首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《应用陶瓷进展》2013,112(4):203-209
Abstract

Glass samples in Li2O–SiO2–CaO–P2O5–CaF2 system with different contents of P2O5, CaO and CaF2 in relative ratios responded to fluoroapatite (FA) composition (referred to P2O5 addition) have been prepared and heat treated at 550 and 750°C to obtain glass ceramics. Bioactivity of all samples has been proved in vitro by the presence of new layer of apatite-like phases formed after soaking in simulated body fluid (SBF). The development and the apatitic character of created layers have been demonstrated by Fourier transform infrared analysis. Scanning electron microscopy and electron probe microanalysis have demonstrated that the density and the thickness of new layer depend on P2O5 content, crystallisation temperature and immersion time. The bioactivity has been enhanced by P2O5 addition as well in the case of the base glasses as in the case of glass ceramics. The additional heat treatment appeared to inhibit the bioactive behaviour, though the longer SBF acting leads to the additional formation of apatite-like layer. The mechanical properties, expressed as Vicker hardness, have been found higher and increasing with P2O5 in glass ceramics treated at 750°C comparatively with base glass samples and the highest value of 7˙37 GPa has been achieved by 14 wt-%P2O5 addition. The same content of P2O5 in glass ceramics heat treated at 550°C resulted in a decrease in hardness to a minimum value from all samples. The increase and decrease in hardness responded to development and suppression of crystallisation respectively. The inhibition of crystallisation has been affected by the presence of 'amorphous' FA according to X-ray diffraction and differential thermal analysis results.  相似文献   

2.
For the development of a new wear resistant and chemically stable glass-ceramic glaze, the CaO–ZrO2–SiO2 system was studied. Compositions consisting of CaO, ZrO2, and SiO2 were used for frit, which formed a glass-ceramic under a single stage heat treatment in electric furnace. In the sintered glass-ceramic, wollastonite (CaSiO3) and calcium zirconium silicate (Ca2ZrSi4O12) were crystalline phases composed of surface and internal crystals in the microstructure. The internal crystal formed with nuclei having a composition of Ca1.2Si4.3Zr0.2O8. The CaO–ZrO2–SiO2 system showed good properties in wear and chemical resistance because the Ca2ZrSi4O12 crystals positively affected physical and mechanical properties.  相似文献   

3.
《应用陶瓷进展》2013,112(6):352-357
Abstract

MgO–Al2O3–SiO2 (MAS) cordierite based glass ceramics were prepared by volume crystallisation. X-ray diffraction, Scanning electron microscopy and Energy diffraction scanning were used to investigate crystallisation behaviour and the influence of P2O5 on microstructure MAS based glass ceramics. The results showed that P5+ could promote the phase separation of MAS glass and that the glass was divided into two areas, such as Mg4Al2Ti9O25 and the containing P5+ area at <900°C. Mg4Al2Ti9O25 and Mg3(PO4)2 in the area were both advantageous to the precipitation of μ cordierite, which further transformed to α cordierite due to P5+ in the residual glassy phase. However, P5+ inhibited the presence of cordierite when the heat treatment temperature was >900°C.  相似文献   

4.
Industrial plasma melting of municipal solid waste (MSW) incinerator fly ashes leads to a glass that may be easily crystallised to gehlenite glass–ceramics, by the sintering of fine glass powders. However, since the glass composition is not optimised for glass–ceramic manufacturing, the viscous flow is much hindered by a very significant surface crystallisation and dense glass–ceramics are feasible only by sintering above 1000 °C. This paper reports a new strategy for obtaining dense and strong glass–ceramics at 950 °C, with a holding time of only 30 min, consisting of the mixing of waste glass with a secondary recycled glass, such as soda-lime–silica glass or borosilicate glass. For an optimum balance between the two types of glass also the addition of kaolin clay, in order to favour the shaping, was found to be feasible. The approach had a positive effect, besides on the mechanical properties (e.g. bending strength exceeding 100 MPa), on the chemical stability.  相似文献   

5.
Visible rays cutoff infrared transmitting glasses in TeO2–GeO2–V2O5–PbF2 glass systems were investigated. Glasses without OH absorption band transmitting wavelength regions from 2·0 to 5·0 nm were obtained. The addition of fluoride to these glasses and the treatment of dry-air-bubbling during melting decreased markedly absorption coefficient and reflectivity of OH bands. Reflectivity of OH bands increased with increasing absorption coefficient. Values of glass transition points from 520 to 540 °C and flow points from 560 to 580 °C were obtained.  相似文献   

