首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 188 毫秒
1.
The demand for new, soft materials with bespoke physical and biological characteristics and functionality has fuelled the research into nanocomposite hydrogels. ‘Soft’ nanocomposites – nanoparticles within a hydrated, polymeric gel matrix – offer a simple, yet versatile, platform for the design of materials with specific – and tunable – properties. Indeed, the ‘soft’ properties of the matrix can be combined with the inherent functionality of the nanoparticles (drug loading, antimicrobial, light refraction etc.) or give rise to altogether new characteristics (toughness, optical properties, self‐healing etc.) evolved from the synergistic interaction of the polymer chains with the particles. In this review, we report the evolution and achievements of nanocomposite gels, with a focus on mechanisms and structure. The review is therefore structured around the properties resulting from the gel/nanoparticle association, rather than a classification based on applications or specific types of polymer or nanoparticles. How can nanoparticles tune mechanical, optical, biological properties or impart stimuli‐responsiveness to a polymer gel matrix ? and how is this behaviour linked to the underlying structure? © 2015 Society of Chemical Industry  相似文献   

2.
Ethylene copolymers contain short chain branches (SCBs) which have great influence on their properties. An ethylene/1‐hexene copolymer distinguished in terms of the number of butyl SCBs was precisely separated based on differences in crystallizability using the preparative temperature‐rising elution fractionation (P‐TREF) method and was then studied via TGA and DSC. A comparison between the results obtained and the literature suggested a short chain branch distribution (SCBD) functionality for a included in the general linear form Tm (°C) = ?a(SCBD) × (SCB) + b. P‐TREF?TGA results showed that the highly linear chains acted as ablative layers which could increase the thermal stability and durability of polyethylene in the absence of any mineral additive. Furthermore, the P‐TREF?TGA data displayed an interesting interrelationship between temperature at maximum rate of degradation (Tmax) and the number of butyl SCBs over all the heating rates (10, 25, 50 and 100 °C min‐1). The role of the number of butyl SCBs in thermal degradation was exhausted by higher heating rates, whereas the ablation capability was enhanced. Kinetic studies demonstrated that the activation energy dropped on increase in butyl branch content within the backbone. © 2015 Society of Chemical Industry  相似文献   

3.
The renaissance of the bio‐based chemical industry over the last 20 years has seen an ever growing interest in the synthesis of new bio‐based polymers. The building blocks of these new polymers, so called platform molecules, contain significantly more chemical functionality than their petrochemical counterparts (such as ethene, propene and para‐xylene). As a result bio‐based polymers often contain greater residual chemical functionality in their chains, with groups such as alkenes and hydroxyls commonly observed. These functional groups can act as sites for post‐polymerization modification (PPM), thus further extending the range of applications for bio‐based polymers by tailoring the polymers' final properties. This mini‐review highlights some of the most recent and compelling examples of how to make use of bio‐based polymers with residual functional groups for PPM. It also looks at how the emerging interdisciplinary field of enzymatic polymer synthesis allows for increased functionality in polymers by avoiding side‐reactions as a result of milder reaction conditions, and additionally offers an alternative means of polymer surface modification. © 2018 Society of Chemical Industry  相似文献   

4.
Two π‐conjugated polymers featuring main‐chain m‐phenylene linkers as well as iodo substituents were initially prepared. The presence of the iodo functionality allowed for the preparation of six additional polymers from the initial two iodo‐substituted polymers via facile post‐polymerization modification using Sonogashira‐type coupling chemistry. The post‐polymerization modification led to crosslinking, to the incorporation of a pyridyl‐bearing functionality for potential use as a ligand for transition metals or to the introduction of a ferrocenyl substituent as a possible redox‐active unit. The m‐phenylene units were incorporated into the polymer main‐chain structure in order to periodically disrupt conjugation, thereby allowing for more uniformity in the effective conjugation length and thus in absorption and emission profiles. The thermal stability and photophysical properties of all eight polymers, as well as the stimuli‐responsiveness of relevant materials to nitroaromatics and metal ions, are reported. © 2015 Society of Chemical Industry  相似文献   

