices requiring low sintering temperature.  相似文献   

17.
Elastic properties of Na2O-ZnO-ZnF2-B2O3 oxyfluoride glasses with different ZnF2 concentrations have been investigated using ultrasonic velocity measurements at room temperature, at a frequency of 10 MHz. Glasses prepared by melt quenching method were suitably polished for the ultrasonic velocity measurements using pulse-echo superposition method. Various elastic moduli have been calculated and their compositional dependence has been examined. The compositional dependence of elastic moduli with the concentration of ZnF2 shows decrease in the moduli initially, with further increase in ZnF2 the moduli sharply increases and then again tend to decrease when ZnF2 concentration is 20 mol%. The values of Poisson’s ratio lie in the range of 0·24–0·30, which is typical to covalent bonded network. The variation of θ D with ZnF2 indicates complex behaviour of the glass network. The results have been analysed in view of the modified borate glass network. Addition of ZnF2 into the pure glass seems to influence the borate network by replacement of B-O-B linkages with B-O-Zn.  相似文献   

18.
The nanocrystalline fine powders (∼80 nm) of (Ba1−x La x )(Fe2/3W1/3)1−x/4O3, (BLFW) (x = 0.0, 0.05, 0.10 and 0.15) were synthesized with a combined mechanical activation and conventional high-temperature solid-state reaction methods. Preliminary X-ray structural analysis of pellet samples (prepared from fine powders) showed formation of a single-phase tetragonal system. Detailed studies of dielectric properties (εr and tan δ) exhibit that these parameters are strongly dependent on frequency, temperature and La composition. The La-substitution increases the dielectric constant and decreases the tan δ up to 10% substitutions of La at the Ba-site, and then reversed the variation, and hence this composition is considered as a critical composition. This observation was found valid for structure, microstructures, dielectric constant, electrical conductivity, JE characteristics and impedance parameters also. Like in other perovskites (PZT, BZT), La substitution plays an important role in tailoring the properties of Ba(Fe2/3W1/3)O3 ceramics.  相似文献   

19.
The silver ion conducting boro tellurite glasses have been prepared by melt quenching technique. The conductivity and dielectric measurements were carried out on these glasses as a function of frequency from 10 Hz to 10 MHz over a temperature range of 298–328 K. The analysis of conductivity measurement shows that the silver ions are the main charge carriers, which are considered to be the predominant factor playing the role of enhancing the conductivity. The power law exponent s and stretched exponent β are found to be insensitive to both temperature and compositions. AC conductivity and dielectric relaxation behaviour of these glasses were also studied and the results are discussed in view of the structure of borate and tellurite network.  相似文献   

20.
We have studied general trends of crystallization from high-temperature solutions in the K2O-P2O5-V2O5-Bi2O3 system at P/V = 0.5?2.0, K/(P + V) = 0.7?1.4, and Bi2O3 contents from 25 to 50 wt % and identified the stability regions of BiPO4, K3Bi5(PO4)6, K2Bi3O(PO4)3, and K3Bi2(PO4)3 ? x (VO4) x (x = 0?3) solid solutions. The synthesized compounds have been characterized by X-ray powder diffraction and IR spectroscopy, and the structure of two solid solutions has been determined by single-crystal X-ray diffraction (sp. gr. C 2/c): K3Bi2(PO4)2(VO4), a = 13.8857(8), b = 13.5432(5), c = 6.8679(4) Å, β = 114.031(7)°; K3Bi2(PO4)1.25(VO4)1.75, a = 13.907(4), b = 13.615(2), c = 6.956(2) Å, β = 113.52(4)°.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号