6.
Densification and microstructural changes of two glassy compositions belonging to the wollastonite and zirconia stability fields in the ternary CaO–ZrO2–SiO2 system were studied in a 2.45 GHz multimode microwave cavity. The effect of microwaves is to lower the sintering and devitrification temperature with stronger influence for high zirconia content composition. Correlation was found between dielectric properties and heating rate, showing lower interaction temperature for high zirconia content composition which starts to absorb microwave energy at about 400°C compared to 800°C for the low-zirconia one. Sintering and crystallization processes evolved in complex ways during heat treatment so that the two final glass-ceramic materials exhibit different microstructures, crystalline phases and mechanical properties.  相似文献   

7.
《应用陶瓷进展》2013,112(4):227-231
Abstract

Glass ceramics in the Li2O–Al2O3–SiO2 system have been synthesised to produce bulk materials grown in a glass phase via quenching followed by controlled crystallisation. The crystallisation and microstructure of Li2O–Al2O3–SiO2 (LAS) glass–ceramic with nucleating agents (B2O3 and/or P2O5) are investigated by differential thermal analysis, X-ray diffraction and scanning electron microscopy and the effects of B2O3 and P2O5 on the crystallisation of LAS glass are also analysed. The introduction of both B2O3 and P2O5 promotes the crystallisation of LAS glass by decreasing the crystallisation temperature and adjusting the crystallisation kinetic parameters, allows a direct formation of β spodumene phase and as a result, increases the crystallinity of the LAS glass ceramic. Microstructural observations show that the randomly oriented, nanometre sized crystalline is found with residual glass concentrated at crystallite boundaries. Furthermore, it is interesting that codoping of B2O3 and P2O5 creates not much effect on the crystallisation temperature. The dielectric properties of the glass–ceramics formed through controlled crystallisation have a strong dependence on the phases that are developed during heat treatment. The dielectric constant is continuously increased and the dielectric loss is decreased with addition of additives where mobile alkali metal ions (e.g. Li+) are incorporated in a crystal phase and minimise the residual glass phase.  相似文献   

8.
Chalcogenide glasses show a unique potential for creating gradient refractive index (GRIN) lenses, which would reduce the size and weight of infrared thermal imaging system and remain/improve its performance. Here, we propose a new method that forms a GRIN chalcogenide glass–ceramics (GCs) by creating low refractive index (n) CsCl nanocrystals within a high n GeS2–Sb2S3 glass matrix. After specific gradient thermal treatment, the GRIN structure of Δ∼ 0.04 was formed through the gradient precipitation of CsCl. This work would pave a new path to design the GRIN chalcogenide GCs through a selective crystallization of halide crystals with low n.  相似文献   

9.
《Ceramics International》2015,41(8):9239-9243
BaO–CaO–Al2O3–B2O3–SiO2 (BCAS) glass–ceramics can be used as sealant for large size planar anode-supported solid oxide fuel cells (SOFCs). BCAS glass–ceramics after heat treatment for different times were characterized by means of thermal dilatometer, X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results show that the coefficients of thermal expansion (CTE) of BCAS glass–ceramics are 11.4×10−6 K−1, 11.3×10−6 K−1 and 11.2×10−6 K−1 after heated at 750 °C for 0 h, 50 h, and 100 h, respectively. The CTE of BCAS matches that of YSZ, Ni–YSZ and the interconnection of SOFC. Needle-like barium silicate, barium calcium silicate and hexacelsian are crystallized in the BCAS glass after heat-treatment for above 50 h at 750 °C. The glass–ceramics green tape prepared by aqueous tape casting can be directly applied in sealing the cell of SOFCs with 10 cm×10 cm. The open circuit voltage (OCV) of the cell keeps 1.19 V after running for 280 h at 750 °C and thermal cycling 10 times from 750 °C to room temperature. The maximum power density is 0.42 W/cm2 using pure H2 as fuel and air as oxidation gas. SEM images show no cracks or pores exist in the interface of BCAS glass–ceramics and the cell.  相似文献   

10.
Foaming and crystallisation behaviours of compacted glass powders based on a diopside glass–ceramic composition were investigated using the sintering route. The foaming agent was 2 wt.% SiC particles. The effect of PbO on the foaming ability of glasses was investigated. The results showed that the addition of PbO not only improved the foaming ability, by improving the wettability of the glass–SiC particles but also increased the crystallisation temperature and widened the temperature interval between the dilatometric softening point and the onset of crystallisation. The glass–SiC wetting angle was decreased from 85° for the lead-free glass, to 55° for the glass that contains 15 wt.% PbO.  相似文献   

11.
J. Seo  S. Kim  S. Samal 《应用陶瓷进展》2014,113(6):334-340
Abstract

Variation in the viscous flow behaviour, nature and extent of glass fluidity in glass/filler composites are addressed with respect to various factors such as filler type, content, size, density and migration distance. The characterisation of a glass (Bi2O3–B2O3–ZnO) composite consisting of two different fillers (cordierite and willemite) was determined using hot stage microscopy, a differential scanning calorimeter and a flow button test. The microstructure was analysed using a scanning electron microscope. The apparent viscosity of the glass composites increased on increasing concentration and density of the filler. The variation in the viscosity is due to the diffusion of the glass matrix through channels in the cordierite filler of the composite. Based on the calculated migration distance of the filler in the glass matrix, the present work suggests that the interfacial behaviour and the density of the filler play a significant role in determining the viscous flow of the glass composites.  相似文献   