5.
Peanut protein and product functionality   总被引:1,自引:0,他引:1  
Interest in the potential of peanut seed as a source of edible vegetable protein products has been stimulated by an increase in our understanding of protein physicochemical properties, improved protein extraction, fractionation and characterization techniques, advanced technologies to produce high quality and diverse protein ingredients and understanding the interrelationship between physicochemical, functional and nutritional characteristics of protein products. Further expansion in the processing and utilization of peanut products may be constrained by economic conditions rather than by limitations in functionality, nutritional quality, or consumer acceptability. Should changes occur to improve the competitive position of peanuts, the potential contributions of their protein products may be more fully realized. Presented at the 78th Amercican Oil Chemists' Society Annual Meeting, May 17–21, 1987, New Orleans, LA. Mention of specific products/companies is for convenience, and does not constitute and endorsement by the U.S. Department of Agriculture, over other products/companies not mentioned.  相似文献   

6.
By adjusting the molar ratios of antistatic monomer of octyl phenol ethylene oxide acrylate (denoted as AS), rigid monomer of methyl methacrylate (denoted as MMA), and flame‐retardant monomer of 2‐(phosphoryloxymethyl oxyethylene) acrylate (denoted as FR), a series of flame‐retardant antistatic copolymers poly (octyl phenol ethylene oxide acrylate‐co‐methyl methacrylate‐co‐phosphoryloxymethyl oxyethylene acrylate) (donated as AMF) were synthesized through radical polymerization. Among the obtained copolymers, two copolymers, AMF162 (the feed molar ratio of AS, MMA, and FR as 1 : 6 : 2) and AMF1104 (the feed molar ratio of AS, MMA, and FR as 1 : 10 : 4) with different concentrations were added into polypropylene (PP) to prepare PP‐AMF162 and PP‐AMF1104 series of composites. The thermal stability, limiting oxygen index, the antistatic property, and mechanical properties of PP composites were tested and analyzed. PP‐AMF162 series composites have excellent antistatic effect. When the AMF162 content was equal to or <15 wt %, the impact strength of PP‐AMF162 composites was higher than that of pure PP. The results indicated that copolymer AMF162 was a suitable flame‐retardant and antistatic additive for PP. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41677.  相似文献   

7.
The effect of minor components on milk fat crystallization   总被引:6,自引:6,他引:0  
Milk fat is composed of 97–98% triacylglycerols and 2–3% minor polar lipids. In this study triacylglycerols were chromatographically separated from minor components. Isolated diacylglycerols from the polar fraction were also added back to the milk fat triacylglycerols. The crystallization behaviors of native anhydrous milk fat (AMF), milk fat triacylglycerols (MF-TAG), and milk fat triacylglycerols with diacylglycerols added back (MF-DAG) were studied. Removal of minor components and addition of diacylglycerols had no effect on dropping points or equilibrium solid fat contents. Presence of the minor components, however, did delay the onset of crystallization at low degrees of supercooling. Crystallization kinetics were quantified using the Avrami model. Sharp changes in the values of the Avrami constant k and exponent n were observed for all three fats around 20.0°C. Increases in n around 20.0°C indicated a change from one-dimensional to multidimensional growth. Differences in k and n of MF-DAG from AMF and MF-TAG suggested that the presence of milk fat diacylglycerols changes the crystal growth mechanism. Apparent free energies of nucleation (ΔGc,apparent) were determined using the Fisher-Turnbull model. (ΔGc,apparent) for AMF was significantly greater than ΔGc,apparent for MF-TAG, and ΔGc,apparent for MF-DAG was significantly less than those for both AMF and MF-TAG. The microstructural networks of AMF, MF-TAG, and MF-DAG, however, were similar at both 5.0 and 25.0°C, and all three fats crystallized into the typical β′-2 polymorph. Differential scanning calorimetry in both the crystallization and melting modes revealed no differences between the heat flow properties of AMF, MF-TAG, and MF-DAG.  相似文献   

