首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 519 毫秒
1.
A companion paper [Kim, J.-H., Braun, J.E., Groll, E.A., 2009. A hybrid method for refrigerant flow balancing in multi-circuit evaporators: upstream versus downstream control. International Journal of Refrigeration doi:10.1016/j.ijrefrig.2009.01.013 presented a hybrid approach for providing control of refrigerant flow distribution in evaporators that involves the use of small balancing valves in each circuit along with a primary expansion device to control the overall superheat from the evaporator. Furthermore, the companion paper demonstrated that the flow balancing valves should be located upstream rather than downstream of the evaporator in order to realize significant benefits. The current paper utilizes the model presented in the companion paper to more fully evaluate the effects of uneven air and refrigerant flow distributions and the benefits of upstream hybrid control in response to these effects.  相似文献   

2.
A new program was developed to analyze the heat transfer characteristics of fin and tube evaporators that use a zeotropic mixture refrigerant, R-407C, as the working fluid. The calculation algorithm is based on EVSIM (NIST), but a tube is segmented into several sections to provide a base unit for the calculations in this study. Therefore, two-dimensional air mal-distribution in the tube-length (horizontal) and vertical directions of the evaporator can be considered. The temperature gradient in the flow direction is traced using a discrete pattern to simulate the continuous variation found in actual evaporators. To validate the simulation results, 45 test cases in a real evaporator were performed with two different refrigerant flow path configurations using R-22 and R-407C refrigerants. The deviation between the simulations and test data was a maximum of 5.4%, and the trends were similar. The local heat transfer predictions were verified by comparing the numerical and test wall temperatures along the refrigerant flow path. Local temperature difference and the heat transfer contributions from each row are also analyzed along refrigerant flow path. And more, the impact of air mal-distribution is studied with two-dimensional four different types of velocity profiles and the significant difference in heat transfer is analyzed. The program developed in this study will be a useful tool to know all of information related with heat and mass transfer at any local point and can be used for improving the efficiency of zeotropic mixture refrigerant evaporators.  相似文献   

3.
The dynamic behaviour of a counter-flow, water-heated evaporator is studied experimentally and numerically. The frequency distribution of the random oscillations of the mixture-vapour transition point and the superheat temperature at the exit of the evaporator is obtained for steady operation of the system. These oscillations are well correlated. The transition point movement is found to cause fluctuations in the refrigerant temperature over 1 m downstream of its range of motion. Step changes in the refrigerant flow rate and the heating water flow rate demonstrate the non-linear characteristics of the evaporator where the time constants for step increases and step decreases of the same magnitude differ significantly. The distributed model predicts the variation of the superheat temperature and the evaporator pressure following step changes in the inputs with good accuracy.  相似文献   

4.
A new way to assess the performance of refrigeration system models is presented in this paper, based on the estimation of cycle parameters, such as the evaporation temperature which will determine the validity of the method. This paper is the first of a series which will also study the influence of the heat transfer coefficient models on the estimation of the refrigeration cycle parameters. It focuses on fin and tube evaporators and includes the dehumidification process of humid air. The flow through the heat exchanger is considered to be steady and the refrigerant flow inside the tubes is considered one-dimensional. The evaporator model is discretised in cells where 1D mass, momentum and energy conservation equations are solved by using an iterative procedure called SEWTLE. This procedure is based on decoupling the calculation of the fluid flows from each other assuming that the tube temperature field is known at each fluid iteration. Special attention is paid to the correlations utilised for the evaluation of heat transfer coefficients as well as the friction factor on the air and on the refrigerant side. A comparison between calculated values and measured results is made on the basis of the evaporation temperature. The experimental results used in this work correspond to an air-to-water heat pump and have been obtained by using R-22 and R-290 as refrigerants.  相似文献   

5.
This paper presents a novel neural network (NN) to control an ammonia refrigerant evaporator. Inspired by the latest findings on the biological neuron, a dynamic synaptic unit (DSU) is proposed to enhance the information processing capacity of artificial neurons. Treating the dynamic synaptic activity after the nonlinear somatic activity helps to capture the dynamics demarcated by the Gaussian activation pertaining to the input space. This practice leads to a remarkable reduction in curse of dimensionality. The proposed NN architecture has been compared with two other conventional architectures; one with dynamic neural units (DNUs) and the other with nonlinear static functions as perceptrons. The objective is to control evaporator heat flow rate and secondary fluid outlet temperature while keeping the degree of refrigerant superheat in the range 4–7 K at the evaporator outlet by manipulating refrigerant and evaporator secondary fluid flow rates. The drawbacks of conventional approaches to this problem are discussed, and how the novel method can overcome them are presented. An evolutionary approach is adopted to optimize the parameters of the NN controllers. Then evaporator process model is accomplished as a combination of governing equations and a sub NN resulting in a simple and sufficiently accurate model. The effectiveness of the proposed dynamic NN controller for the evaporator system model is validated using experimental data from the ammonia refrigeration plant.  相似文献   