12.
《Ceramics International》2017,43(5):4508-4512
Chalcogenide glasses of 65GeS2–(25–x)Ga2S3–10AgI–xLa2S3 (x=0, 1, 3, and 5 mol%) were fabricated through the traditional melt-quenching method. The effects of addition of La2S3 on physical, thermal and optical properties of the glass system were investigated. The results showed that the fabricated glasses possess considerably high glass transition temperature, exhibit improved mechanical property and excellent infrared transmission. A redshift at the visible absorbing cut-off edge is observed with increasing of La2S3 content. The direct and indirect optical band gap values are also calculated. Raman spectra analysis indicated that the band at 265 cm−1 decreased in amplitude and a new peak at 230 cm−1 was detected manifesting the formation of La-S bond in the network. In addition, the mid-infrared emission at 3.74 µm of the glasses doped with Tm3+ ions was achieved. The results indicated that the glasses are promising materials for mid-infrared applications such as imaging, remote sensing and lasers.  相似文献   

13.
In the present study, the effect of SiC addition on properties of basalt base glass–ceramic coating was investigated. SiC reinforced glass–ceramic coating was realized by atmospheric air plasma spray coating technique on AISI 1040 steel pre-coated with Ni + 5 wt.%Al bond coat. Composite powder mixture consisted of 10%, 20% and 30% SiC by weight were used for coating treatment. Controlled heat treatment for crystallization was realized on pre-coated samples in argon atmosphere at 800 °C, 900 °C and 1000 °C which determined by differential thermal analysis for 1–4 h in order to obtain to the glass–ceramic structure. Microstructural examination showed that the coating performed by plasma spray coating treatment and crystallized was crack free, homogeneous in macro-scale and good bonded. The hardness of the coated samples changed between 666 ± 27 and 873 ± 32 HV0.01 depending on SiC addition and crystallization temperature. The more the SiC addition and the higher the treatment temperature, the harder the basalt base SiC reinforced glass–ceramic coating became. X-ray diffraction analysis showed that the coatings include augeite [(CaFeMg)–SiO3], diopside [Ca(Mg0.15Fe0.85)(SiO3)2], albite [(Na,Ca)Al(Si,Al)3O8], andesine [Na0.499Ca0.492(Al1.488Si2.506O8] and moissanite (SiC) phases. EDX analyses support the X-ray diffraction analysis.  相似文献   

14.
《Ceramics International》2023,49(20):33188-33196
Nowadays, Y2O3–Al2O3–SiO2 (YAS) glass joining is considered to be a promising scheme for nuclear-grade continuous silicon carbide (SiC) fiber reinforced SiC matrix composites (SiC/SiC). CaO has great potential for nuclear applications since it has low reactivity and low decay rate under nuclear irradiation. In this paper, the effect of CaO doping on the structure, thermophysical properties, and crystallization behavior of YAS glass was systematically studied. As the CaO doping content increased, the number of bridge oxygens and the viscosity at high temperatures reduced gradually. After heat treatment at 1400 °C, the main phases in YAS glass were β-Y2Si2O7, mullite, and SiO2 (coexistence of crystalline and glass phases), while that with 3.0% CaO doping turned into a single glassy phase under the same treatment conditions. Moreover, a structural model and the modification mechanism were proposed, which provided a theoretical basis for the subsequent component design and optimization.  相似文献   

15.
The nano-crystalline lithium–mica glass–ceramic with separated crystallite size of 13 nm was prepared using sol–gel technique. In such a process, the structural evolutions and microstructural characteristics of the synthesized samples were investigated through X-ray diffraction, transmission electron microscopy, thermal analysis and Fourier transform infrared spectroscopy. It was found that the crystallite size of the mica obtained from sol–gel method is smaller than the one synthesized via conventional melted method. The XRD results also showed that the crystallization of mica occurred above 675 °C and it could originate from MgF2 so that the next stage will also be the transformation from mica to norbergite and norbergite to chondrodite. The activation energy of the crystallization and Avrami factor were measured as 376.7 kJ mol?1 and 2.3, respectively. It is found that the bulk crystallization could be considered as the predominant crystallization mechanism for the glass–ceramic.  相似文献   