8.
Sacoglossans are a group of opisthobranch mollusks that have been the source of numerous secondary metabolites; however, there are few examples where a defensive ecological role for these compounds has been demonstrated experimentally. We investigated the deterrent properties of the sacoglossan Elysia rufescens and its food alga Bryopsis sp. against natural fish predators. Bryopsis sp. produces kahalalide F, a major depsipeptide that is accumulated by the sacoglossan and that shows in vitro cytotoxicity against several cancer cell lines. Our data show that both Bryopsis sp. and Elysia rufescens are chemically protected against fish predators, as indicated by the deterrent properties of their extracts at naturally occurring concentrations. Following bioassay-guided fractionation, we observed that the antipredatory compounds of Bryopsis sp. were present in the butanol and chloroform fractions, both containing the depsipeptide kahalalide F. Antipredatory compounds of Elysia rufescens were exclusively present in the dichloromethane fraction. Further bioassay-guided fractionation led to the isolation of kahalalide F as the only compound responsible for the deterrent properties of the sacoglossan. Our data show that kahalalide F protects both Bryopsis sp. and Elysia rufescens from fish predation. This is the first report of a diet-derived depsipeptide used as a chemical defense in a sacoglossan.  相似文献   

9.
Tempering method for chocolate containing milk-fat fractions   总被引:2,自引:0,他引:2  
Anhydrous milk fat (AMF) was fractionated by a two-stage dry fractionation process to produce three fractions—high-(HMF), middle-(MMF), and low-melting (LMF). The effect of replacing 12.2–40% by weight of cocoa butter with these fractions on the tempering profile of milk chocolate was studied. Degree of temper was evaluated by differential scanning calorimetry, and expressed as the ratio of enthalpies of melting for higher-stability polymorphs to those of lesser stability. The degree of temper was dependent on the crystallization time and temperature, and the type and quantity of milk-fat fraction in the formulation. Chocolates containing AMF or its fractions in concentrations of up to 20 wt% (total fat basis) were tempered after a conventional thermocycling tempering process (50°C/30 min, 27.7°C/4 min, 31°C/2 min) to obtain products with good contraction and mold release properties. For those milk chocolate formulations that did not temper by the conventional method and resulted in poor contraction and mold release, a new tempering protocol was developed. Lower crystallization temperatures and/or longer holding times were required at concentrations of AMF, MMF, or LMF above 20%. Chocolate containing HMF required slightly higher crystallization temperatures because of high viscosity. Chocolates containing up to 35% HMF and up to 40% of the total weight of fat in the chocolate of AMF, MMF, and LMF were successfully tempered by adjusting crystallization time and temperature.  相似文献   

10.
A kind of glycidyl azide polymer (GAP)-based composite has been fabricated using propargyl-terminated ethylene oxide-tetrahydrofuran copolymer (PPET) with two (p-) and three (t-) alkyne functionalities via Huisgen reaction. Independent upon the PPET functionality, both crosslink densities and mechanical properties for two GAP/PPET systems showed a positive-interrelation changes of initial increase and subsequent decrease with an increase of azide/alkyne molar ratios. At equivalent of azide/alkyne molar ratios, the composites containing t-PPET with higher alkyne functionality exhibited better mechanical properties, while those with two alkyne functionality presented lower glass transition. Under the regulation of alkyne functionality as 3 and azide/alkyne molar ratio as 3:1, the tensile strength, Young's modulus and breaking elongation could simultaneously reach the maximum values of 1.38 MPa, 4.07 MPa, and 122.5%, which was ascribed to optimal participation of azide/alkyne reaction into network construction. Overall, this study provides an additional optimization route for network-structured binders in solid propellant system. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 48016.  相似文献   