6.
For refrigerated display cabinets to perform their function of keeping food cold, there must be free movement of air through the evaporator. The moisture in the ambient air entrained in the cabinet forms frost on the evaporator. It is traditional for heat to be applied to the evaporator at regular intervals to melt this frost. The frequency, typically 3–4 times per day, is enough to avoid the frost becoming excessive even in extreme conditions. For much of the time defrosting is not always necessary. A large portion of the energy used during a defrost is an overhead – heating and then cooling the metal and the food rather than melting the frost. The effect of this is examined in the paper along with the results from testing an algorithm that detects the need for a defrost from the pattern of refrigerant flow (or evaporator exit superheat). The algorithm allows the number of defrosts to be reduced without excessively raising the temperature of food stored in the cabinet. The reduction in energy and carbon dioxide emission were examined and were shown to be substantial.  相似文献   

7.
This study presents a first-principles mathematical model developed to investigate the thermal behavior of a plate-type, roll-bond evaporator. The refrigerated cabinet was also taken into account in order to supply the proper boundary conditions to the evaporator model. The mathematical model was based on the mass, momentum and energy conservation principles applied to each of the following domains: (i) refrigerant flow through the evaporator channels; (ii) heat diffusion in the evaporator plate; and (iii) heat transmission to the refrigerated cabinet. Empirical correlations were also required to estimate the shear stresses, and the internal and external heat transfer rates. The governing partial differential equations were discretized through the finite-volume approach and the resulting set of algebraic equations was solved by successive iterations. Validation of the model against experimental steady-state data showed a reasonable level of agreement: the cabinet air temperature and the evaporator cooling capacity were predicted within error bands of ±1.5 °C and ±6%, respectively.  相似文献   

8.
Compensation of flow maldistribution in multi-channel fin-and-tube evaporators for residential air-conditioning is investigated by numerical modeling. The considered sources of maldistribution are distribution of the liquid and vapor phases in the distributor and non-uniform airflow distribution. Fin-and-tube heat exchangers usually have a predefined circuitry, however, the evaporator model is simplified to have straight tubes, in order to perform a generic investigation. The compensation of flow maldistribution is performed by control of the superheat in the individual channels. Furthermore, the effect of combinations of individual maldistribution sources is investigated for different evaporator sizes and outdoor temperatures. It is shown that a decrease in cooling capacity and coefficient of performance by flow maldistribution can be compensated by the control of individual channel superheat. Alternatively, a larger evaporator may be used.  相似文献   

9.
A general distributed model with two-phase flow for refrigerant coupled with a frost model is developed for studying the dynamic behavior of an evaporator. The equations are derived in non-steady-state manner for the refrigerant and a quasi-steady state model with permeation for the frost. The complex flow and geometry of the finned tube evaporator lead to uneven wall and air temperature distributions, which in turn affect the rate of frost growth and densification along the coil depth. Results include frost accumulation and its effect on energy transfer, air off-coil temperature, refrigerant liquid dry-out position and propagation of frost formation along the coil.  相似文献   

10.
This paper describes a field experimental investigation of the effects of frost formation on the performance of a low-temperature large-scale evaporator coil used in industrial refrigeration systems. A series of experiments were conducted to determine the in situ coil cooling capacity of the evaporator over time as frost builds on its surfaces. Field-measured quantities include inlet and outlet air temperatures, inlet and outlet air relative humidity, and air volume flow rate. These measurements provide a baseline set of experimental data that can be used to validate numerical models of industrial evaporators operating under frosting conditions.  相似文献   

11.
Highly constrained air flow pathways as experienced in tightly packaged air conditioning systems result in air flow maldistribution problems in the evaporators. The interleaved circuitry method, where the refrigerant from a circuit with high air flow is routed to a circuit with low air flow and vice-versa, has been investigated to passively reduce the air maldistribution effect. Air velocity measurements have been conducted in psychrometric chambers and the measurement locations have been defined by the log-Tchebycheff rule. The velocity profile was obtained by Lagrange Interpolation method as percentage values. The performance of the interleaved circuitry method was compared to the baseline circuitry at different operating conditions. The results show that the interleaved circuitry method uniforms the superheat of the individual circuits and improves the cooling capacity and COP by up to 16.6% and 12.4%, respectively. Furthermore, the tuned model predicted the evaporator cooling capacity within a mean absolute error of approximately ±10%.  相似文献   