16.
《Ceramics International》2016,42(7):7943-7949
This paper reports the investigation of the performance of Li2O–B2O3–SiO2 (LBS) glass as a sintering aid to lower the sintering temperature of BaO–0.15ZnO–4TiO2 (BZT) ceramics, as well as the detailed study on the sintering behavior, phase evolution, microstructure and microwave dielectric properties of the resulting BZT ceramics. The addition of LBS glass significantly lowers the sintering temperature of the BZT ceramics from 1150 °C to 875–925 °C. Small amount of LBS glass promotes the densification of BZT ceramic and improves the dielectric properties. However, excessive LBS addition leads to the precipitation of glass phase and growth of abnormal grain, deteriorating the dielectric properties of the BZT ceramic. The BZT ceramic with 5 wt% LBS addition sintered at 900 °C shows excellent microwave dielectric properties: εr=27.88, Q×f=14,795 GHz.  相似文献   

17.
《Ceramics International》2016,42(11):12694-12700
Addition of CaO–B2O3–SiO2 (CBS) glass was performed to lower the sintering temperature of lead-free Ba0.85Ca0.15Zr0.1Ti0.9O3 (BCZT) ceramics. Orthorhombic and tetragonal phases coexisted in CBS-free BCZT ceramics. The BCZT ceramics transformed into a pseudo-cubic phase when sintered at 1300 °C with increasing CBS glass content. Additionally, the secondary phase, Ba2TiSi2O8, was observed when CBS glass was added. The density initially increased, reached a maximum value with 2 wt% CBS glass, and then decreased rapidly with further increase in CBS glass content, which was consistent with the microstructure. The ɛ, Tc, Pr, and d33 depend on microstructure, and the results agree with the density. Evident relaxation behavior was observed. Observed results were inferred to be dependent on the microstructure, phase structure, lattice distortion, and secondary phase. The sample with 2 wt% CBS glass showed the excellent performance, which could be a promising substitute to lead-free piezoelectric ceramics for lead-based materials.  相似文献   

18.
Liquid-phase sintering (LPS) is an effective pathway to assist the densification of ceramics. However, it has seldom been used to densify glass–ceramics. In the present study, a multielement co-doping strategy has been utilized to achieve LPS of a ZrO2–SiO2 nanocrystalline glass–ceramic. Compared with undoped samples densified by solid-state sintering, doping of equimolar Al, Y, and Ca promoted the densification of the glass–ceramic at lower temperatures with a faster densification rate. Ternary doping enhanced coarsening of ZrO2 nanocrystallites during sintering and annealing. The distribution of dopants was carefully observed with X-ray energy-dispersive spectrometry technique in scanning electron transmission microscopy mode. Results showed that the three dopants showed different distribution behaviors. After sintering, Y dopants were predominately distributed in ZrO2 nanocrystallites, whereas parts of Al and Ca dopants were distributed in ZrO2 nanocrystallites and part of them co-segregated at the ZrO2/SiO2 heterointerfaces. Meanwhile, the segregation of Ca dopant at some intergranular films among ZrO2 nanocrystallites was observed. Redistribution of dopants did not occur during annealing.  相似文献   

19.
Interaction between Ba2Ti9O20 microwave dielectric ceramics and BaBSiO glass materials was systematically investigated. BaTi(BO3)2 intermediate phase was induced and its proportion increased with firing temperature. Fortunately, the formed BaTi(BO3)2 phase does not result in marked degradation on the microwave dielectric properties of the Ba2Ti9O20–BaBSiO composite materials. Good microwave dielectric properties (K=13.2, Q×F=1150) were obtained by firing the Ba2Ti9O20–BaBSiO (50:50 vol.%) materials at 900 °C for 30 min. Precoating a thin layer of BaTi(BO3)2 materials on the Ba2Ti9O20 powders prior to processing of the ceramic tapes can markedly suppress the interaction between the Ba2Ti9O20 and BaBSiO glass, significantly improving the consistency of the microwave dielectric properties for the low temperature cofirable ceramic (LTCC) materials.  相似文献   

20.
《应用陶瓷进展》2013,112(3):178-182
Abstract

Effects of heat treatment conditions on phase transformation, microstructure and thermal expansion coefficient (TEC) in MgO–Al2O3–SiO2 system glass–ceramics were investigated by means of differential thermal analysis, X-ray diffraction and scanning electron microscopy. The magnesium aluminium titanate (MAT) precipitated firstly at 850°C and β-quartz solutions (β-QSS) formed at 950°C. Further increasing temperature to 1000°C, MAT disappeared and β-QSS became master phase, following little amount of α-cordierite, MgTi2O5, rutile and sapphirine. When glass was treated at 1050°C, β-QSS content decreased and α-cordierite became master phase. As temperature reached higher than 1100°C, β-QSS and sapphirine disappeared, and α-cordierite became master phase accompany with rutile and MgTi2O5 as secondary phase. The microstructure transformed gradually from particle shape crystallites to slat shape network with the increase in heat treatment temperature. By controlling heat treatment condition, an ideal glass–ceramics with proper TEC for matching sealing to 4J29 alloy has been obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号