11.
The allelopathic potential of the Eurasian invasive plant Alliaria petiolata has been well documented, with the bulk of the effects believed to be mediated by arbuscular mycorrhizal fungi (AMF). We exposed the herbaceous annual Impatiens pallida, which is native to North America, to fractionated A. petiolata extracts at four developmental stages (germination, presymbiosis growth, symbiosis formation, and symbiosis growth) by using exposure levels expected to be similar to field levels. Surprisingly, we found strong direct effects on I. pallida germination and growth, but no indirect effects on I. pallida growth mediated by AMF. We also observed strong synergistic effects with a complete A. petiolata extract that inhibited I. pallida germination and presymbiosis root growth more than either a glucosinolate or flavonoid enriched fraction alone. In fact, the flavonoid enriched fraction tended to stimulate germination and presymbiosis root growth. In contrast to these strong direct effects, I. pallida plant growth during both the symbiosis formation and symbiosis growth phases was unaffected by A. petiolata extracts. We also found no inhibition of AMF colonization of roots or soils by A. petiolata extracts. We show that AMF can actually ameliorate allelopathic effects of an invasive plant, and suggest that previously observed allelopathic effects of A. petiolata may be due to direct inhibition of plant and fungal growth before symbiosis formation.  相似文献   

12.
Blend films of two types (I and II) were prepared by mixing Antheraea mylitta silk fibroin (AMF) and gelatin solution in various blend ratios via the solution casting method. Two different crosslinkers, namely glutaraldehyde and genipin, were used during blend preparation. The structural characteristics and thermal properties of the blend films were examined by Fourier transform infrared (FTIR) spectroscopy, X‐ray diffraction (XRD), Thermogravimetric analysis (TGA) and Diffrential scanning calorimetery (DSC). The FTIR spectra showed conformational alterations in type I blend films while type II films attained high β‐sheet crystallinity. The XRD diffractograms presented a high degree of crystallinity in type II blend films compared to type I, which showed an almost amorphous structure. Further, thermal and biological studies were conducted on type II films. According to the TGA thermograms, the degradation temperature of the crosslinked blend films shifted compared to pure gelatin and pure AMF films. Partial miscibility of the two components was indicated by DSC thermograms of the blends. The high water uptake capacity of type II blend films was found to imitate hydrogel behaviour. The blend films did not show any toxicity in 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyl tetrazolium bromide (MTT) assay and supported L929 fibroblast cell spreading and proliferation. The biodegradation of the blend films was significantly faster than the pure silk film. © 2020 Society of Industrial Chemistry  相似文献   

13.
Traditionally cacao (Theobroma cacao L.) is cultivated under legume shade trees, which produce N-rich litter that improves soil organic matter content, microbial activity, and recycles N to the crop. Arbuscular mycorrhiza forming fungi (AMF) are known to play an important role in plant nutrient uptake, yet their role in plant N uptake from organic residues in tropical agroforestry systems is not clear. We studied root and leaf litter of the legume shade tree Inga edulis Mart. as a source of N for cacao and the importance of AMF colonisation in the uptake of litter N under controlled conditions. Leaf and root litter of I. edulis enriched with 15N was added to cacao pots filled with field soil. Half of the cacao saplings were AMF-inoculated and the soil of non-inoculated saplings was treated with fungicide to suppress AMF. During the 10-week experiment, young cacao leaves were sampled for 15N analyses and at the end of the experiment whole plants were harvested. Microbial populations in the soil were determined using phospholipid fatty acid (PLFA) analysis, and AMF structures in the roots were quantified. Fungicide treatment decreased AMF structures in roots and increased bacterial populations, but did not affect the decomposition rate of either litter type. Inoculated and non-inoculated cacao saplings used 2.6 and 2.1%, respectively, of N added to the pots in leaf litter and 12.1 and 7.1% of N available in root litter indicating that root litter of I. edulis may be a more efficient N source than leaf litter for cacao. Although the fungicide treatment did not completely suppress AMF in non-inoculated pots, it created sufficient contrast in root AMF colonisation for concluding that AMF significantly enhanced cacao N use from both litter types. The role of root litter of shade trees as a N source in agroforestry should not be neglected.  相似文献   