12.
A finite element model was used to simulate single-phase flow of R-22 through flexible short-tubes. The numerical model included the fluid-structure interaction between the refrigerant and the deformation of the short-tube as upstream pressure was varied. The finite element model was developed using a commercially available finite element package. Short-tubes with moduli of elasticity ranging from 5513 to 9889 kPa were studied. Four upstream and downstream pressures were applied and the upstream subcooling was held at a constant value of 16.7 °C. Mass flow rates from the numerical model were compared to available published experimental results. The study showed that upon deformation the short-tube resembled the shape of a converging-diverging nozzle. Both tube inlet and outlet had a chamfered-like shape after deformation which reduced the pressure drop at the tube inlet. The smaller the modulus of the tube, the larger the chamfered-like angle at the inlet and the higher the pressure drop along the tube due to the higher tube contraction. The results illustrated that as the upstream pressure was increased by 45%, there was almost a 60% decrease in the flow area. The more flexible (5513 kPa) short-tube restricted the mass flow rate more than the most rigid (9889 kPa) short-tube used in this study. The mass flow rates estimated with the finite element model were as much as 14% higher than those from experimental results reported in the literature.  相似文献   

13.
Rapid cycling the compressor of an air conditioning or refrigeration system can be used to modulate capacity, thus offering an alternative to a variable speed compressor. This paper explores design tradeoffs to optimize rapid cycling performance based on experimental results using two different evaporators and changing other components of an air conditioning system. Rapid cycling has inherent compressor lift penalties associated with larger mass flow rates, which need to be minimized. Preventing dryout (superheating) in the evaporator during the off cycle, a major penalty as cycles are lengthened, is also important. Evaporator dryout is minimized by increasing the refrigerant side area and reducing off cycle drainage. Combining a flash gas bypass with a suction line heat exchanger was found to maximize performance during the off cycle while allowing increased cycle lengths without incurring major penalties.  相似文献   

14.
A novel dynamic mathematical model based on spatially distributed approach has been developed and validated in this paper. This model gives good agreement in predicting the system COP and other parameters. The validated model has been used to enhance the prediction of the micro variations of superheat and sub-cooling. The novel spatial distributed model for the condenser and evaporator in refrigeration system, calculates the two-phase region in gas and liquid field separately since the gas and liquid in the two-phase region have different velocities. Previous researchers have used a pre-defined function of the void fraction in their spatially distributed model, based on experimental results. This approach results in the separate solution of the mass and energy equations, and less calculation is required. However, it is recognized that the mass and energy equations should be coupled during solving for more accurate solution. Based on the energy and mass balance, the spatial distribution model constructed here solves the velocity, pressure, refrigerant temperature, and wall temperature functions in heat exchangers simultaneously. A novel iteration method is developed and reduces the intensive calculations required. Furthermore, the condenser and evaporator models have shown a parametric distribution along the heat exchanger surface, therefore, the spatial distribution parameters in the two heat exchangers can be visualised numerically with a two-phase moving interface clearly shown.  相似文献   

15.
The refrigerant flow inside the coils of a dry expansion plate-finned air cooler can be distinguished into two completely different types: two-phase flow and single-phase flow. The most difficult part of non-steady-state modelling of an air cooler is to describe the liquid and vapour mass transport phenomena occurring in the two-phase flow region, as this determines the boundary position between the two regions and then the superheat temperature, which is in turn the feedback signal of the thermostatic expansion valve. In fact, the mass transport is mainly governed by the momentum exchange between refrigerant liquid and vapour, which is usually called slip-effect. Because the momentum or force equilibrium is so fast compared to the thermal equilibrium, the slip-effect can be considered as a steady-state phenomenon. With this assumption, the mass transport in an air cooler can be described by using a simple propagation equation. The steady-state slip-effect, however, is found by solving the momentum equations for one-dimensional two-phase flow using advanced computer packages such as . This paper presents the derivation of the equations in non-steady-state modelling of an air cooler as well as the results obtained from the model. Because the model is purely distributed, it is applicable to various kinds of tube circuit arrangements of air coolers. The purpose of the model is studying and optimization of non-steady-state behaviour of refrigerating systems with capacity control.  相似文献   

16.
Adopting electronic expansion valves in air conditioners enables an appreciable energy saving with respect to the same installations equipped with traditional thermostatic expansion valves. This is due to the fact that electronic valves allow a lower condensation pressure in systems equipped with air cooled condensers, which is adjusted to variations in outside air temperature. Furthermore, PID (Proportional–Integral–Derivative) control over the superheating leads to the best use of evaporator under every condition (lower superheating level of the vapour refrigerant), thus increasing the refrigerating capacity.This paper reports on the results of a set of measurements that were carried out from March to November 2006 on the operation of eight direct expansion air conditioners having a total cooling capacity of 120 kW installed at a telephone control room near Bologna (North Italy). Air conditioners are equipped with both thermostatic and electronic expansion valves, alternatively activated by solenoid valves on a daily basis, in order to compare the two systems in the same environment and at similar load conditions. The annual analysis is supplemented by a transient simulation program to simulate the behaviour of the system in the two different operating modes in different European climates, in order to evaluate the energetic and economic advantages of electronic valve.  相似文献   

17.
A multi-temperature 4 drawer catering cabinet was designed to operate using a low-pressure receiver with capillary expansion to the separate evaporator in each drawer. Low-pressure receivers have been shown to be an effective way of allowing evaporators to operate in a fully flooded mode thus enabling more efficient use of the evaporator surface for heat transfer. If a low-pressure receiver is used in a refrigeration circuit the control of refrigerant flow into the evaporator is less critical as the expansion device is not responsible for preventing liquid returning to the compressor. Therefore, a capillary expansion device can be used effectively over a range of operating pressures. The system was shown to be effective at maintaining temperatures in the storage drawers during chilled, frozen and mixed storage temperature tests carried out to the EN441 test standard. The cabinet operated successfully at all conditions except when the heat load in each drawer was excessive (>400 W above base level heat load). In this case, refrigerant was found to back up in the condenser and the low-pressure receiver was empty of liquid refrigerant. A solution to this would be to allow controlled flow of refrigerant from the condenser to the low-pressure receiver at high condensing pressures.  相似文献   

18.
The boiling hysteresis phenomenon is studied for a real scale enhanced evaporator tube (2 m long Turbo-B type) with R134a refrigerant used in the flooded evaporator of a centrifugal brine chiller for the ice-making facility. Unlike previous studies of the boiling heat transfer with uniform heat flux and uniform wall temperature, the wall temperature varies along the tube in the present experiment. To see if the similar hysteresis occurs as in the case of uniform wall temperature, a careful control of refrigerant temperature and heat flux is made. We have found hysteresis of the temperature overshoot (TOS) at the onset of nucleate boiling initially at the inlet section of the tube, before it gradually moved downstream section of the tube until the nucleate boiling occupied the whole section of the tube as the inlet temperature increased. The hysteresis became stronger at low refrigerant temperatures. The decreasing trend of heat flux after the contents of the whole tube boiled was different from the increasing trend. This paper provides a guideline how to design the evaporator in order to avoid the abnormal operation of the chillers.  相似文献   

19.
Irreversibilities in components of an aqua-ammonia absorption refrigeratio system (ARS) have been determined by second law analysis. The components of the ARS are as follows: condenser, evaporator, absorber, generator, pump, expansion valves, mixture heat exchanger and refrigerant heat exchanger. It is assumed that the ammonia concentration at the generator exit is, independent of the other parameters, equal to 0.999 and at the evaporator exit the gas is saturated vapour. Pressrre losses between the generator and condenser, and the evaporator and absorber are taken into consideration. In the results the dimensionless exergy loss of each component, the exergetic coefficient of performance, the coefficient of performance and the circulation ratio are given graphically for each different generator, evaporator, condenser and absorber temperature.  相似文献   

20.
A new methodology of intermediate complexity level is developed to model the dry-expansion shell and U-tube evaporators. The model has a reasonable level of accuracy and uses fundamental physical principles in a distributed parameters approach capable of detecting the complex circuit of the shell-side flow. This level of details is necessary to simulate accurately the zeotropic refrigerant mixtures evaporation. Using Modelica language gives a heat exchanger model with a generic flow arrangement. The model is experimentally validated using a standard shell-and-tube evaporator working with HFC-134a. Three distinct working fluids, pure HFC-134a, R-407C, and a specially selected glide matching refrigerant mixture are simulated in the same heat source duty with different shell-and-tube configurations. Three different gas superheat values are also taken into account. The total amount of irreversibility is considered by calculating the total exergy losses. It is concluded that the effect of the temperature profile of any refrigerant mixture can be substantial on the relative performance of a particular heat exchanger configuration compared to counter-flow configuration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号