14.
Anhydrous milk fat (AMF) was fractionated by a two-stage dry fractionation process to produce three fractions: high melting (HMF), middle melting (MMF), and low melting (LMF). The HMF (m.p. 42°C) exhibited a broad melting range similar to a plastic fat. The MMF (m.p. 33°C) resembled the original AMF (m.p. 31°C), but with slightly higher solid fat content. The LMF (m.p. 16°C) was liquid at ambient temperature. Differences in the thermal properties of these fractions were attributed to the triacylglycerols (TAG) and their fatty acid composition. Saturated TAG with carbon numbers of 36–54 were concentrated in the HMF; whereas unsaturated TAG of carbon number 36–54 predominated in the LMF. Likewise, the long-chain saturated fatty acids were significantly higher and the long-chain unsaturated fatty acids were significantly lower in the HMF fraction. Binary blends of milk-fat fractions with a range of melting profiles were produced by mixing HMF with AMF, MMF, or LMF. Laboratory-prepared fractions were similar to commercially available fractions.  相似文献   

15.
Poly(N‐methyldodecano‐12‐lactam) (PMDL) is miscible with poly(4‐vinylphenol) (PVPh). In the system PMDL + PVPh + tetrahydrofuran containing low‐molar‐mass polymer pair, this miscible blend is soluble in the solvent. In this work, it has been found that the system containing high‐molar‐mass polymer pair undergoes associative phase separation into a gel‐like interpolymer complex and a soluble residual phase (RP). The complex and RP samples were characterized using differential scanning calorimetry, size exclusion chromatography and thermogravimetric analysis. The average molar ratio of PMDL to PVPh in the complex is 1:2, considered an optimum composition of the interpolymer complex. The complex shows higher glass transition temperature and higher thermal stability than the RP. Formation of the interpolymer complex in the studied system and differences in its properties from the RP are caused by higher molar mass/length of associated polymer chains as a result of fractionation during which the high‐molar‐mass fraction forms the gel‐like interpolymer complex and the low‐molar‐mass fraction forms the soluble RP. © 2014 Society of Chemical Industry  相似文献   

16.
BACKGROUND: PEGylation reactions often result in a heterogeneous population of conjugated species and unmodified proteins that presents a protein separations challenge. Aqueous two‐phase systems (ATPS) are an attractive alternative for the potential fractionation of native proteins from their PEGylated conjugates. The present study characterizes the partition behaviors of native RNase A and α‐Lac and their mono and di‐PEGylated conjugates on polyethylene glycol (PEG)—potassium phosphate ATPS. RESULTS: A potential strategy to separate unreacted native protein from its PEGylated species was established based upon the partition behavior of the species. The effect of PEG molecular weight (400–8000 g mol?1), tie‐line length (15–45% w/w) and volume ratio (VR; 0.33, 1.00 and 3.00) on native and PEGylated proteins partition behavior was studied. The use of ATPS constructed with high PEG molecular weight (8000 g mol?1), tie‐line lengths of 25 and 35% w/w, and VR values of 1.0 and 3.0 allowed the selective fractionation of native RNase A and α‐Lactalbumin, respectively, from their PEGylated conjugates on opposite phases. Such conditions resulted in an RNase A bottom phase recovery of 99%, while 98% and 88% of mono and di‐PEGylated conjugates, respectively were recovered at the top phase. For its part, α‐Lac had a bottom phase recovery of 92% while its mono and di‐PEGylated conjugates were recovered at the top phase with yields of 77% and 76%, respectively. CONCLUSIONS: The results reported here demonstrate the potential application of ATPS for the fractionation of PEGylated conjugates from their unreacted precursors. Copyright © 2010 Society of Chemical Industry  相似文献   

17.
The effect of a β‐nucleating agent (β‐NA) on the properties and structure of a commercial impact polypropylene copolymer (IPC) was investigated. The effect of selected β‐NAs on the impact resistance, stress and strain behaviour of the IPC is reported. In addition, the IPC was fractionated according to crystallinity by preparative temperature rising elution fractionation. Fractions with varying chemical composition and crystallinity were treated with a two‐component β‐NA to investigate the effect of the β‐NA on the various fractions. The results indicate that the efficacy of the β‐NA is dependent on the chemical composition of the polymer that crystallises, more specifically on the sequence length of crystallisable propylene units. The effect of the addition of β‐NAs on the overall morphology of the IPC was also investigated, and in particular the size and distribution of the rubbery particles in these complex reactor blends were probed. © 2014 Society of Chemical Industry  相似文献   

18.
Poly[(n‐butyl acrylate)‐block‐poly(methyl methacrylate)‐co‐(glycidyl methacrylate)] (BMG) diblock copolymers incorporating an epoxy‐reactive functionality in one block have been synthesized and used as modifiers for the model epoxy resin E‐51 cured with 4,4′‐diaminodiphenyl methane (DDM). The properties and morphologies of the modified epoxy thermosets were investigated by dynamic mechanical analysis (DMA), impact testing and scanning electron microscopy (SEM). The results reveal that addition of the block copolymers leaves the glass transition temperatures of the blends relatively unchanged, with small decreases in the storage moduli at room temperature. The toughening effect is dependent on the chemical structures of the block copolymers and an increase in the impact strength by a factor of two was obtained by the addition of ‘relatively symmetrical’ block copolymers. Moreover, the impact test results are consistent with the morphologies of the fracture surfaces as evidenced by SEM. Copyright © 2005 Society of Chemical Industry  相似文献   

19.
Methods of producing the biosurfactant surfactin from cultures of Bacillus subtilis (BBK006) have been investigated. A reactor with integrated foam fractionation was designed and used in batch mode, and the performance compared with that of the same culture in shaken flasks. In the batch reactor, significant foaming occurred between 12.5 h and 14.5 h of culture time. During this period, the foam was routed through the foam fractionation column to a mechanical foam breaker, and a biosurfactant‐enriched foamate was collected. Concentration of surfactin in the foamate product was around 50 times greater than that in the culture medium. Using the integrated reactor, 136 mg L?1 of surfactin was produced, significantly more than was achieved in shaken flasks (92 mg L?1). The foam fractionation method allowed a real‐time measurement of the rate of surfactin production during growth. This showed that the maximum rate of production occurred at the interphase between log and stationary modes of growth, in contrast to previous work showing that surfactin is exclusively a secondary metabolite. The high value of surfactin yield in relation to biomass (YP/x = 0.262) indicated that surfactin was produced very efficiently by Bacillus subtilis (BBK006) in this integrated bioreactor. Copyright © 2006 Society of Chemical Industry  相似文献   

20.
Here we are aimed to unravel the effects of CC functionality and molecular weight of the rubber on the final properties of poly1-hexene-based high impact polystyrenes (HIPS). In this regard, various HIPS samples were synthesized by free radical polymerization of styrene in the presence of different weight fractions of various poly1-hexene-based impact modifiers including: (i) high molecular weight poly1-hexene (PHex), (ii) low molecular weight poly1-hexene (Olig), and (iii) 1-hexene/1,5-hexadiene copolymer (Copolym). Results showed that by increasing CC functionality from PHex to Oligm and Copoly, the degree of grafting increases which has its influence on the mechanical, thermal and morphological perspectives of the synthesized HIPSs. Besides CC unsaturation degree, the effect of rubber molecular weight on the final HIPS properties was studied as well. According to the results, molecular weight has significant effect on the final HIPS performance, too. Finally, our obtained results suggest new HIPS/Copolym sample as the one with the highest mechanical and thermal properties which is comparable well with commercial HIPS/polybutadiene grades. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47169.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号